大学物理(上)总复习
- 格式:ppt
- 大小:1.80 MB
- 文档页数:80
《大学物理(一)》综合复习资料一.选择题1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从(A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来.[ ]2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动.[ ]3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为β.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3.[ ]6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为(A )4/1E .(B ) 2/1E .(C )12E .(D )14E .[ ]7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ.[ ]8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:(A ))cos(0ϕω+++=u x b t A y .(B )⎥⎦⎤⎢⎣⎡++-=0)(cos ϕωu x b t A y . (C )⎥⎦⎤⎢⎣⎡+-+=0)(cos ϕωu b x t A y .(D )⎥⎦⎤⎢⎣⎡+-+=0)(cos ϕωu x b t A y . [ ]9.物体在恒力F 作用下作直线运动,在时间1t ∆内速度由0增加到v ,在时间2t ∆内速度由v 增加到2v ,设F 在1t ∆内作的功是W 1,冲量是I l ,F 在2t ∆内作的功是W 2,冲量是I 2,那么(A ) W 2=W 1,I 2 >I 1.(B ) W 2=W 1 , I 2<I 1.(C ) W 2>W 1,I 2= I 1.(D) W 2<W l ,I 2=I 1 .[ ]10.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A )动能不变,动量改变.(B )动量不变,动能改变.(C )角动量不变,动量不变. (D )角动量改变,动量改变. (E )角动量不变,动能、动量都改变.[ ]二.填空题1.一个质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M= ;在任意时刻t ,质点对原点O 的角动量L= .3.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .4.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .5.一质点作半径为0.l m 的圆周运动,其运动方程为:2214t +=πθ (SI ),则其切向加速度为t a = .6.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L = .7.简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为 .8.一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)4/cos(05.01πω+=t x (SI ),)12/19cos(05.01πω+=t x (SI ).其合振运动的振动方程为x = .9.一弹簧振子系统具有1.OJ 的振动能量,0.10m 的振幅和1.0m /s 的最大速率,则弹簧的倔强系数为 ,振子的振动频率为 .10.质量为m 的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T .当它作振幅为A 的自由简谐振动时,其振动能量E=. 三.计算题1.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量.2.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率. (3)此弹簧的弹力是保守力吗?3.一简谐波沿OX 轴正方向传播,波长λ=4m ,周期T =4s ,已知x =0处质点的振动曲线如图所示,(l )写出x =0处质点的振动方程; (2)写出波的表达式;(3)画出t =1s 时刻的波形曲线.Ml答案一.选择题1.(C )2.(B ) 3.(C ) 4.(C )5.(D ) 6.(D ) 7.(B ) 8.(C ) 9.(C) 10.(E) 二.填空题1. 8m 2分 10m 2分2. k mbg2分 k mbgt2分3. )11(21ba m Gm -- 4. 质点系所受合外力的冲量等于质点系(系统)动量的增量. 1分i i i i t t v m v m dt F 2121∑∑⎰-= 2分系统所受合外力等于零. 1分 5. 0.12m/s6. μ+g m M mv 22)(2)(7. )2/cos(04.0ππ-t(其中振相1分,周期1分,初相2分) 8. )12/23cos(05.0π+ωt (SI ) 或)12/cos(05.0πω-t (SI ) 9. 2×102N /m; 1.6Hz.10. 222/2T mA π.三.计算题1.解:(1)穿透时间极短,故可认为物体未离开平衡位置.因此作用于子弹、物体系统上的外力均在铅直方向,故系统在水平方向上动量守恒.令子弹穿出物体的水平速度为v ',有: v M mv mv '+=0 2分s m M v v m v /3/4/)(0,=-= 1分N l Mv Mg T 1.17/2=+= 2分 (2)方向为正方向)设00(v mv mv t f-=∆ 3分 s N •-=2 2分 负号表示冲量方向与0v方向相反. 2分2.解:(l )外力做的功 ⎰•=r d F W ⎰+=21)4.388.52(2x xdx x x J 31= 4分(2)设弹力为F ', =221mv W x d F x x -=•'⎰21 3m W v /2-= 1分s m v /34.5= l 分(3)此力为保守力,因为其功的值仅与弹簧的始末态有关. 3分3.解:(1))3/21cos(10220π+π⨯=-t y (SI ) 3分(2))3/)4/4/(2cos[1022π+-π⨯=-x t y (SI ) 3分(3) t =1s 时,波形方程: )6/521cos[1022π-π⨯=-x y (SI ) 2分故有如图的曲线. 4分(注:可编辑下载,若有不当之处,请指正,谢谢!)。
