眼图总结
- 格式:pdf
- 大小:931.66 KB
- 文档页数:16
实验报告20 年度春季学期数字通信原理课程名称实验二眼图实验名称实验名称:眼图实验目的:理解升余弦滚降系统的特性;理解眼图的含义。
实验要求:1.绘制滚降系数分别为0,0.5,1的升余弦系统的时域波形和频谱,并分析之。
2.画出滚降系数为1的升余弦系统的眼图。
实验过程:1.打开MATLAB新建一个文件,然后按照老师所给的PPT的实验教程指南打上以下的程序:Ts=1;N=17;dt=Ts/N;df=1.0/(20.0*Ts);t=-10*Ts:dt:10*Ts;f=-2/Ts:df:2/Ts;a=[0,0.5,1];for n=1:length(a)for k=1:length(f)if abs(f(k))>0.5*(1+a(n))/TsXf(n,k)=0;elseif abs(f(k))<0.5*(1-a(n))/TsXf(n,k)=Ts;elseXf(n,k)=0.5*Ts*(1+cos(pi*Ts/(a(n)+eps)*(abs(f(k))-0.5*(1-a(n))/Ts)));end;end;xt(n,:)=sinc(t/Ts).*(cos(a(n)*pi*t/Ts))./(1-4*a(n)^2*t.^2/Ts^2+eps);endsubplot(211);plot(f,Xf);axis([-1 1 0 1.2]);xlabel('f/Ts');ylabel('升余弦滚降频谱');subplot(212);plot(t,xt);axis([-10 10 -0.5 1.1]);xlabel('t');ylabel('升余弦滚降波形');图1 升余弦滚降函数代码2.之后点击运行,然后能看见结果:图2 升余弦滚降3.然后在按照老师所给的实验操作指南,打上眼图的源代码,如下:图3眼图源代码(1)图4 眼图源代码(4)4.之后自己编写一段sigexpand函数,然后运行它之后在运行眼图代码,得到结果如下:图5 眼图运行结果实验小结:通过本次对眼图与升余弦滚降系统的特性分析让我对于其的结构理解、更加的深刻,我不断地翻阅书籍和网上的相关知识得到了滚降系数α:在无码间串扰条件下所需带宽W 和码元传输速率Rs 的比值(即奈奎斯特频率),将本来很模糊的概念到最后的融会贯通。
眼图详解关于眼图的基本知识1、眼图的作用数字信号的眼图可以体现数字信号的整体特征,能够很好地评估数字信号的质量,因而眼图的分析是数字系统信号完整性分析的关键之一。
2、眼图的形成串行数据的传输由于通讯技术发展的需要,特别是以太网技术的爆炸式应用和发展,使得电子系统从传统的并行总线转为串行总线。
串行信号种类繁多,如PCI Express、SPI、USB 等,其传输信号类型时刻在增加。
相比并行数据传输,串行数据传输的整体特点如下:1)信号线的数量减少,成本降低2)消除了并行数据之间传输的延迟问题3)时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了4)传输线的PCB 设计也更容易些5)信号完整性测试也更容易实际中,描述串行数据的常用单位是波特率和UI,串行数据传输示例如下:串行数据传输示例例如,比特率为3.125Gb/s 的信号表示为每秒传送的数据比特位是3.125G 比特,对应的一个单位间隔即为1UI。
1UI表示一个比特位的宽度,它是波特率的倒数,即1UI=1/(3.125Gb/s)=320ps。
现在比较常见的串行信号码形是NRZ 码,因此在一般的情况下对于串行数据信号,我们的工作均是针对NRZ 码进行的。
由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。
眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而可以估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
