数字图像处理第6章_图像编码与压缩技术.
- 格式:ppt
- 大小:1.73 MB
- 文档页数:78
实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。
二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。
《数字图像处理》习题参考答案第1 章概述连续图像和数字图像如何相互转换答:数字图像将图像看成是许多大小相同、形状一致的像素组成。
这样,数字图像可以用二维矩阵表示。
将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。
#采用数字图像处理有何优点答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。
(1)处理精度高。
(2)重现性能好。
(3)灵活性高。
2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。
3.数字图像处理技术适用面宽。
4.数字图像处理技术综合性强。
数字图像处理主要包括哪些研究内容答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。
]讨论数字图像处理系统的组成。
列举你熟悉的图像处理系统并分析它们的组成和功能。
答:如图,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。
图像处理系统包括图像处理硬件和图像处理软件。
图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。
软件系统包括操作系统、控制软件及应用软件等。
$图数字图像处理系统结构图1常见的数字图像处理开发工具有哪些各有什么特点答.目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB 的图像处理工具箱(Image Processing Tool box)。
两种开发工具各有所长且有相互间的软件接口。
Microsoft 公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来的Win 32 程序有着运行速度快、可移植能力强等优点。
图形编码知识点总结一、概念图形编码是一种用来表示和传输图像信息的技术。
它是数字图像处理技术的一部分,用来把图像信息转换成数字信号,以便能够存储和传输。
图形编码技术是基于数字信号处理的基础上,通过压缩技术和编码方式,将图像信息转化成数字信号并保存在计算机或其他数字媒体上。
二、图像编码的分类1、无损编码无损编码是指在保持图像质量不变的情况下,将图像数据进行压缩,并进行编码以便于传输和存储。
常见的无损编码算法有无损压缩算法、赫夫曼编码和算术编码等。
无损编码的优点是能够保持图像质量不变,但缺点是无损编码算法产生的文件体积大,传输和存储成本高。
2、有损编码有损编码是指在一定情况下,将图像数据进行压缩并编码,在达到一定压缩比的同时,牺牲一定图像质量的编码方式。
有损编码通过舍弃图像数据中的一些细节信息,将图像数据压缩至较小的存储空间。
有损编码的优点是可以取得较大的压缩比,降低存储和传输成本,但缺点是会对图像质量造成一定程度的影响。
三、图像编码的基本原理1、信号采样信号采样是图像编码的第一步,它是将连续的图像信号转化为离散的数据点。
通过对图像进行采样,可以获得图像在空间和时间上的离散表示。
2、量化量化是将采样得到的离散数据映射为有限数量的离散数值。
量化的目标是将连续的图像信号转化为离散的数字信号集合,以方便图像编码和传输。
3、编码编码是将量化后的离散数据进行数字化处理,通过一定的编码方式将图像数据压缩并进行编码以便传输和存储。
编码方式常见有熵编码、差分编码、矢量量化和小波变换等。
四、常见的图像编码技术1、JPEGJPEG是一种常见的有损图像压缩标准,它采用的是DCT变换和量化技术,能够取得较大的压缩比。
JPEG压缩技术在图像编码中应用广泛,被用于数字摄影、网络传输和数字视频等领域。
2、PNGPNG是一种无损图像压缩标准,它将图像数据进行无损压缩和编码,以便于图像的存储和传输。
PNG压缩技术在需要无损图像保真度的场合得到广泛应用。
数字图像处理的基本原理和常用方法数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
图像处理最早出现于20 世纪50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20 世纪60 年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