复习题一、简答题 1.|Δ|与Δr 有无不同?||和有无不同?||和有无不同? 2.简述简谐振动与平面简谐波的能量特点。
3. 刚体定轴转动的特点是什么?刚体定轴转动时各质元的角速度、线速度、向心加速度、切向加速度是否相同?刚体定轴转动的特点是:轴上所有各点都保持不动,轴外所有各点都在作圆周运动,且在同一时间间隔内转过的角度都一样;刚体上各质元的角量相同,而各质元的线量大小与质元到转轴的距离成正比。
因此各质元的角速度相同,而线速度、向心加速度、切向加速度不一定相同。
4.狭义相对论的相对性原理的内容是什么?5.简述狭义相对论的两条基本原理的内容6.简述多普勒效应。
7.狭义相对论的时间和空间有什么特点?8.两列波产生干涉需要具备哪些条件?9.用热力学第一定律说明,有没有可能:1)对物体加热而物体的温度不升高?2) 系统与外界不作任何热交换,而使系统的温度发生变化?二、判断题1.一对作用力和反作用力的功之和一定为零。
2.牛顿运动定律成立的参照系叫非惯性参照系。
3.牛顿运动定律只在惯性参照系中成立。
4.一对作用力和反作用力的冲量之和不一定为零。
5.牛顿运动定律在所有的参照系中都成立。
6.一对作用力和反作用力对同一轴的力矩之和不为零。
7.气体处于平衡态时,分子的每一个自由度上都具有的平均动能。
8.温度反映系统大量分子无规则运动的剧烈程度。
9.理想气体的温度和压强都是对大量分子而言的。
10.P-V 图上的一个点代表一个平衡态,一条连续曲线代表一个准静态过程。
11.热平衡态是指系统的宏观性质不随时间变化的稳定状态。
12.理想气体的内能仅仅是温度的单值函数。
判断题:FFTFFFTTTTFT三、填空题1. 某质点在力(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m 的过程中,力所做功为 。
因为F 与X 成一次函数关系所以可以用平均作用力来表示F =(4+54)/2=29N 位移S =10M所以W =FS =290Jr dtr d dt dr dt v d dt dv 1kT 2i x F )54(+=F当然也可以作出F 关于X 的图像:所包围的面积就是功W =(4+54)×10/2=290J2.一物体在水平面内从A 点出发,向东走5m ,再向北走5m ,历时5S ,则它在这段时间里发生的位移大小是,平均速率是,平均速度大小是。
大学物理上期末知识点总结关键信息:1、力学部分知识点质点运动学牛顿运动定律动量守恒定律和能量守恒定律刚体定轴转动2、热学部分知识点气体动理论热力学基础3、电磁学部分知识点静电场恒定磁场电磁感应电磁场和电磁波11 力学部分111 质点运动学位置矢量、位移、速度、加速度的定义和计算。
运动方程的表达式和求解。
曲线运动中的切向加速度和法向加速度。
相对运动的概念和计算。
112 牛顿运动定律牛顿第一定律、第二定律、第三定律的内容和应用。
常见力的分析,如重力、弹力、摩擦力等。
牛顿定律在质点和质点系中的应用。
113 动量守恒定律和能量守恒定律动量、冲量的定义和计算。
动量守恒定律的条件和应用。
功、功率的计算。
动能定理、势能的概念和计算。
机械能守恒定律的条件和应用。
114 刚体定轴转动刚体定轴转动的运动学描述,如角速度、角加速度等。
转动惯量的计算和影响因素。
刚体定轴转动定律的应用。
力矩的功、转动动能、机械能守恒在刚体定轴转动中的应用。
12 热学部分121 气体动理论理想气体的微观模型和假设。
理想气体压强和温度的微观解释。
能量均分定理和理想气体内能的计算。
麦克斯韦速率分布律。
122 热力学基础热力学第一定律的内容和应用。
热力学过程,如等容、等压、等温、绝热过程的特点和计算。
循环过程和热机效率。
热力学第二定律的两种表述和微观意义。
13 电磁学部分131 静电场库仑定律、电场强度的定义和计算。
电场强度的叠加原理。
电通量、高斯定理的应用。
静电场的环路定理、电势的定义和计算。
等势面、电场强度与电势的关系。
132 恒定磁场毕奥萨伐尔定律、磁感应强度的定义和计算。
磁感应强度的叠加原理。
磁通量、安培环路定理的应用。
安培力、洛伦兹力的计算。
133 电磁感应法拉第电磁感应定律的应用。
动生电动势和感生电动势的计算。
自感和互感的概念和计算。
磁场能量的计算。
134 电磁场和电磁波位移电流的概念。
麦克斯韦方程组的积分形式和微分形式。
电磁波的产生和传播特性。
大学物理(上)复习提纲一、重点公式:第一章位移:k z j y i x k z z j y y i x x r A B A B A B)()()((瞬时)速度: k j i k dtdz j dt dy i dt dx dt r d z y x一维运动: v x =dx dt(瞬时)加速度: k a j a i a k dtdv j dt dv i dt dv dt v d a z y x z y x 一维运动: a x =dv x dt角速度:dtd角加速度:22dtd dt d在自然坐标系中线速度: t t e dtds e v v加速度: n t n n t t n t t t a a e a e a e re dt d dt e d e dt d dt d a2 dtd a t02ra n第二章 牛顿定律a m dtd m F直角坐标系中:dtd mF xxdtd mF y y自然坐标系中: dtd mr dt d mF t 22mr rmF n万有引力可表示为:r e rm m G F22112第三章 守恒定律 1.冲量,即21)(t t dt t F I2.动量定理: 021p p dt F I t t分量式:x x t t x x m m dt F I 0213.动量守恒定律当 ii F F 0 时, ii i C m p 。
