塑性变形知识讲解
- 格式:ppt
- 大小:2.92 MB
- 文档页数:33
材料的塑性变形了解材料的可塑性特性材料的塑性变形是指在一定条件下,材料受到外界力作用而产生形状和尺寸的永久性改变的能力。
塑性变形是材料工程中非常重要的概念,我们需要深入了解材料的可塑性特性以便正确选择和应用材料。
本文将详细介绍材料的塑性变形和其可塑性特性。
一、材料的塑性变形概述在材料工程中,塑性变形是指在材料受到外力作用后,材料发生永久性变形的过程。
与之相对应的是弹性变形,即当外力作用消失后,材料恢复到原来的形状和尺寸。
材料的塑性变形主要表现为拉伸、压缩、弯曲、扭转等形式。
二、材料的可塑性特性1. 塑性变形能力:材料的可塑性特性主要体现在其对外力作用下发生塑性变形的能力上。
一般来说,金属材料更具有塑性变形能力,而脆性材料则相对较差。
2. 塑性变形的可逆性:与弹性变形不同,塑性变形是永久性的,即使外力作用消失,材料也无法完全恢复到原来的形状和尺寸。
这是材料可塑性特性的重要表现。
3. 塑性变形的抗性:材料的抗塑性变形能力与材料的应变硬化特性密切相关。
应变硬化是指材料在塑性变形过程中,随着变形程度的增加,抵抗进一步变形的能力也随之增强。
4. 塑性变形的本质:材料的塑性变形是由于材料的晶体结构的滑移和位错运动所致。
在外力的作用下,晶体中的位错沿着晶体结构中的特定平面和方向移动,导致材料的塑性变形。
三、材料塑性变形的影响因素1. 温度:温度对材料的塑性变形有着重要影响。
一般来说,高温下材料的塑性变形能力增强,而低温则相对减弱。
2. 应变速率:应变速率是指材料在受外力作用下形变的速率。
较高的应变速率会导致材料的变形更加集中,容易发生塑性变形。
3. 结晶度:结晶度高的材料具有较好的塑性变形能力,而非晶态材料则相对较差。
4. 化学成分和加工方式:不同化学成分的材料在受力时表现出不同的塑性特性。
此外,材料的加工方式(如冷轧、热轧等)也会对塑性变形产生影响。
四、材料塑性变形实例1. 金属材料的塑性变形:金属材料是最常见的可塑性材料,广泛应用于工程领域。
塑性变形名词解释塑性变形是指物质在受外力作用下发生不可逆的形变现象,其过程中原子或分子之间的排列和结构发生变化。
与弹性变形不同,塑性变形一旦发生,物质会永久性地保留其新的形状,无法恢复到原来的状态。
塑性变形广泛应用于材料科学、工程设计和制造等领域。
塑性变形的机制主要包括滑移、位错、扩散和相变等。
滑移是指晶格中的层状或面状结构在外力作用下沿着特定的晶面滑动,使晶体形成一种新的排列方式。
位错是晶格中原子位置的不连续和错位,是塑性变形的主要因素。
位错可以通过滑移、扩散或界面运动等方式发生移动,从而导致物质发生形变。
扩散是指物质中原子、离子或分子在固态中的移动,可以促使位错发生移动并引起塑性变形。
相变是一种物质由一个物态转变为另一个物态的过程,通过控制相变条件,可以实现塑性变形。
塑性变形对于材料的物理性质和力学性能具有重要影响。
塑性变形可以提高材料的延展性和塑性,降低其脆性和硬度,使其更适合于各种加工工艺。
塑性变形还可以改善材料的强度、硬度和韧性等机械性能,使之更适合于工程设计和制造。
此外,塑性变形还可以提高材料的导电性、导热性和耐腐蚀性等物理性质,扩大其应用领域。
塑性变形可以通过多种方式实现,包括热变形、冷变形、压力变形和拉力变形等。
热变形是在高温下进行的塑性变形,利用高温使材料的形变性能得以改善。
冷变形是在室温下进行的塑性变形,适用于各种类型的材料加工。
压力变形是通过在材料表面施加压力,使材料在局部区域内发生塑性变形。
拉力变形是通过对材料施加拉力,使其在延伸方向上发生塑性变形。
