二阶线性偏微分分类与总结
- 格式:ppt
- 大小:487.00 KB
- 文档页数:28
二阶线性偏微分方程的分类与小结第六章二阶线性偏微分方程的分类与小结一两个自变量的二阶线性方程1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成«Skip Record If...»①它关于未知函数«Skip Record If...»及其一、二阶偏导数都是线性的,其中«Skip Record If...»都是自变量«Skip Record If...»的已知函数,假设它们的一阶偏导数在某平面区域«Skip Record If...»内都连续,而且«Skip Record If...»不全为0 。
设«Skip Record If...»是«Skip Record If...»内给定的一点,考虑在«Skip Record If...»的领域内对方程进行简化。
取自变量变换«Skip Record If...»,«Skip Record If...»其中它们具有二连续偏导数,而且在«Skip Record If...»处的雅可比行列式。
«Skip Record If...»«Skip Record If...»=«SkipRecord If...»根据隐函数存在定理,在«Skip Record If...»领域内存在逆变换,«Skip Record If...»,«Skip Record If...»因为«Skip Record If...»,«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»将代入①使其变为«Skip Record If...»经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以«Skip Record If...»不全为0。
第六章 二阶线性偏微分方程的分类与小结一 两个自变量的二阶线性方程 1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ①它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。
设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。
取自变量变换),(y x ξξ=,),(y x ηη=其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。
=∂∂),(),(y x ηξyx yx ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换,),(ηξx x =,),(ηξy y =因为x x x u u u ηξξξ+=,y y y u u u ηξξξ+=xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)(将代入①使其变为F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。
并可验证222112122211212))((x y y x a a a A A A ηξηξ--=-这表明,在可逆变换下22211212A A A -与2211212a a a -保持相同的正负号。
二阶偏微分方程分类二阶偏微分方程是指含有两个独立变量的二阶偏导数的方程。
在数学中,它是一个重要的研究对象,具有广泛的应用领域,如物理学、工程学、生物学等。
本文将对二阶偏微分方程进行分类和介绍。
一、常系数二阶线性偏微分方程常系数二阶线性偏微分方程是指系数不随自变量变化而保持不变的二阶线性偏微分方程。
它们可以写成以下形式:$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} + cu = f(x,y)$$其中$a$、$b$、$c$为常数,$f(x,y)$为已知函数。
这类方程可以通过特征方程法求解。
二、非齐次线性偏微分方程非齐次线性偏微分方程是指右端项不为零的线性偏微分方程。
它们可以写成以下形式:$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$$其中$f(x,y)$为已知函数。
这类方程可以通过格林函数法求解。
三、椭圆型偏微分方程椭圆型偏微分方程是指二阶偏微分方程中的系数满足$b^2 - 4ac < 0$,即判别式小于零的方程。
它们可以写成以下形式:$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = f(x,y)$$其中$a$、$b$、$c$为常数,$f(x,y)$为已知函数。
这类方程在物理学中有广泛的应用,如热传导方程和电场方程等。
四、双曲型偏微分方程双曲型偏微分方程是指二阶偏微分方程中的系数满足$b^2 - 4ac > 0$,即判别式大于零的方程。
§3 二阶偏微分方程的分类一、二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程(1)式中a ij(x)=a ij(x1,x2,…,x n)为x1,x2,…,x n的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程称为二阶方程(1)的特征方程;这里a1,a2,…,a n是某些参数,且有.如果点x︒=(x1︒,x2︒,…,x n︒)满足特征方程,即则过x︒的平面的法线方向l:(a1,a2,…,a n)称为二阶方程的特征方向;如果一个(n)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n个自变量方程的分类与标准形式] 在点P(x1︒,x2︒,…,x n︒),根据二次型(a i为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P为椭圆型.(ii) 特征根都不为零,有n个具有同一种符号,余下一个符号相反,称方程在点P为双曲型.(iii) 特征根都不为零,有个具有同一种符号(n>m>1),其余m个具有另一种符号,称方程在点P为超双曲型.(iv) 特征根至少有一个是零,称方程在点P为抛物型.若在区域D内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D内是椭圆型、双曲型或抛物型.在点P作自变量的线性变换可将:椭圆型:双曲型:超双曲型:抛物型:式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为(2)a 11,a 12,a 22为x,y 的二次连续可微函数,不同时为零. 方程a11dy 2a 12dxdy+a 22dx 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线.在某点P(x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类:当Δ>0时,方程为双曲型;当Δ=0时,方程为抛物型;当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将:(i)(i)双曲型:因Δ>0,存在两族实特征曲线,,作变换,和或(ii)(ii)抛物型:因Δ=0,只存在一族实的特征曲线,取二次连续可微函数,使,作变换,,(iii)(iii)椭圆型:因Δ<0,不存在实特征曲线,设为的积分,不同时为零,作变量替换,,。