其分量式为:ix ix i x F c m p )0(14.元功 r d F dw功:B Ar d F dW WBAz y x dz F dy F dx F W )(功率:F dtdW P 5.动能定理: k E W21222121 m m E K6.重力势能: )00( p p E y mgy E 处,选弹性势能: )0(212p p E kx E 选弹簧原长位置 引力势能: )0(21 p p E r rm m G E 处,选 7.质点系的功能原理E W W 非保内外8.机械能守恒定律当0 非保内外W W 时,则0 E 或0E E 第四章 刚体转动 1.角速度d d t角加速度22d d d d t t匀速定轴转动公式:t 0,222000001,,2()2t t t 2.力矩的定义式为 M r F3.转动惯量2d VJ r m或2i i J m r4.转动定律:J M5.质点的角动量:m L r p r 刚体绕定轴转动的角动量:J L , 6.角动量定理:2121d t t tM L L .7.角动量守恒定律:如果作用在物体上的合外力矩0 M ,则角动量守恒,即L u v=恒量.8.元功 d d W M ,若刚体转过的角度为 ,则M 作的功为0d W M转动动能:221z k J E.9.转动动能定理: 22211122W J J第九章 振动1. 简谐运动的特征和规律。
刚体复习重点(一)要点质点运动位置矢量(运动方程) r = r (t ) = x (t )i + y (t )j + z (t )k ,速度v = d r/d t = (d x /d t )i +(d y /d t )j + (d z /d t )k ,动量 P=m v加速度 a=d v/d t=(d v x /d t )i +(d v y /d t )j +(d v z /d t )k曲线运动切向加速度 a t = d v /d t , 法向加速度 a n = v 2/r .圆周运动及刚体定轴转动的角量描述 θ=θ(t ), ω=d θ/d t , β= d ω/d t =d 2θ/d t 2,角量与线量的关系 △l=r △θ, v=r ω (v= ω×r ),a t =r β, a n =r ω2力矩 M r F 转动惯量 2i i J r m =∆∑, 2d mJ r m =⎰ 转动定律 t d L M =M J α= 角动量: 质点p r L ⨯= 刚体L=J ω;角动量定理 ⎰tt 0d M =L -L 0角动量守恒 M=0时, L=恒量; 转动动能2k E J ω= (二) 试题一 选择题(每题3分)1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(答案:C )(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (答案:C )(A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (答案:A )(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.4. 关于刚体对轴的转动惯量,下列说法中正确的是(答案:C )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(答案:D )(A) ω0/3. (B) ()3/1 ω0. (C) 3 ω0. (D) 3ω0.二、填空题1.(本题4分)一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s内总共转过了 圈,飞轮再经 的时间才能停止转动。
《⼤学物理》上册复习资料⼩飞说明:本资料纯属个⼈总结,只是提供给⼤家⼀些复习⽅⾯,题⽬均来⾃课件如有不⾜望谅解。
(若要打印,打印时请删去此⾏)第⼀章质点运动学1.描述运动的主要物理量位置⽮量:位移⽮量:速度⽮量:加速度⽮量:速度的⼤⼩:加速度的⼤⼩:2.平⾯曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的⾓量描述⾓位置:⾓速度:⾓加速度:圆周运动的运动⽅程:4.匀⾓加速运动⾓量间的关系ω= θ=5.⾓量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地⾯竖直向上抛出⼀个质量为m 的⼩球,若上抛⼩球受到与其瞬时速率成正⽐的空⽓阻⼒,求⼩球能升达的最⼤⾼度是多⼤?8.⼀飞轮以n=1500r/min的转速转动,受到制动⽽均匀地减速,经t=50s后静⽌。
(1)求⾓加速度β和从制动开始到静⽌时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的⾓速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上⼀点的速度、切向加速度和法向加速度9.⼀带蓬卡车⾼h=2m,它停在马路上时⾬点可落在车内到达蓬后沿前⽅d=1m处,当它以15 km/h 速率沿平直马路⾏驶时,⾬滴恰好不能落⼊车内,求⾬滴相对地⾯的速度及⾬滴相对车的速度。
x x 'yy 'z z 'O O 'S S 'uP ),,(),,(z y x z y x '''第⼆章⽜顿运动定律 1.经典⼒学的时空观(1)(2)(3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌⾯上放置⼀固定圆环,半径为R ,⼀物体贴着环带内侧运动,如图所⽰。
第一章 质点运动学重点:求导法和积分法,圆周运动切向加速度和法向加速度。
主要公式:1.质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度3.4.5.线速度与角速度关系6.切向加速度法向加速度 总加速度第二章 质点动力学重点:动量定理、变力做功、动能定理、三大守恒律。
主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律3.4.5.6 动能定理7.机械能守恒定律:当只有保守内力做功时,0=∆E8. 力矩:F r M⨯=大小:θsin Fr M=方向:右手螺旋,沿F r⨯的方向。
9.角动量:P r L⨯=大小:θsin mvr L =方向:右手螺旋,沿P r⨯的方向。
※ 质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。
完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:动量守恒,机械能不守恒。
※行星运动:向心力的力矩为0,角动量守恒。