数字图像处理常用方法:1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4 )图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
图像处理中的数字图像压缩数字图像压缩在图像处理中扮演着重要的角色。
数字图像压缩可以将图像数据压缩成更小的文件大小,更方便存储和传输。
数字图像压缩分为有损和无损两种不同的技术,本文将详细讨论这两种数字图像压缩方法。
一、无损压缩无损压缩是数字图像压缩中最常用的技术之一。
无损压缩的优点是可以保持图片原始数据不被丢失。
这种方法适用于那些需要保持原始画质的图片,例如医学成像或者编程图像等。
无损压缩的主要压缩方法有两种:一种是基于预测的压缩,包括差异编码和改进变长编码。
另一种是基于统计的压缩,其中包括算术编码和霍夫曼编码。
差异编码是一种通过计算相邻像素之间的差异来达到压缩目的的方法。
它依赖于下一像素的值可以预测当前像素值的特性。
改进的变长编码是一种使用预定代码值来表示图像中频繁出现的值的压缩技术。
它使用变长的代码,使得频繁出现的值使用较短的代码,而不常用的值则使用较长的代码。
算术编码是一种基于统计的方法,可以将每个像素映射到一个不同的值范围中,并且将像素序列编码成一个单一的数值。
霍夫曼编码也是一种基于统计的压缩方法。
它通过短代码表示出现频率高的像素值,而使用长代码表示出现频率较低的像素值。
二、有损压缩有损压缩是另一种数字图像压缩技术。
有损压缩方法有一些潜在的缺点,因为它们主要取决于压缩率和压缩的精度。
在应用有损压缩技术之前,必须确定压缩强度,以确保压缩后的图像满足预期的需求。
有损压缩方法可以采用不同的算法来实现。
这些算法包括JPEG、MPEG和MP3等不同的格式。
JPEG是最常用的有损压缩算法,它在压缩时可以通过调整每个像素所占用的位数来减小图像的大小。
MPEG是用于压缩视频信号的一种压缩技术。
它可以将视频信号分成多个I帧、P帧和B帧。
I帧代表一个完整的图像,而P帧和B帧则包含更少的信息。
在以后的编码中,视频编码器使用压缩技术将视频序列压缩成较小的大小。
MP3是一种广泛使用的音频压缩技术,它使用了同样的技术,包括频域转换、量化和哈夫曼编码。
本册教课设计目录课次课题(章节)页码1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17第 1 章 1.1 数字图像办理及发展简史 1.2 图像办理的目的、任务与特色 1.3 基本的图像办理系统 1.4 应用和发展趋向第 2 章 2.1 连续图像的数字描绘 2.2 图像场取样 2.3.1 标量量化2.3.2 矢量量化 2.4 图像的输入 /输出设施第 3 章(增补正交变换的理论基础)第3 章(傅立叶变换、失散余弦变换、失散沃尔什—哈达玛变换)第 3 章(傅立叶变换、失散余弦变换、失散沃尔什—哈达玛变换)第 4 章图像加强(单点加强、图像光滑、空间域图像锐化、频域加强、彩色技术)第 4 章图像加强(单点加强、图像光滑、空间域图像锐化、频域加强、彩色技术)第 5 章图像编码与压缩(展望编码、正交变换编码、统计编码、轮廓编码、二值编码)第 5 章图像编码与压缩(展望编码、正交变换编码、统计编码、轮廓编码、二值编码)第 5 章图像编码与压缩(展望编码、正交变换编码、统计编码、轮廓编码、二值编码)第 6 章图像的恢复和重修(基本观点、退化模型、恢复方法、图像重修的观点和方法)第 6 章图像的恢复和重修(基本观点、退化模型、恢复方法、图像重修的观点和方法)第 6 章图像的恢复和重修(基本观点、退化模型、恢复方法、图像重修的观点和方法)第7章图像切割第7章图像切割第7章图像切割12345678910111213141516171818期末复习1919期末考察第1次课 2 学时讲课时间教课设计达成时间课题(章节)第一章 1.1 数字图像办理及发展简史 1.2 图像办理的目的、任务与特色 1.3基本的图像办理系统 1.4 应用和发展趋向教课目标与要求:1、认识数字图像办理的发展简史、图像办理的任务;2、掌握常用数字图像办理术语(像素、采样、量化、图像加强等);3、认识基本的图像办理系统、图像各样形式的表示;教课重点、难点:重点: 1、掌握图像办理、数字图像办理、数字图像办理系统的观点和它们之间的互相关系;2、明确图像办理的目的和任务;难点:图像的采样和量化的观点,认识不一样的图像格式优弊端解决:对照掌握,讲堂操作演示教课方法及师生互动设计:教课方法:多媒体互动:发问学生对平时生活中接触到的图像办理系统和计算机图形图像软件已有知识;发问学生对于图像、像素、灰度、图像加强等的已有知识;讲堂练习、作业:讲堂练习:举例说明图像加强、图像还原、图像重修、图像变换、图像编码与压缩、图像切割的意义;作业: 1、熟习图像办理工具箱的使用方法;2、书后作业 1.2、1.5、1.6课后小结:第一堂课很重要,要努力使学生掌握图像办理术语,认识数字图像办理的目的。