眼图实际上就是数字信号的一系列不同二进制码按一定的规律在示波器屏幕上累积后的显示,简单地说,由于示波器具有余辉功能,只要将捕获的所有波形按每三个比特分别地叠加累积(如上图所示),从而就形成了眼图。
目前,一般均可以用示波器观测到信号的眼图,其具体的操作方法为:将示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
眼图综述报告-----------李洋目录1. 眼图的形成 (2)1.1 传统的眼图生成方法 (2)1.2 实时眼图生成方法 (3)1.3 两种方法比较 (4)2. 眼图的结构与参数介绍 (4)2.1 眼图的结构图 (4)2.2 眼图的主要参数 (5)2.2.1 消光比 (5)2.2.2 交叉点 (5)2.2.3 Q因子 (6)2.2.4 信号的上升时间、下降时间 (6)2.2.5 峰—峰值抖动和均方根值抖动 (6)2.2.6 信噪比 (6)3. 眼图与系统性能的关系 (7)4. 眼图与BER的关系 (7)4. 如何获得张开的眼图 (8)5. 阻抗匹配的相关知识 (9)5.1 串联终端匹配 (9)5.2 并联终端匹配 (10)6. 眼图常见问题分析 (10)7. 总结 (17)1.眼图的形成眼图是一系列数字信号在示波器上累积而显示的图形,其形状类似于眼睛,故叫眼图。
在用余辉示波器观察传输的数据信号时,使用被测系统的定时信号,通过示波器外触发或外同步对示波器的扫描进行控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在示波器荧光屏上观察到的就是一个由多个随机符号波形共同形成的稳定图形。
这种图形看起来象眼睛,称为数字信号的眼图。
示波器测量的一般信号是一些位或某一段时间的波形,更多的反映的是细节信息。
而眼图则反映的是链路上传输的所有数字信号的整体特性。
如下图:1.1 传统的眼图生成方法采样示波器的CLK通常可能是用户提供的时钟,恢复时钟,或者与数据信号本身同步的码同步信号.图:采样示波器眼图形成原理1.2 实时眼图生成方法实时示波器通过一次触发完成所有数据的采样,不需附加的同步信号和触发信号.通常通过软件PLL方法恢复时钟。
图:实时示波器眼图形成原理另一种示意图:图:实时示波器眼图形成原理1.3 两种方法比较1.传统的方法比实时眼图生产方法测量的速度要慢100至1000倍。
2.传统的眼图生成方法测量精度没有实时眼图生成方法高。
眼图实验报告眼图实验报告引言:眼图是一种常用的电信测量工具,用于分析数字信号的质量和稳定性。
通过观察信号在示波器屏幕上的显示,我们可以获得信号的波形、噪声和时钟抖动等信息。
本实验旨在通过眼图分析方法,对数字信号进行测量和评估。
一、实验目的本实验的主要目的是通过眼图实验,了解数字信号的质量和稳定性,并掌握使用眼图进行信号分析的方法。
二、实验原理眼图是一种通过示波器观察信号波形的方法。
在示波器屏幕上,我们可以看到一系列的“眼睛”,每个“眼睛”代表了一个数据位。
通过观察这些“眼睛”的开闭程度和位置,我们可以判断信号的质量和稳定性。
在眼图中,水平轴代表时间,垂直轴代表信号的电压。
每个“眼睛”由上下两条边界线和中间的开放区域组成。
边界线的位置和开放区域的大小反映了信号的噪声和时钟抖动情况。
边界线越平整,开放区域越大,表示信号质量越好;反之,表示信号质量较差。
三、实验步骤1. 连接示波器和信号源:将信号源的输出与示波器的输入相连。
2. 设置示波器参数:根据实际情况,设置示波器的触发模式、时间基准和垂直尺度等参数。
3. 调整示波器触发:通过调整示波器的触发模式和触发电平,使信号能够稳定地显示在示波器屏幕上。
4. 观察眼图:调整示波器的水平和垂直尺度,观察眼图的显示情况。
注意观察边界线的平整程度和开放区域的大小。
5. 分析眼图:根据眼图的显示结果,分析信号的质量和稳定性。
可以通过观察边界线的位置和开放区域的大小,判断信号是否存在噪声和时钟抖动。
6. 记录实验数据:将实验中观察到的眼图结果记录下来,以备后续分析和比较。
四、实验结果与分析通过眼图实验,我们观察到了不同信号的眼图,并进行了分析。