第三章 刚体重点: 刚体的定轴转动定律、刚体的角动量守恒定律。
主要公式: 1. 转动惯量:⎰=rdm r J2,转动惯性大小的量度。
2. 平行轴定理:2md J Jc +=质点:θsin mvr L =刚体:ωJ L =4.转动定律:βJ M=5.角动量守恒定律:当合外力矩2211:,0,0ωωJ J L M ==∆=即时6. 刚体转动的机械能守恒定律: 转动动能:221ωJ E k =势能:c P mgh E = (c h 为质心的高度。
)※ 质点与刚体间发生碰撞:完全弹性碰撞:角动量守恒,机械能守恒。
完全非弹性碰撞:角动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:角动量守恒,机械能不守恒。
说明:期中考试前的三章力学部分内容,请大家复习期中试卷,这里不再举例题。
物理上册复习题集 一、力学习题2. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 - 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程. 7. 质量相等的两物体A 和B ,分别固定在弹簧的两端,竖直放在光滑水平面C 上,如图所示.弹簧的质量与物体A 、B 的质量相比,可以忽略不计.若把支持面C 迅速移走,则在移开的一瞬间, A 的加速度大小a A =_______,B 的加速度的大小a B =_______.Bm ACθ8.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比T : T ′=____________________.9.θ l m一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_______________; (2) 摆锤的速率v=_______________. 12. 一光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s .(C) 17 rad/s (D) 18 rad/s . [ ]αm13. 质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少. (C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°. [ ]15. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ]AMBF16. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]18. 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]22.一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度ω =__________________________.一、力学答案2. 解:(1) 5.0/-==∆∆t x v m/s 1分 (2) v = d x /d t = 9t - 6t 2 1分v (2) =-6 m/s 1分(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2分7. 0 2分 2 g 2分 8. l/cos 2θ 3分 13 B 15 C 16 C 18. C 22. 8 rad ·s 1 3分静电场1. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球心为r 的P 点处电场强度的大小与电势分别为:OR 1R 2Pr Q(A) E =204r Q επ,U =r Q 04επ.(B) E =204r Qεπ,U =⎪⎪⎭⎫ ⎝⎛-πr R Q 11410ε. (C) E =204r Qεπ,U =⎪⎪⎭⎫ ⎝⎛-π20114R r Q ε. (D) E =0,U =204R Qεπ. [ ]4. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. [ ]6 图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的.(A) 半径为R 的均匀带电球面. (B) 半径为R 的均匀带电球体. (C) 半径为R 、电荷体密度ρ=Ar (A 为常数)的非均匀带电球体.(D) 半径为R 、电荷体密度ρ=A/r (A 为常数)的非均匀带电球体.[ ]10.O ErE /1∝ rR图中曲线表示一种轴对称性静电场的场强大小E 的 分布,r 表示离对称轴的距离,这是由______________ ______________________产生的电场.14. 一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________. 15. 一半径为R 的绝缘实心球体,非均匀带电,电荷体密度为ρ=ρ 0 r (r 为离球心的距离,ρ0为常量).设无限远处为电势零点.则球外(r >R )各点的电势分布为U =_____ r R 0404ερ _____________.16.O ErE /1∝ rR图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 成反比关系,该曲线可描述_无限长均匀带电直线______________的电场的E~r 关系,也可描述___正点电荷 __________的电场的U~r 关系.(E 为电场强度的大小,U 为电势)17.LdqP如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.18 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ]25.A B+σσ1σ2一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ.(B) σ 1 = σ21-, σ 2 =σ21+.(C) σ 1 = σ21-, σ 1 = σ21-.(D) σ 1 = - σ, σ 2 = 0. [ ]26. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 32r U R . (B) R U 0.(C) 20r RU . (D) r U 0. [ ]27.dbahh如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ.(C) 0εσh . (D) 02εσh. [ ]28. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D 为零,则面内必不存在自由电荷. (C) 高斯面的D 通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]31. 如果某带电体其电荷分布的体密度ρ 增大为原来的2倍,则其电场的能量变为原来的 (A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ ]32.qqR 1R 2一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A) 104R q επ . (B) 204R qεπ .(C) 102R q επ . (D) 20R qε2π . [ ]36. 一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =___)4/(21R q π-___________.38. 地球表面附近的电场强度为 100 N/C .如果把地球看作半径为6.4×105m 的导体球,则地球表面的电荷Q =__ 4.55×105 C _________________. (2/C m N 10941290⋅⨯=πε)40. 地球表面附近的电场强度约为 100 N /C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面带__负___电,电荷面密度σ =__8.85×10-10 C/m 2 ________. (真空介电常量 ε0 = 8.85×10-12 C 2/(N ·m 2) )41.12σdab厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.43 半径分别为R 1和R 2 (R 2 > R 1 )的两个同心导体薄球壳,分别带有电荷Q 1和Q 2,今将内球壳用细导线与远处半径为r 的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q .二、静电场答案1 C 4 B 6 D 18 B 25 B 26 C 27 A 28 C 31 C 32 D 10. 半径为R 的无限长均匀带电圆柱面14. R σ / ε0 3分15.r R 0404ερ 3分 16. 无限长均匀带电直线 2分正点电荷 2分17. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q +π=04ε3分 方向沿x 轴,即杆的延长线方向.36. )4/(21R q π- 38. 4.55×105 C 40. 负 8.85×10-10 C/m 241. 解:选坐标如图.由高斯定理,平板内、外的场强分布为:12σd abxOE = 0 (板内) )2/(0εσ±=x E (板外) 2分1、2两点间电势差⎰=-2121d xE U U xxx d b d d d a d 2d 22/2/02/)2/(0⎰⎰+-+-+-=εσεσ)(20a b -=εσ43. 解:设导体球带电q ,取无穷远处为电势零点,则导体球电势:r qU 004επ=2分 内球壳电势:10114R q Q U επ-=2024R Q επ+2分 二者等电势,即r q04επ1014R q Q επ-=2024R Q επ+2分解得 )()(122112r R R Q R Q R r q ++=2分三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90.(B) 1.00.(C) 1.11.(D) 1.22.[]2. AII边长为l的正方形线圈中通有电流I,此线圈在A点(见图)产生的磁感强度B为(A) lIπ42μ.(B) lIπ22μ.(C) lIπ2μ.(D) 以上均不对.[]3.aIIIaaaa2aIP QOIa通有电流I的无限长直导线有如图三种形状,则P,Q,O各点磁感强度的大小B P,B Q,B O间的关系为:(A) B P> B Q > B O . (B) B Q> B P > B O.(C) B Q > B O> B P.(D) B O > B Q > B P.[]4.aOBbr(A)OBbr(C)aOBbr(B)aOBbr(D)a无限长载流空心圆柱导体的内外半径分别为a、b,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r的关系定性地如图所示.正确的图是[]7. a bdI1OI2c电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B、3B ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0. (C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ ]11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场______ ____________________. (2) 圆线圈轴线上各点的磁场________13.B xA aL y P如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ____________.