排列组合经典例题
- 格式:doc
- 大小:381.50 KB
- 文档页数:14
例1. 3名男生,4名女生,按照不同的要求排队,求下面不同的排队方案的方法种数。
(1)选5名同学排成一行;(2)全体站成一排,其中甲只能在中间或两端;(3)全体站成一排,其中甲、乙必须在两端;(4)全体站成一排,其中甲不在最左端,乙不在最右端;(5)全体站成一排,男女各站在一起;(6)全体站成一排,男生必须排在一起;(7)全体站成一排,男生不能排在一起;(8)全体站成一排,男、女生各不相邻;(9)全体站成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻;(10)全体站成一排,甲、乙中间必须有2人;(11)全体站成一排,甲必须在乙的右边;(12)全体站成一排,甲、乙、丙三人自左向右的顺序不变;(13)排成前后两排,前排3人,后排4人。
【组合问题】例2. 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长。
现从中选5人主持某项活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长都当选;(3)至少有一名队长当选;(4)至多有两名女生当选;(5)既要有队长、又要有女生当选。
【分组分配问题】例3.按以下要求分配6本不同的书,各有几种分法?(1)分成三份,一份1本,一份2本,一份3本;(2)平均分成三份,每份2本;(3)分成三份,一份4本,另两份每份2本;(4)甲、乙、丙三人一人得一本,一人得两本,一人得三本;(5)平均分给甲、乙、丙三人,每人得2本;(6)甲、乙、丙三人中一人得4本,另两人每人得一本;(7)甲得1本,乙得2本,丙得3本;(8)甲得1本,乙得1本,丙得4本。
例4. 6个工厂组建一公司,共需要10名工人,每厂至少一人,至多3人,那么这10名工人在6个工厂分布情形有多少种?变式.……每厂至少一人,……?【练习】1.(1)6名运动员分配到四所学校去作体育表演,每校至少一人,有多少种分配方法?(2)分别从四所学校,选拔6名运动员,每校至少一人,有多少种不同选法?2. 若6本书放到四个不同的盒子中,每个盒子至少一本,有多少种不同的放法?3. 某中学要把9台型号相同的电脑送给三所希望小学,每所小学至少得两台,不同送法的种数为_______.(用数字作答)4. 某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(用数字作答)5. 高中二年级8个班,组织一个12人年级学生分会,每班至少一人,名额分配有________种. (用数字作答)6. 5项不同的工程,由三个工程队全部包下来,每队至少承包一项工程,则不同的承包方案有________种. (用数字作答)7.(10湖北)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个). ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.典型例题二例2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。
38种 D 。
108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。
7中选两个数字,组成无重复数字的四位数。
其中偶数的个数为 ( ) A 。
56 B. 96 C. 36 D 。
360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。
典型例题一之宇文皓月创作例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个∴没有重复数字的四位偶数有典型例题二例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种分歧的排法?(2)如果女生必须全分开,可有多少种分歧的排法?(3)如果两端都不克不及排女生,可有多少种分歧的排法?(4)如果两端不克不及都排女生,可有多少种分歧的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元歧的排法.(2)(插空法)要包管女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生拔出这六个位置中,只要包管每个位置至多拔出一个女生,就能包管任意两个女生都不相邻.由于五个男生排成一中选出三个来让三个女生拔出都方法,因此共有(3)解法1:(位置分析法)因为两端不克不及排女生,所以两端只能挑选5个男生中的2(4)解法1:因为只要求两端不都排女生,所以如果首位6位都解法2:3个女生和5种数.因此共有36000662388=⋅-A A A 种分歧的排法. 典型例题三例 3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种 (B) 20种 (C) 25种 (D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合例题【例1】9名同学站成两排照相,前排4人,后排5人,共有多少种站法?分析如果问题是9名同学站成一排照相,则是9个元素的全排列的问题,有A99种方案。
而问题中9个人要分成两排,可以看成9个人排成一排后,左边4个人站在前排,右边5个人站在后排,所以实质上,还是9个人站9个位置的全排列问题.解:由全排列公式,共有A99==9×8×7×6×5×4×3×2×1=362880种不同的排法.【例2】5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?分析由于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且n=4.解:由全排列公式,共有A44=24种不同的站法.【例3】5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?A.240 B.320 C.450 D.480正确答案【B】解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有A66=6x5x4x3x2种,然后3个女生内部再进行排列,有A33=6种,两次是分步完成的,应采用乘法,所以排法共有:A66 ×A33 =320(种)。