在实验中,我们发现开放区域较大、边界线平整的眼图代表了较好的信号质量和稳定性,而开放区域较小、边界线波动较大的眼图则表示信号质量较差。
实验中,我们还观察到了一些常见的眼图特征。
例如,当信号存在噪声时,眼图的开放区域会变小,边界线会变得不规则;当信号存在时钟抖动时,眼图的边界线会出现波动。
眼图形成及其原理总结眼图形成及其原理总结1眼图基本概念1.1 眼图的形成原理眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般测量的信号是一些位或某一段分析实际眼图,再结合理论,一个完整的眼图应该包含从“000”到“111”的所有状态组,且每一个状态组发生的次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成的眼图如下所示:图眼图形成示意图由上述的理论分析,结合示波器实际眼图的生成原理,可以知道一般在示波器上观测到的眼图与理论分析得到的眼图大致接近(无串扰等影响),如下所示:图示波器实际观测到的眼图如果这八种状态组中缺失某种状态,得到的眼图会不完整,如下所示:图示波器观测到的不完整的眼图通过眼图可以反映出数字系统传输的总体性能,可是怎么样才能正确的掌握其判断方法呢?这里有必要对眼图中所涉及到的各个参数进行定义,了解了各个参数以后,其判断方法很简单。
1.2 眼图参数定义相关的眼图参数有很多,如眼高、眼宽、眼幅度、眼交叉比、“1”电平,“0”电平,消光比,Q因子,平均功率等,各个参数如下图所示:图眼图各个参数眼图中的“1”电平()与“0”()电平即是表示逻辑为1或0的电压位准值,实际中选取眼图中间的20%UI部分向垂直轴投影做直方图,直方图的中心值分别为“1”电平和“0”电平。
眼幅度表示“1”电平信号分布与“0”电平信号分布平均数之差,其测量是通过在眼图中央位置附近区域(通常为零点交叉眼宽反映信号的总抖动,即是眼图在水平轴所开的大小,其定义为两上缘与下缘交汇的点(Crossing Point)间的眼高即是眼图在垂直轴所开的大小,它是信噪比测量,与眼图振幅非常相似。
眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
眼图概述1眼图概述1.1 串⾏数据的传输由于通讯技术发展的需要,特别是以太⽹技术的爆炸式应⽤和发展,使得电⼦系统从传统的并⾏总线转为串⾏总线。
串⾏信号种类繁多,如PCI Express、SPI、USB等,其传输信号类型时刻在增加。
为何串⾏总线⽬前应⽤越来越⼴泛呢?相⽐并⾏数据传输,串⾏数据传输的整体特点如下:1 信号线的数量减少,成本降低2 消除了并⾏数据之间传输的延迟问题3 时钟是嵌⼊到数据中的,数据和时钟之间的传输延迟也同样消除了4 传输线的PCB设计也更容易些5 信号完整性测试也更容易实际中,描述串⾏数据的常⽤单位是波特率和UI,串⾏数据传输⽰例如下:图串⾏数据传输⽰例例如,⽐特率为3.125Gb/s的信号表⽰为每秒传送的数据⽐特位是3.125G⽐特,对应的⼀个单位间隔即为1UI。
1UI表⽰⼀个⽐特位的宽度,它是波特率的倒数,即1UI=1/(3.125Gb/s)=320ps。
现在⽐较常见的串⾏信号码形是NRZ码,因此在⼀般的情况下对于串⾏数据信号,我们的⼯作均是针对NRZ码进⾏的。
1.2 眼图的形成原理眼图,是由于⽰波器的余辉作⽤,将扫描所得的每⼀个码元波形重叠在⼀起,从⽽形成眼图。
眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从⽽可以估计系统优劣程度,因⽽眼图分析是⾼速互连系统信号完整性分析的核⼼。
另外也可以⽤此图形对接收滤波器的特性加以调整,以减⼩码间串扰,改善系统的传输性能。
⽬前,⼀般均可以⽤⽰波器观测到信号的眼图,其具体的操作⽅法为:将⽰波器跨接在接收滤波器的输出端,然后调整⽰波器扫描周期,使⽰波器⽔平扫描周期与接收码元的周期同步,这时⽰波器屏幕上看到的图形就称为眼图。