(2) 磁感强度B 沿图中环路L 的线积分=⎰⋅L l B d _____ ________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为_____________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电 流为_________________________.15.b ⊗⊙ c I I c a两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB d 等于:________ ____________________________(对环路a )._______________ ____________________(对环路b ). __________________________________(对环路c ).16.a 0v设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v方向相反 2分③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI1 2 34 R ROIa β2一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B +++= ∵ 1B 、4B均为0,故32B B B += 2分)2(4102R I B μ= 方向 ⊗ 2分242)s i n (s i n 401203R Ia IB π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β2/2)4/s i n (s i n1-=π-=β ∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分19.ISRl OO ′S一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
内容提要位矢:k t z j t y i t x t r r )()()()(++==位移:k z j y i x t r t t r r ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t∙∙∙→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dt r d dt d t a t ∙∙∙∙∙∙→∆++=++===∆∆=222222220lim υυ圆周运动 角速度:∙==θθωdtd 角加速度:∙∙===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a += 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dt d a t ==沿切线方向 线速率:ωυR =弧长:θR s =解题参考大学物理是对中学物理的加深和拓展。
本章对质点运动的描述相对于中学时更强调其瞬时性、相对性和矢量性,特别是处理问题时微积分的引入,使问题的讨论在空间和时间上更具普遍性。
对于本章习题的解答应注意对基本概念和数学方法的掌握。
矢量的引入使得对物理量的表述更科学和简洁。
注意位矢、位移、速度和加速度定义式的矢量性,清楚圆周运动角位移、角速度和角加速度方向的规定。
微积分的应用是难点,应掌握运用微积分解题。
这种题型分为两大类,一种是从运动方程出发,通过微分求出质点在任意时刻的位矢、速度或加速度;另一种是已知加速度或速度与时间的关系及初始条件,通过积分求出任意时刻质点的速度、位矢或相互间的关系,注意式子变换过程中合理的运用已知公式进行变量的转换,掌握先分离变量后积分的数学方法。
内容提要动量:υm p =冲量:⎰=21t t dt F I动量定理:⎰=21t t dt F p d⎰=-210t t dt F p p 动量守恒定律:若0==∑i i F F ,则常矢量==∑ii p p力矩:F r M ⨯=质点的角动量(动量矩):υ⨯=⨯=r m p r L 角动量定理:dtL d M =外力 角动量守恒定律:若0==∑外力外力M M ,则常矢量==∑ii L L功:r d F dW ∙= ⎰∙=B A AB r d F W 一般地 ⎰⎰⎰++=B AB A B A z z z y y y x x x AB dz F dy F dx F W 动能:221υm E k = 动能定理:质点, 222121A B AB m m W υυ-=质点系,0k k E E W W -=+内力外力保守力:做功与路程无关的力。
《大学物理(一)》综合复习资料一.选择题1.某人骑自行车以速率V 向西行驶,今有风以相同速率从北偏东300方向吹来,试问人感到风从哪个方向吹来?(A )北偏东300. (B )南偏东300. (C )北偏西300. (D )西偏南300. [ ]2.质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总角动量. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. C )变大. ( D )无法判断. [ ]4.一质点作匀速率圆周运动时,则(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断不变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的分布和轴的位置无关.(B )取决于刚体的质量和质量分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是(A )s 4=t .(B )s 2=t .(C )s 8=t .(D )s 5=t . [ ]7.对功的概念有以下几种说法:(l )保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A )(l )、(2)是正确的. (B )(2)、(3)是正确的.(C )只有(2)是正确的. (D )只有(3)是正确的. [ ]8.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小.(B )角速度从小到大,角加速度从小到大.(C )角速度从大到小,角加速度从大到小.(D )角速度从大到小,角加速度从小到大.[ ]9.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量1E 变为(A )4/1E . (B)2/1E . (C)12E . (D)14E . [ ]10.