【例4】6名同学坐成一排,其中甲,乙必须坐在一起的不同坐法是________种.(答案:240)A44×A51×2=240【例5】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A)280种(B)240种(C)180种(D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C41=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A53=10种不同的选法,所以不同的选派方案共有C41×A53=240种,所以选B。
排列组合典型例题大全【例1】5男4女站成一排,分别指出满足下列条件的排法种数(1) 甲站正中间的排法有种,甲不站在正中间的排法有种.(2) 甲、乙相邻的排法有种,甲乙丙三人在一起的排法有种.(3) 甲站在乙前的排法有种,甲站在乙前,乙站在丙前(不要求一定相邻)的排法有种,丙在甲乙之间(不要求一定相邻)的排法有种.(4) 甲乙不站两头的排法有种,甲不站排头,乙不站排尾的排法种有种.(5) 5名男生站在一起,4名女生站在一起的排法有种.(6) 女生互不相邻的排法有种,男女相间的排法有种.(7) 甲与乙、丙都不相邻的排法有种。
(8) 甲乙之间有且只有4人的排法有种.【例2】从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须既有男生又有女生,有种选法【例3】男运动员6名,女运动员4名,其中男女队长各1人,从中选5人外出比赛,分别求出下列情形有多少种选派方法?(以数字作答)(1)男3名,女2名;(2)队长至少有1人参加;(3)至少1名女运动员;(4)既要有队长,又要有女运动员.【例4】10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果试求各有多少种情况出现如下结果. .(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋子中有2只成双,另2只不成双只不成双. .【例5】某出版社的11名工人中,有5人只会排版,人只会排版,44人只会印刷,还有2人既会排版又会印刷现从这11人中选出4人排版、人排版、44人印刷,有几种不同的选法?【例6】有6本不同的书本不同的书. .(1)分给甲、乙、丙三人,如果每人得2本有多少种方法?(2)分给甲、乙、丙三人,如果甲得1本,乙得2本,丙得3本,有多少种分法?(3)分给甲、乙、丙三人,如果1人得1本,本,11人得2本,一人得3本,有多少种分法?(4)分成三堆,其中一堆1本,一堆2本,一堆3本,有多少种分法?(5)平均分成三堆,有多少种分法?(6)分成四堆,其中2堆各1本,本,22堆各2本,有多少种分法?(7)分给4人,其中2人各1本,本,22人各2本,有多少种分法?【例7】有4个不同的球,四个不同的盒子,把球全部放入盒子内个不同的球,四个不同的盒子,把球全部放入盒子内. .(1)(1)共有多少种放法?共有多少种放法?共有多少种放法? (2) (2) (2)四个盒都不空的放法有多少种?四个盒都不空的放法有多少种?(3)(3)恰有一个盒子内放恰有一个盒子内放2个球,有多少种放法?个球,有多少种放法? (4) (4) (4)恰有两个盒子不放球,有多少种放法?恰有两个盒子不放球,有多少种放法?恰有两个盒子不放球,有多少种放法?(5)(5)若盒子编号为若盒子编号为1、2、3、4,则甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?,则甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例8】(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种?法有多少种?(2)12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,问不同的放法有多少种?的盒子中,每盒可空,问不同的放法有多少种?(3)12个相同的小球放入编号为1,2,3,4的盒子中,要求每个盒子中的小球数不小于其编号数,问不同的放法有多少种?问不同的放法有多少种?【例9】如图,某区有7条南北向街道,条南北向街道,55条东西向街道条东西向街道. .A B(1)图中共有多少个矩形?)图中共有多少个矩形? ((2)从A 点走向B 点最短的走法有多少种?点最短的走法有多少种?【例1010】用】用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的数?这五个数字,可以组成多少个满足下列条件的没有重复数字的数? ((1)能被3整除;整除; ((2)比21034大的偶数;大的偶数;((3)左起第二、四位是奇数的偶数)左起第二、四位是奇数的偶数. .【例11】 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有方格的标号与所填数字均不相同的填法有【练习】【练习】1.现有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,将这五个球放入5个盒子内. (1)(1)若只有一个盒子空着,共有多少种投放方法?若只有一个盒子空着,共有多少种投放方法?若只有一个盒子空着,共有多少种投放方法?(2)(2)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(3)若每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?2.2.三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为 。
排列组合经典题型【编著】黄勇权【例题1】设有编号为1、2、3、4、5、6的六个桌子和编号为1、2、3、4、5、6的六个小球,将六个小球放在六个桌子上,恰有2个小球和桌子的编号相同的放法有()A.180种B.200种270种 D.360种解:第一步:准确把握“恰有2个”的意义:有2组编号相同,其他不相同第二步:6张桌子,6个小球,小球与桌子编号相同有6组,取其中2组,记作:C26我们假设1、2编号相同,其他的不相同。