总之,塑性变形是物质在外力作用下发生不可逆形变的过程,其机制包括滑移、位错、扩散和相变等。
塑性变形对于材料的物理性质和力学性能具有重要影响,可以改善材料的延展性、韧性和均匀性,使之适应不同的工程需求。
塑性变形可以通过热变形、冷变形、压力变形和拉力变形等方式实现,广泛应用于材料科学、工程设计和制造等领域。
塑性成形原理知识点总结一、塑性成形的基本原理1. 塑性成形的基本原理是通过施加外部应力使材料受力,发生形变,从而改变其形状和尺寸。
外部应力可以是拉伸、压缩、弯曲等形式,材料受到应力后发生塑性变形,达到所需的形状和尺寸。
2. 塑性成形的基本原理还包括在一定的温度条件下进行成形。
材料在一定温度范围内会发生晶粒的滑移和再结晶等变化,使材料更容易流动和变形,这对于塑性成形的效果非常重要。
3. 塑性成形的基本原理还涉及到应变硬化和材料流动等方面的知识。
应变硬化是指材料在形变过程中发生的一种增加抗力的现象,材料流动则是指材料在应力作用下发生的形变过程,通过流动来实现所需的成形效果。
二、材料在塑性成形过程中的变形规律1. 材料在塑性成形过程中会发生各种形式的变形,包括平面应变变形、轴向应变变形、弯曲应变变形、扭曲应变变形等。
不同的成形方式会引起不同形式的变形,需要根据具体情况进行分析和处理。
2. 材料在塑性成形过程中的变形还受到横向压缩和减薄等因素的影响。
横向压缩会导致材料沿其厚度方向出现侧向膨胀的现象,减薄则是指材料在成形过程中产生的减小尺寸和厚度的现象。
3. 材料在塑性成形过程中还会出现显著的硬化现象。
随着形变量的增加,材料的硬度和抗力会逐渐增加,这对于成形过程的控制和调整非常重要。
三、材料在塑性成形过程中的流变规律1. 材料在塑性成形过程中会发生流变,即在应力的作用下发生形变的过程。
材料的流变规律是指在应力条件下材料的变形规律和流动规律,这对于塑性成形技术的研究和应用非常重要。
2. 材料在塑性成形过程中还会出现应力和应变的分布不均匀、表面变形、壁厚变化等现象。
这些现象会导致成形件质量的不稳定性和变形过程的复杂性,需要进行合理的控制和调整。
3. 材料在塑性成形过程中还会受到局部热和化学变化的影响。
局部热和化学变化会影响材料的微观结构和性能,对于成形过程的控制和调整也具有重要的参考意义。
四、塑性成形的热变形和冷变形1. 塑性成形通常分为热变形和冷变形两种方式。
混凝土的塑性变形及其原理一、前言混凝土是一种广泛使用的建筑材料,其力学性质的研究和理解对于工程设计和结构的安全性至关重要。
在混凝土的使用过程中,其塑性变形是一种非常重要的现象,本文将对混凝土的塑性变形及其原理进行详细的探讨。
二、混凝土的塑性变形概述混凝土的塑性变形是指混凝土在受到外部载荷的作用下,可以发生的一种比较持久的变形。
这种变形不随载荷的变化而立即消失,而是在载荷作用消失后仍然存在。
混凝土的塑性变形通常包括两种类型:瞬时塑性变形和延性塑性变形。
1.瞬时塑性变形瞬时塑性变形是指混凝土在受到载荷作用后,会出现一种瞬时的变形,该变形主要是由于混凝土内部的微观结构发生变化所引起的。
这种变形一般不会引起混凝土的破坏,但会对混凝土的力学性能产生影响。
瞬时塑性变形的主要表现形式包括混凝土的收缩变形、膨胀变形和弹性变形等。
2.延性塑性变形延性塑性变形是指混凝土在受到外部载荷的作用下,会出现一种比较持久的变形。
这种变形一般会引起混凝土的破坏,但在混凝土受到适当的控制时,可以发挥出其优异的性能。
延性塑性变形的主要表现形式包括混凝土的塑性流变变形、裂缝扩展和拉伸变形等。
三、混凝土的塑性变形机理混凝土的塑性变形机理是由混凝土内部的微观结构发生变化所引起的。
在混凝土内部,水泥胶体和骨料之间的界面存在一定的摩擦力,当混凝土受到外部载荷的作用时,这种摩擦力会随着混凝土内部的应力分布而发生变化,从而导致混凝土的塑性变形。