⽰波器⼀般测量的信号是⼀些位或某⼀段时间的波形,更多的反映的是细节信息,⽽眼图则反映的是链路上传输的所有数字信号的整体特征,两者对⽐如下图所⽰:图⽰波器中的信号与眼图如果⽰波器的整个显⽰屏幕宽度为100ns,则表⽰在⽰波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。
1眼图基本概念1.1 眼图的形成原理眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征,如下图所示:图示波器中的信号与眼图如果示波器的整个显示屏幕宽度为100ns,则表示在示波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。
但是,对于一个系统而言,分析这么短的时间内的信号并不具有代表性,例如信号在每一百万位元会出现一次突波(Spike),但在这100ns时间内,突波出现的机率很小,因此会错过某些重要的信息。
如果要衡量整个系统的性能,这么短的时间内测量得到的数据显然是不够的。
设想,如果可以以重复叠加的方式,将新的信号不断的加入显示屏幕中,但却仍然记录着前次的波形,只要累积时间够久,就可以形成眼图,从而可以了解到整个系统的性能,如串扰、噪声以及其他的一些参数,为整个系统性能的改善提供依据。
分析实际眼图,再结合理论,一个完整的眼图应该包含从“000”到“111”的所有状态组,且每一个状态组发生的次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成的眼图如下所示:图眼图形成示意图由上述的理论分析,结合示波器实际眼图的生成原理,可以知道一般在示波器上观测到的眼图与理论分析得到的眼图大致接近(无串扰等影响),如下所示:图示波器实际观测到的眼图如果这八种状态组中缺失某种状态,得到的眼图会不完整,如下所示:图示波器观测到的不完整的眼图通过眼图可以反映出数字系统传输的总体性能,可是怎么样才能正确的掌握其判断方法呢?这里有必要对眼图中所涉及到的各个参数进行定义,了解了各个参数以后,其判断方法很简单。
通常定义:在实际数字互连系统中 完全消除码间串扰是十分困难的 而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律 还不能进行准确计算。
为了衡量基带传输系统的性能优劣 在实验室中 通常用示波器观察接收信号形的方法来分析码间串扰和噪声对系统性能的影响 这就是眼图分析法。
如果将输入波形输入示波器的Y轴 并且当示波器的水平扫描周期和码元定时同步时 适当调整相位 使波形的中心对准取样时刻 在示波器上显示的图形很象人的眼睛 因此被称为眼图 Eye Map 。
二进制信号传输时的眼图只有一只“眼睛” 当传输三元码时 会显示两只“眼睛”。
眼图是由各段码元波形叠加而成的 眼图中央的垂直线表示最佳抽样时刻位于两峰值中间的水平线是判决门限电平。
在无码间串扰和噪声的理想情况下 波形无失真 每个码元将重叠在一起最终在示波器上看到的是迹线又细又清晰的“眼睛”“眼”开启得最大。
当有码间串扰时 波形失真 码元不完全重合 眼图的迹线就会不清晰 引起“眼”部分闭合。
若再加上噪声的影响 则使眼图的线条变得模糊 “眼”开启得小了 因此 “眼”张开的大小表示了失真的程度 反映了码间串扰的强弱。
由此可知眼图能直观地表明码间串扰和噪声的影响 可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整 以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述。
由此图可以看出1 眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然最佳抽样时刻应选在眼睛张开最大的时刻。
2 眼图斜边的斜率 表示系统对定时抖动或误差的灵敏度斜率越大系统对定时抖动越敏感。
3 眼图左右角阴影部分的水平宽度表示信号零点的变化范围称为零点失真量在许多接收设备中定时信息是由信号零点位置来提取的对于这种设备零点失真量很重要。
4 在抽样时刻 阴影区的垂直宽度表示最大信号失真量。