下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化. [ ]11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过固定在电梯内顶棚上得的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A )大小为1g ,方向向上. (B )大小为1g ,方向向下.(C )大小为g 21,方向向上. (D )大小为g 21,方向向下. [ ] 12.质量为M 光滑的圆弧形槽于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的:(A )由m 和M 组成的系统动量守恒. (B )由m 和M 组成的系统机械能守恒.(C )由m 、M 和地球组成的系统机械能守恒.(D )M 对m 的正压力恒不作功.[ ]13. 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. (C )变大. (D )无法判断. [ ]14.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A -.(B )φωsin A .(C )φωcos A -.(D )φωcos A . [ ]15.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动. (B )变速直线运动.(C )抛物线运动. (D )一般曲线运动. [ ]16.在高台上分别沿45º仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A )大小不同,方向不同.(B )大小相同,方向不同.(C )大小相同,方向相同.(D )大小不同,方向相同. [ ]17.质量为m 的木块沿与水平面成θ角的固定光滑斜面下滑,当木块下降高度为h 时,重力的瞬时功率是(A )2/1)2(gh mg . (B )2/1)2(cos gh mg θ. (C )2/1)21(sin gh mg θ. (D)2/1)2(sin gh mg θ. [ ]18.一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度0v 落下,撞击弹簧后跳回到高为h 处时速度仍为0v ,以小球为系统,则在这一整个过程中小球的(A )动能不守恒,动量不守恒. (B )动能守恒,动量不守恒.(C )机械能不守恒,动量守恒. (D )机械能守恒,动量守恒.[ ]二.填空题1.一质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2.一质点作半径为0.1m 圆周运动,其运动方程为:2/4/2t +π=θ,则其切向加速度为t a = .3.一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为 ,方向为 .4.若作用于一力学系统上外力的合力为零,则外力的合力矩.(填一定或不一定) 为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是_ .5.动量矩定理的内容是 .其数学表达式可写成 .动量矩守恒的条件是 .6.一质点沿半径为0.10m 的圆周运动,其角位移θ可用下式表示)(423SI t +=θ.(1)当t=2s 时,切向加速度t a = ;(2)当t a 的大小恰为总加速度a 大小的一半时,=θ .7.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后物体A 在水平方向滑过的距离L = .8.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为1m 的物体的加速度=1a .9.绕定轴转动的飞轮均匀地减速,0=t 时角速度s rad /5=ω,s t 20=时角速度08.0ωω=,则飞轮的角加速度β= ,从0=t 到s t 100=时间内飞轮所转过的角度θ= .10. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M = ;在任意时刻t ,质点对原点O 的角动量L = .11.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .12.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .13.已知质点运动方程为j t t i t t r )314()2125(32++-+=(SI ),当t =2s 时,a = .14.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ωl =20πrad /s ,再转60转后角速度为ω2=30πrad /s ,则角加速度β= ,转过上述60转所需的时间是t = .15.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l 31,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 .16.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 .17.若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 .三.计算题1.顶角为2θ的直圆锥体,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计,圆锥面是光滑的.今使小球在圆锥面上以角速度ω绕OH 轴匀速转动,求(1)锥面对小球的支持力N 和细绳的张力T ;(2)当ω增大到某一值c ω时小球将离开锥面,这时c ω及T 又各是多少?2.一弹簧振子沿x 轴作简谐振动.已知振动物体最大位移为m x =0.4m 最大恢复力为N 8.0=m F ,最大速度为m/s 8.0π=m v ,又知t =0的初位移为+0.2m ,且初速度与所选x 轴方向相反.(1)求振动能量;(2)求此振动的表达式.3.一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角45=αº.现给予物体以初速率m /s 100=v ,使它沿斜面向上滑,如图所示.