混凝土的塑性变形主要包括以下几个方面:1.水泥胶体的变形水泥胶体在混凝土内部起着连接骨料的作用,当混凝土受到外部载荷的作用时,水泥胶体会发生变形,从而导致混凝土的塑性变形。
水泥胶体的变形主要包括拉伸和压缩两种形式,在混凝土中,水泥胶体的拉伸变形通常是由于混凝土受到拉伸载荷作用,而水泥胶体的压缩变形则是由于混凝土受到压缩载荷作用。
2.骨料的变形骨料是混凝土中的主要组成部分,其变形对混凝土的塑性变形也有一定的影响。
塑性成形原理知识点塑性成形是一种利用金属材料的塑性变形能力,在一定的条件下通过压力使金属材料发生塑性变形,从而获得所需形状的加工方法。
塑性成形技术是金属加工工艺中的重要分支,广泛应用于汽车、航空、航天、电子、家电、建筑等工业领域。
1.塑性变形:在塑性成形过程中,金属材料通过外力作用下的塑性变形使其形状发生改变。
塑性变形是金属材料中原子的相对位置发生改变而引起的宏观形变,其主要表现为材料的延伸、压缩、弯曲等。
塑性变形是金属材料的塑性性质所决定的,不同材料的塑性性能不同。
2.应力-应变关系:金属材料受到外力作用时,材料内部会产生应力,应力与应变之间存在一定的关系。
在塑性成形过程中,材料会发生塑性变形,使其产生应变。
应力-应变关系是描述材料塑性变形过程中应力和应变之间关系的数学模型,常用的模型有胡克定律模型和流变模型。
3.材料流动:塑性成形过程中,材料会发生流动从而获得所需的形状。
材料流动是指塑性材料在外力作用下,发生内部原子的相对位移和重新组合,从而使整个材料的结构发生变化。
材料流动是实现塑性成形的关键,其流动性能决定了成形工艺的可行性和成品质量。
4.成形工艺:塑性成形工艺是金属材料经过一系列工艺操作,通过压力使其发生塑性变形,最终获得所需形状的过程。
常见的塑性成形工艺包括冲压、拉伸、挤压、压铸、滚压等。
不同工艺适用于不同形状的零件,根据材料的性质和零件的要求选择合适的成形工艺。
5.工艺过程控制:塑性成形过程中,需要对各个环节进行控制以确保成品质量。
工艺过程控制包括工艺参数的选择、设备的调整、模具结构的设计等。
在塑性成形过程中,要控制好温度、应力、应变速率等因素,以避免过大的变形应力引起材料的断裂或变形过大导致零件尺寸偏差。
塑性成形技术不仅可以实现复杂形状的制造,而且可以提高材料的强度和刚度,降低材料的质量,节省原材料和能源。
因此,塑性成形技术在现代工业生产中具有重要的地位和应用价值。
材料的塑性变形材料的塑性变形是材料力学学科中的一个重要概念,指的是材料在受力作用下发生的可逆性变形过程。
塑性变形是材料的一种特性,表现为材料在一定温度和应力情况下,发生塑性变形后不会恢复到原状态。
本文将从塑性变形的定义、性质、影响因素和应用领域等方面展开探讨。
材料的塑性变形是指材料在外力的作用下,呈现出形状的变化,这种变化是可逆的。
与弹性变形不同的是,塑性变形是在超过材料的屈服点后发生的,且发生塑性变形后,材料不会完全恢复到原来的形状。
塑性变形是材料内部晶格结构发生改变的结果,通过滑移、重结晶等机制实现。
塑性变形是材料力学中一个重要的研究对象,它与材料的性能密切相关。
在工程实践中,我们常常需要考虑材料在受力状态下的塑性变形性能,以确保材料在服役过程中不会发生意外事故。
此外,塑性变形还与材料的加工性能、成形性能等密切相关,因此对塑性变形的研究具有重要的理论和实际意义。
塑性变形的性质主要包括以下几个方面:1. 可逆性:塑性变形是可逆的,并且不会引起材料的永久形变。
2. 体积不变性:塑性变形并不改变材料的体积。
3. 定向性:塑性变形是有方向性的,取决于材料的晶体结构和加载方向。