第四章 二阶线性偏微分方程的分类与总结§1 二阶方程的分类1. 证明两个自变量的二阶线性方程经过可逆变换后它的类型不会改变,也就是说,经可逆变换后2211212a a a -=∆的符号不变。
证:因两个自变量的二阶线性方程一般形式为fcu u b u b u a u a u a y x yy xy xx =+++++212212112经可逆变换 ⎩⎨⎧==),(),(y x y x ηηξξ 0),(),(≠y x D D ηξ化为 f u c u b u a u a u a =++++ηηηξηξξ22212112其中 ⎪⎪⎩⎪⎪⎨⎧++=+++=++=22212211222212111222212211112)(2y y x x y y x y y x x x yy x x a a a a a a a a a a a a ηηηηηξηξηξηξξξξξ所以 y x y x y x y x x y y x a a a a a a a ηηξξηηξξηξηξ2211112222122221112222)(+-+=-=∆22221112222222211),(),())(()(⎥⎦⎤⎢⎣⎡∆=--=+-y x D D a a a a a x y y x y x y x ηξηξηξηξξη因0),(),(2>⎥⎦⎤⎢⎣⎡y x D D ηξ,故∆与∆同号,即类型不变。
2. 判定下述方程的类型(1)022=-yy xx u y u x (2)0)(2=++yy xx u y x u (3)0=+yy xx xyu u(4))010001(sgn 0sgn 2sgn ⎪⎩⎪⎨⎧<-=>==++x x x x xu u yu yyxy xx(5) 0424=+++-zz yy xz xy xx u u u u u 解:(1)022=-yy xx u y u x因 022>=∆y x 当0,0≠≠y x 时0,0=>∆x 或0=y 时0=∆。
第六章 二阶线性偏微分方程的分类与小结一 两个自变量的二阶线性方程 1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成f cu u b u b u a u a u a y x yy xy xx =+++++212212112①它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。
设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。
取自变量变换),(y x ξξ=,),(y x ηη=其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。
=∂∂),(),(y x ηξyx yx ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换,),(ηξx x =,),(ηξy y =因为x x x u u u ηξξξ+=,y y y u u u ηξξξ+=xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)(将代入①使其变为F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。
并可验证222112122211212))((x y y x a a a A A A ηξηξ--=-这表明,在可逆变换下22211212A A A -与2211212a a a -保持相同的正负号。
第四章 二阶线性偏微分方程的分类与总结§1 二阶方程的分类1. 证明两个自变量的二阶线性方程经过可逆变换后它的类型不会改变,也就是说,经可逆变换后2211212a a a -=∆的符号不变。
证:因两个自变量的二阶线性方程一般形式为fcu u b u b u a u a u a y x yy xy xx =+++++212212112经可逆变换 ⎩⎨⎧==),(),(y x y x ηηξξ0),(),(≠y x D D ηξ 化为 f u c u b u a u a u a =++++ηηηξηξξ22212112其中 ⎪⎪⎩⎪⎪⎨⎧++=+++=++=22212211222212111222212211112)(2y y x x y y x y y x x x yy x x a a a a a a a a a a a a ηηηηηξηξηξηξξξξξ所以 y x y x y x y x x y y xa a a a a a a ηηξξηηξξηξηξ2211112222122221112222)(+-+=-=∆22221112222222211),(),())(()(⎥⎦⎤⎢⎣⎡∆=--=+-y x D D a a a a a x y y x y x y x ηξηξηξηξξη因0),(),(2>⎥⎦⎤⎢⎣⎡y x D D ηξ,故∆与∆同号,即类型不变。
2. 判定下述方程的类型(1)022=-yy xx u y u x (2)0)(2=++yy xx u y x u (3)0=+yy xx xyu u(4))010001(sgn 0sgn 2sgn ⎪⎩⎪⎨⎧<-=>==++x x x x xu u yu yyxy xx(5) 0424=+++-zz yy xz xy xx u u u u u 解:(1)022=-yy xx u y u x因 022>=∆y x 当0,0≠≠y x 时0,0=>∆x 或0=y 时0=∆。
第六章 二阶线性偏微分方程的分类与小结一 两个自变量的二阶线性方程 1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成fcu u b u b u a u a u a y x yy xy xx =+++++212212112 ①它关于未知函数u 及其一、二阶偏导数都是线性的,其中fu c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。
设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。
取自变量变换),(y x ξξ=,),(y x ηη=其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。
=∂∂),(),(y x ηξyx yx ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换,),(ηξx x =,),(ηξy y =因为x x x u u u ηξξξ+=,y y y u u u ηξξξ+= xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)(将代入①使其变为F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。
并可验证222112122211212))((x y y x a a a A A A ηξηξ--=-这表明,在可逆变换下22211212A A A -与2211212a a a -保持相同的正负号。