数字图像解决技术一. 数字图像解决概述数字图像解决是指人们为了获得一定的预期结果和相关数据运用计算机解决系统对获得的数字图像进行一系列有目的性的技术操作。
数字图像解决技术最早出现在上个世纪中期, 随着着计算机的发展, 数字图像解决技术也慢慢地发展起来。
数字图像解决初次获得成功的应用是在航空航天领域, 即1964年使用计算机对几千张月球照片使用了图像解决技术, 并成功的绘制了月球表面地图, 取得了数字图像解决应用中里程碑式的成功。
最近几十年来, 科学技术的不断发展使数字图像解决在各领域都得到了更加广泛的应用和关注。
许多学者在图像解决的技术中投入了大量的研究并且取得了丰硕的成果, 使数字图像解决技术达成了新的高度, 并且发展迅猛。
二. 数字图象解决研究的内容一般的数字图像解决的重要目的集中在图像的存储和传输, 提高图像的质量, 改善图像的视觉效果, 图像理解以及模式辨认等方面。
新世纪以来, 信息技术取得了长足的发展和进步, 小波理论、神经元理论、数字形态学以及模糊理论都与数字解决技术相结合, 产生了新的图像解决方法和理论。
比如, 数学形态学与神经网络相结合用于图像去噪。
这些新的方法和理论都以传统的数字图像解决技术为依托, 在其理论基础上发展而来的。
数字图像解决技术重要涉及:⑴图像增强图像增强是数字图像解决过程中经常采用的一种方法。
其目的是改善视觉效果或者便于人和机器对图像的理解和分析, 根据图像的特点或存在的问题采用的简朴改善方法或加强特性的措施就称为图像增强。
⑵图像恢复图像恢复也称为图像还原, 其目的是尽也许的减少或者去除数字图像在获取过程中的降质, 恢复被退化图像的本来面貌, 从而改善图像质量, 以提高视觉观测效果。
从这个意义上看, 图像恢复和图像增强的目的是相同的, 不同的是图像恢复后的图像可当作时图像逆退化过程的结果, 而图像增强不用考虑解决后的图像是否失真, 适应人眼视觉和心理即可。
⑶图像变换图像变换就是把图像从空域转换到频域, 就是对原图像函数寻找一个合适变换的数学问题, 每个图像变换方法都存在自己的正交变换集, 正是由于各种正互换集的不同而形成不同的变换。
《数字图像处理》课程教学大纲课程代码:030742025课程英文名称:Digital Image Processing课程总学时:40 讲课:32 实验:8 上机:0适用专业:电子信息科学与技术大纲编写(修订)时间:2017.5一、大纲使用说明(一)课程的地位及教学目标数字图像处理是电子信息科学与技术专业开设的一门培养学生具有数字图像处理能力的选修的专业课之一,通过本课程的学习,要求学生掌握有关数字图像处理的基本概念、方法、原理及应用,培养和增强学生数字图像处理技能的创新意识和创新思维,提高实际动手能力和创新能力,为学生进一步学习专业课程奠定基础。
通过本课程的学习,学生将达到以下要求:1.牢固掌握图像数字化理论、图像直方图及其应用、傅立叶变换、图像增强的基本算法、图像分割、影像纹理的基本分析法、二值图像处理等内容;;2.掌握空间滤波的卷积算法、几何校正和灰度内插法等;;3.了解图像复原与重建、数据压缩、模板匹配、分类、图像处理与分析的发展趋势。
(二)知识、能力及技能方面的基本要求1.基本知识:数字图像处理的基本概念和算法2.基本理论和方法:数字图像与图像数字化的概念;灰度直方图;图像处理算法形式;傅立叶变换、图像空间域、频率域增强;图像分割的边缘检测;纹理分析;二值图像处理与分析等。
3.基本技能: 能较为熟练地用Matlab或VC++语言编写常用的数字图像处理算法。
(三)实施说明1.教学方法:本课程在讲解上着重数学公式物理含义的阐述,对于难点内容,可以结合实际的图像矩阵来解释。
力求做到重点突出,由浅入深,便于学生理解和掌握。
在应用方面,主要结合自己和他人的研究成果,介绍一些图像处理方法的应用实例,增强学生的直观体验,培养学生的学习兴趣。
2.教学手段:在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,这样可以达到图文并茂的效果,有利于学生理解掌握各种算法。
(四)对先修课的要求先修课:MATLAB程序设计;概率论与数理统计;线性代数;数值分析;数字信号处理。