塑性变形的影响因素主要包括应力、温度和变形速率等。
在一定温度条件下,应力越大,材料的塑性变形越明显;温度越高,材料发生塑性变形的能力越强;变形速率对于塑性变形的影响也非常显著,通常情况下,变形速率越大,材料的塑性变形越明显。
材料的塑性变形在工程实践中有着广泛的应用。
例如,金属材料的塑性变形性能直接影响着金属制品的成形性能;塑料制品的塑性变形特性决定了其在加工过程中的可塑性等。
因此,通过研究材料的塑性变形特性,可以指导工程实践中材料加工的选择和工艺优化,提高材料的利用率和产品质量。
总之,材料的塑性变形是材料力学中一个重要的研究领域,具有重要的理论和实际意义。
通过深入研究材料的塑性变形特性,可以有效地指导工程实践中材料的选择和制造过程,为优化材料性能和提高产品质量提供理论支持。
塑性变形1. 引言塑性变形是固体力学中的一个基本概念,指的是材料在超过其弹性限度后,可以继续变形而不恢复原状的能力。
塑性变形可以发生在金属、塑料、陶瓷等材料中,常见于制造、建筑和工程领域。
本文旨在介绍塑性变形的基本原理、影响因素以及常见的塑性变形工艺。
2. 塑性变形的基本原理塑性变形与材料的内部结构和原子之间的相互作用有关。
在塑性变形过程中,材料中的晶体结构发生变化,原子之间的接触位置发生滑移。
这种滑移可以改变原子之间的相互作用,从而使材料继续变形。
塑性变形的基本原理可以归纳如下:•内部滑移:在材料中存在众多晶体结构,滑移发生时,晶体结构中的原子沿滑移面移动,发生形变。
•位错运动:位错是晶体结构中的缺陷,可以像滑行带一样在晶体中移动。
位错的运动是塑性变形的基本过程。
•变形时的晶界滑移:晶界是不同晶粒之间的边界,当材料变形时,晶界也会发生滑移,使晶粒相对于彼此发生位移。
3. 影响塑性变形的因素塑性变形的程度和方式受到多种因素的影响,以下是几个重要的影响因素:3.1 物质本身的性质不同材料的塑性变形性能不同。
金属通常具有良好的塑性,可以在大变形下发生塑性变形。
而一些脆性材料如陶瓷通常只能发生很小的变形,容易发生破裂。
此外,合金、塑料等材料也具有独特的塑性变形性质。
3.2 变形速率变形速率指的是材料在单位时间内发生的变形量。
较高的变形速率往往会导致材料在塑性变形过程中发生更大的变形。
这是因为较高的变形速率会加快位错的运动和晶界的滑动,使材料更容易发生塑性变形。
3.3 温度温度对塑性变形也有很大影响。
较高的温度能够使材料中的原子更容易滑动,从而促进塑性变形的发生。
相反,较低的温度会使材料变得更加脆性,减少塑性变形的程度。
3.4 应力状态材料受到的应力状态也会影响其塑性变形。
在拉伸应力作用下,材料会发生延伸变形;而在剪切应力作用下,材料会发生屈服变形。
不同应力状态下,材料的塑性变形方式有所不同。
4. 常见的塑性变形工艺塑性变形工艺是一种通过对材料施加力来改变其形状和尺寸的方法。
塑性变形引言塑性变形是一种材料的力学特性,指的是材料在应力作用下发生形状改变而不恢复原状的现象。
相比于弹性变形,塑性变形更具有永久性和不可逆性。
塑性变形在材料的加工和制造过程中起着非常重要的作用,同时也是材料力学研究的重要领域。
塑性变形的特点塑性变形的主要特点如下:1.永久性:塑性变形一旦发生,材料的形状将永久改变,不能通过去除外力来恢复原状。
2.不可逆性:与弹性变形不同,塑性变形是不可逆的,即一旦变形发生,材料无法自然地回到未变形的状态。
3.应力松弛:在塑性变形过程中,材料内部的应力会随着时间的推移而逐渐松弛,这是塑性变形的一个重要特征。
4.变形行为:塑性变形具有明显的屈服阶段、流变阶段和稳定阶段。
屈服阶段表现为应力与应变之间的非线性关系,流变阶段则表现为应力基本保持恒定,应变继续增加。