下面讨论不同情况下有多少种放法①---③合计:1+2+6=9=270故选C总数:9C26【例题2】从6双不同颜色的鞋子中任取4只,其中恰好有1双同色的取法有()A.240种 B.180种 C.120种 D.60种解:准确理解“4只中,恰好有1双同色”的含义。
意思是:4只中有2只同颜色,2只不同颜色。
①“同颜色的2只”怎么来?1种取法,从6双鞋子中任选一双,则有C6②“不同颜色的2只”,又怎么来?2种,再从剩下的10只鞋子中,任选2只,则有C102中,包含了剩下的5套颜色相同的鞋子,所以要扣除。
因为C10扣除了这5套,其他均为不同颜色的。
即有:C102-5故总的选法数为C61(C102-5)=240种.故选A.【例题3】用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是()A、1240B、2048C、3140D、4020解:先考虑千位:千位为1的四位偶数有A13A24=36个;千位为2的四位偶数有A12A24=24个;千位为3的四位偶数有A13A24=36个;因36+24<71<36+24+36,所以第71个偶数的千位数字为3;再考虑百位:首位是3时,百位为0时有:A12•A13=3×2=6个,合计66个,千位是3.百位是1时,第的偶数依次为:3102,3104,3120.3124,3140,3140就是0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数.故答案为:3140.【例题4】将7只相同的小球分给4个小朋友,每个小朋友至少分得1球的方法有多少种?A、12B、16C、18D、20解:设4个小朋友为A、B、C、D,因为每个小朋友至少分得1球,那么先给每个人1个球,则还剩3个球。
典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个). ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.典型例题二例2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
排列组合典型例题大全【例1】5男4女站成一排,分别指出满足下列条件的排法种数(1) 甲站正中间的排法有种,甲不站在正中间的排法有种.(2) 甲、乙相邻的排法有种,甲乙丙三人在一起的排法有种.(3) 甲站在乙前的排法有种,甲站在乙前,乙站在丙前(不要求一定相邻)的排法有种,丙在甲乙之间(不要求一定相邻)的排法有种.(4) 甲乙不站两头的排法有种,甲不站排头,乙不站排尾的排法种有种.(5) 5名男生站在一起,4名女生站在一起的排法有种.(6) 女生互不相邻的排法有种,男女相间的排法有种.(7) 甲与乙、丙都不相邻的排法有种。
(8) 甲乙之间有且只有4人的排法有种.【例2】从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须既有男生又有女生,有种选法【例3】男运动员6名,女运动员4名,其中男女队长各1人,从中选5人外出比赛,分别求出下列情形有多少种选派方法?(以数字作答)(1)男3名,女2名;(2)队长至少有1人参加;(3)至少1名女运动员;(4)既要有队长,又要有女运动员.【例4】10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果.(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋子中有2只成双,另2只不成双.【例5】某出版社的11名工人中,有5人只会排版,4人只会印刷,还有2人既会排版又会印刷.现从这11人中选出4人排版、4人印刷,有几种不同的选法?【例6】有6本不同的书.(1)分给甲、乙、丙三人,如果每人得2本有多少种方法?(2)分给甲、乙、丙三人,如果甲得1本,乙得2本,丙得3本,有多少种分法?(3)分给甲、乙、丙三人,如果1人得1本,1人得2本,一人得3本,有多少种分法?(4)分成三堆,其中一堆1本,一堆2本,一堆3本,有多少种分法?(5)平均分成三堆,有多少种分法?(6)分成四堆,其中2堆各1本,2堆各2本,有多少种分法?(7)分给4人,其中2人各1本,2人各2本,有多少种分法?【例7】有4个不同的球,四个不同的盒子,把球全部放入盒子内.(1)共有多少种放法? (2)四个盒都不空的放法有多少种?(3)恰有一个盒子内放2个球,有多少种放法? (4)恰有两个盒子不放球,有多少种放法?(5)若盒子编号为1、2、3、4,则甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例8】(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种?(2)12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,问不同的放法有多少种?(3)12个相同的小球放入编号为1,2,3,4的盒子中,要求每个盒子中的小球数不小于其编号数,问不同的放法有多少种?【例9】如图,某区有7条南北向街道,5条东西向街道.(1)图中共有多少个矩形? (2)从A 点走向B 点最短的走法有多少种?【例10】用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的数?(1)能被3整除; (2)比21034大的偶数;(3)左起第二、四位是奇数的偶数.【例11】 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有【练习】1.现有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,将这五个球放入5个盒子内.(1)若只有一个盒子空着,共有多少种投放方法?(2)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(3)若每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法? 2.三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为 。