求:(l )物体能够上升的最大高度h ;(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v .4.一质量为A m =0.1kg 的物体A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的倔强系数k =90N /m .现在用力推A ,从而弹簧被压缩了0x =0.1m .在弹簧的原长处放有质量B m =0.2kg 的物体B ,如图所示,由静止释放物体A 后,A 将与静止的物体B发生弹性碰撞.求碰撞后A 物体还能把弹簧压缩多大距离.5.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量.6.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m ,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率.(3)此弹簧的弹力是保守力吗?7.三个物体A 、B 、C 每个质量都是M . B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(l ) A 、 B 起动后,经多长时间C 也开始运动?(2)C 开始运动时速度的大小是多少?(取g =10m/s 2)8.有一轻弹簧,当下端挂一个质量1m =10g 的物体而平衡时,伸长量为4.9cm .用这个弹簧和质量2m =16g 的物体连成一弹簧振子.若取平衡位置为原点,向上为x 轴的正方向.将2m 从平衡位置向下拉 2cm 后,给予向上的初速度0v =5c m/s 并开始计时,试求2m 的振动周期和振动的数值表达式.参考答案一.选择题1.(C ) 2.(C ) 4.(C ) 4.(C ) 5.(C )6.(B ) 7.(C ) 8.(A ) 9.(D )10.(D )11.(B ) 12.(C ) 13.(C )14.(B )15.(B )16.(B )17.(D ) 18.(A )二.填空题l . 8m 10m2. 0.1m/s 23. mv 2 指向正西南或南偏西4504. 不一定 动量5.转动物体所受合外力矩的冲量矩等于在合外力矩作用时间内转动物体动量矩的增量. 112221ω-ω=⎰ J J dt M t t物体所受合外力矩等于零.6. 48m/s 23.15 r a d7. 22)(2)(m M g mv +μ 8. 21242m m g m + 9. -0.05rad/s 250rad10. k mbg k mbgt11. )11(21ba m Gm -- 12. 质点系所受合外力的冲量等于质点系(系统)动量的增量.i i i i t t v m v m dt F 2121 ∑∑⎰-=系统所受合外力等于零.13.)/(4s m j i +-14. 6.54 rad/s 2s 8.4 15. mvl16. mvd17. 不一定; 动量三.计算题1. 解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为r m ma N T 2cos sin ω==θ-θ0cos cos =-θ+θmg N T其中:θ=sin l r联立求解得:(1)θθω-θ=cos sin sin 2l m mg Nθω+θ=22sin cos l m mg T(2)0,=ω=ωN c θ=ωcos /l g cθ=cos /mg T2.解;(l )由题意./,,m m m m x F k x A kA F ===J x F kx E m m m 16.021212=== (2)m m m m x v A v A v //,==ωω=Hz s rad 22/,/2=πω=νπ=ω2.0cos ,00=φ==A x tπ=φ<φω-=31,0sin 0A v 振动方程为)3/2cos(4.0π+π=t y (SI )3.解:(l )根据功能原理,有 mgh mv fs -=2021 mgh mv mghctg mgh Nh fs -=αμ=ααμ=αμ=2021sin cos sin m ctg g v h 25.4)1(220=αμ+=(2)根据功能原理有221mv mgh fs -= αμ-=mghctg mgh mv 221s m ctg gh v /16.8)1(2[2/1=αμ-=4.解:释放物体A 到A 与B 碰撞前,以A 与弹簧为系统,机械能守恒: 2202121v m kx A = A 与B 碰撞过程中以A 、B 为系统,动量守恒,机械能守恒。
胤熙说明:本资料纯属个人总结,只是提供给大家一些复习方面,题目均来自课件如有不足望谅解。
(若要打印,打印时请删去此行)第一章质点运动学1.描述运动的主要物理量位置矢量:位移矢量:速度矢量:加速度矢量:速度的大小:加速度的大小:2.平面曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的角量描述角位置:角速度:角加速度:圆周运动的运动方程:4.匀角加速运动角量间的关系ω= θ=5.角量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地面竖直向上抛出一个质量为m 的小球,若上抛小球受到与其瞬时速率成正比的空气阻力,求小球能升达的最大高度是多大?8.一飞轮以n=1500r/min的转速转动,受到制动而均匀地减速,经t=50s后静止。
(1)求角加速度β和从制动开始到静止时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的角速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上一点的速度、切向加速度和法向加速度9.一带蓬卡车高h=2m,它停在马路上时雨点可落在车内到达蓬后沿前方d=1m处,当它以15 km/h 速率沿平直马路行驶时,雨滴恰好不能落入车内,求雨滴相对地面的速度及雨滴相对车的速度。
x x 'yy 'z z 'O O 'S S 'u∙P ),,(),,(z y x z y x '''第二章 牛顿运动定律 1.经典力学的时空观(1) (2) (3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌面上放置一固定圆环,半径为R ,一物体贴着环带内侧运动,如图所示。
物体与环带间的滑动摩擦系数为μ。