稳定阶段则表现为应力和应变逐渐趋于平衡。
塑性变形的影响因素塑性变形的发生受到多种因素的影响,主要包括:1.硬度:硬度是材料抵抗塑性变形的能力,硬度越高,材料越难发生塑性变形。
2.温度:温度对材料的塑性变形有重要影响。
通常来说,低温下材料的塑性变形能力较低,而高温下材料的塑性变形能力较高。
3.应变速率:应变速率是指材料在受力下的变形速度,高应变速率下材料更容易发生塑性变形。
4.晶界:晶界是晶体内部各个晶粒之间的边界。
晶界对材料的塑性变形有着重要影响,晶界的存在增加了材料的塑性,使其更容易发生变形。
塑性变形与材料加工塑性变形在材料加工和制造过程中发挥着重要作用。
下面以常见的金属材料加工为例来说明:1.铸造:在铸造过程中,液态金属会通过凝固而形成固态材料。
然而,在凝固过程中,金属会发生塑性变形,产生一定的应力和应变,这会导致铸件的几何尺寸和形状发生变化。
2.锻造:锻造是一种常见的金属加工方法,它是通过对金属材料施加一定的压力和变形,使其发生塑性变形,从而得到所需的形状和尺寸。
锻造可以改变金属的晶粒结构和机械性能。
3.压延:压延是一种常见的金属加工方法,通过对金属材料施加轴向力和横向变形,使其发生塑性变形,从而得到所需的薄板或线材。
塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。
塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
滑移:晶体在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。
滑移面:滑移中,晶体沿着相对滑动的晶面。
滑移方向:滑移中,晶体沿着相对滑动的晶向。
孪生:晶体在切应力作用下,晶体一部分沿着一定的晶面和一定的晶向发生均匀切变。
张量:由若干个当坐标改变时,满足转换关系的分量所组成的集合。
晶粒度:金属材料晶粒大小的程度。
变形织构:在塑性变形时,当变形量很大,多晶体中原为任意取向的各个晶粒,会逐渐调整其取向而彼此趋于一致。
这种由于塑性变形的结果而使晶粒具有择优取向的组织。
动态再结晶:在热塑性变形过程中发生的再结晶。
主应力:切应力为0的微分面上的正应力。
主方向:主应力方向,主平面法线方向。
主应力空间:由三个主方向组成的空间主切应力:切应力达到极值的平面上作用得切应力。
主切应力平面:切应力达到极值的平面。
主平面:应力空间中,可以找到三个互相垂直的面,其上均只有正应力,无切应力,此面就称为主平面。
平面应力状态:变形体内与某方向轴垂直的平面上无应力存在,并所有应力分量与该方向轴无关的应力状态。
平面应变状态:物体内所有质点都只在同一个坐平面内发生变形,而该平面的法线方向没有变形的变形状态。
理想刚塑性材料:研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。
理想弹塑性材料:塑性变形时,需考虑塑性变形之前的弹性变形,而不考虑硬化的材料。
弹塑性硬化材料:塑性变形时,既要考虑塑性变形前的弹性变形,又要考虑加工硬化的材料。
刚塑性硬化材料:研究塑性变形时,不考虑塑性变形之前的弹性变形,需考虑变形过程中的加工硬化的材料。
屈服轨迹:两相应力状态下屈服准则的表达式在主应力坐标平面上的几何图形,一条封闭的曲线。
屈服表面:屈服准则的数学表达式在主应力空间中的几何图形是一个封闭的空间曲面称为屈服表面。
塑性力学知识点总结塑性力学是一门研究材料在超过其弹性极限后的行为和变形特性的学科。
塑性力学的研究对象包括金属、塑料、土壤、岩石等各种材料。
本文将从材料的塑性变形、应力应变关系、本构关系、塑性失稳等方面对塑性力学的知识点进行总结。