5 在抽样时刻上、下两阴影区间隔的一半是最小噪声容限噪声瞬时值超过它就有可能发生错误判决。
1眼图基本概念1.1 眼图的形成原理眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征,如下图所示:图示波器中的信号与眼图如果示波器的整个显示屏幕宽度为100ns,则表示在示波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。
但是,对于一个系统而言,分析这么短的时间内的信号并不具有代表性,例如信号在每一百万位元会出现一次突波(Spike),但在这100ns时间内,突波出现的机率很小,因此会错过某些重要的信息。
如果要衡量整个系统的性能,这么短的时间内测量得到的数据显然是不够的。
设想,如果可以以重复叠加的方式,将新的信号不断的加入显示屏幕中,但却仍然记录着前次的波形,只要累积时间够久,就可以形成眼图,从而可以了解到整个系统的性能,如串扰、噪声以及其他的一些参数,为整个系统性能的改善提供依据。
分析实际眼图,再结合理论,一个完整的眼图应该包含从“000”到“111”的所有状态组,且每一个状态组发生的次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成的眼图如下所示:图眼图形成示意图由上述的理论分析,结合示波器实际眼图的生成原理,可以知道一般在示波器上观测到的眼图与理论分析得到的眼图大致接近(无串扰等影响),如下所示:图示波器实际观测到的眼图如果这八种状态组中缺失某种状态,得到的眼图会不完整,如下所示:图示波器观测到的不完整的眼图通过眼图可以反映出数字系统传输的总体性能,可是怎么样才能正确的掌握其判断方法呢?这里有必要对眼图中所涉及到的各个参数进行定义,了解了各个参数以后,其判断方法很简单。
[转帖]眼图基本知识介绍随着数据速率超过Gb/s水平,工程师必须能够识别和解决抖动问题。
抖动是在高速数据传输线中导致误码的定时噪声。
如果系统的数据速率提高,在几秒内测得的抖动幅度会大体不变,但在位周期的几分之一时间内测量时,它会随着数据速率成比例提高,进而导致误码。
新兴技术要求误码率(BER),亦即误码数量与传输的总码数之比,低于一万亿分之一(10-12)。
随着数据通信、总线和底板的数据速率提高,市场上已经出现许多不同的抖动检定技术,这些技术采用各种不同的实验室设备,包括实时数字示波器、取样时间间隔分析仪(TIA)、等时取样示波器、模拟相位检波器和误码率测试仪(BERT)。
为解决高数据速率上难以解决的抖动问题,工程师必需理解同步和异步网络中使用的各种抖动分析技术本文重点介绍3 Gb/s以上新兴技术的数据速率。
低于3 Gb/s的实时示波器可以捕获连续的数据流,可以同时在时域和频域中分析数据流;在更高的数据速率上,抖动分析要更具挑战性。
本文将从数字工程师的角度,介绍应对SONET/SDH挑战的各种经验。
抖动分析基本上包括比较抖动时钟信号和参考时钟信号。
参考时钟是一种单独的黄金标准时钟,或从数据中重建的时钟。
在高数据速率时,分析每个时钟的唯一技术是位检测和误码率测试;其它技术则采用某种取样技术。
如图1所示,眼图是逻辑脉冲的重叠。
它为测量信号质量提供了一种有用的工具,即使在极高的数据速率时,也可以在等时取样示波器上简便生成。
边沿由‘1’到‘0’转换和‘0’到‘1’转换组成,样点位于眼图的中心。
如果电压(或功率)高于样点,则码被标为逻辑‘1’;如果低于样点,则标为‘0’。
系统时钟决定着各个位的样点水平位置。
图1: 具有各项定义的眼图E1是逻辑‘1’的平均电压或功率电平,E0是逻辑‘0’的平均电压或功率电平。
参考点t = 0在左边的交点进行选择,右边的交点及其后是位周期TB。
Eye Crossing Point: 眼图交点Left Edge: 左沿Right Edge: 右沿Nominal Sampling Point: 标称样点幅度噪声可能会导致逻辑‘1’的电压或功率电平垂直波动,低于样点,导致逻辑‘1’码错误地标为逻辑‘0’码,即误码。