1. 塑性变形材料在受到外力作用时,如果超过了其弹性极限,就会发生塑性变形。
塑性变形是指材料在受力情况下,沿着某一方向发生永久性位移的过程。
塑性变形的特点是在加载过程中出现应力和位移的不同步现象。
塑性变形的方式有很多种,例如屈曲、扭曲、剪切等。
2. 应力应变关系在塑性变形的过程中,材料的应力应变关系是很重要的。
塑性变形时,材料的应力应变关系是非线性的,而且还与材料的屈服强度、屈服点以及变形硬化等因素有关。
在材料受到加载后,应力随着应变的增加而逐渐增加,直到达到材料的屈服点,然后应力将继续增加,但是应变仍然保持在一个限定值内。
这个称为屈服强度。
在超过屈服强度之后,应力和应变的关系将进一步发生变化。
此时,材料的塑性变形将会明显增加。
3. 本构关系材料的本构关系是指材料在受力过程中,应力和应变之间的关系。
不同的材料具有不同的本构关系。
根据塑性力学的基本假设,通常用应力张量σij和应变张量εij来描述材料的本构关系。
一般情况下,塑性材料的本构关系是非线性的,并且还与材料的应变率、应力路径、温度、压力等参数有关。
4. 塑性失稳塑性失稳是指材料在受到外力作用时,由于材料内部的应力分布不均匀而导致的材料失稳破坏的过程。
当材料发生塑性失稳时,通常会出现局部的应力集中和应变集中现象。
这将会导致材料的局部破坏,并且会扩展到整个结构中。
塑性失稳的研究对于材料的设计和使用具有重要的意义。
5. 塑性加工塑性加工是通过外力作用使原材料发生塑性变形,以获得理想的形状和性能的过程。
塑性加工的方式有拉伸、压缩、弯曲、拉拔、冷拔、冷轧等。
塑性加工的重要性在于可以提高材料的抗拉强度、硬度、韧性和延展性等性能。
塑性变形(3)1.冷变形金属在退火过程中显微组织的变化:在回复阶段,由于不发生大角度晶界的迁移,所以晶粒的形状和大小与变形态的相同,仍保持着纤维状或扁平状,从光学显微组织上几乎看不出变化。
在再结晶阶段,首先是在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到形变组织完全改组为新的、无畸变的细等轴晶粒为止。
最后,在晶界表面能的驱动下,新晶粒互相吞食而长大,从而得到一个在该条件下较为稳定的尺寸,这称为晶粒长大阶段。
2.回复:是指冷变形后金属在加热温度较低时,原子活动能力不在,金属中的一些点缺陷和位错的迁移,使得晶格畸变逐渐减少,内应力逐渐降低的过程。
回复的驱动力:弹性畸变能(特征:1.金属的晶粒大小和形状尚无明显的变化,因而其强度,硬度和塑性等机械性能变化不大;2.内应力及电阻率等物理性能显著不为降低。
(宏观内应力))3.回复机制:a.低温回复:回复主要与点缺陷的迁移有关。
b.中温回复:温度稍高时,会发生位错运动和重新分布。
机制主要与位错滑移和位错密度降低有关。
c.高温回复(~0.3Tm),刃型位错可获得足够能量产生攀移,位错密度下降,位错重排成较稳定的组态----亚晶结构。
4.再结晶:将冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状况,这个过程称之为再结晶。
再结晶的驱动力:是变形金属经回复后未被释放的储存能(相当于变形总储能的90%)5.储存能:塑性变形中外力所作的功除去大部分转化为热之外,还有一小部分以畸变能的形式储存在形变材料内部,这部分能量叫做储存能。
6.残余应力:一种内应力。
它在工件中处于自相平衡状态,其产生是由于工件内部各区域变形不均匀性,以及相互间的牵制作用所致。
7.再结晶温度:冷变形金属开始进行再结晶的最低温度。
》》通常,把对应于再结晶后得到特别粗大晶粒的变形程度称为“临界变形度”,一般金属的临界变形度约为2%~10%。