垂直位移变形监测
- 格式:ppt
- 大小:1.53 MB
- 文档页数:35
边坡工程变形监测技术方案1. 前言边坡工程是指地质灾害治理中对山体崩塌、滑坡等地质灾害进行防治的工程性措施。
边坡工程在进行构筑时,需要对边坡的变形进行监测,以保障工程的安全性和稳定性。
因此,边坡工程变形监测技术方案十分重要。
本文将对边坡工程变形监测技术方案进行详细阐述,旨在为边坡工程变形监测提供技术支持。
2. 边坡工程变形监测概述边坡工程变形监测是指通过一定的技术手段对边坡的变形情况进行实时或定期监测,以及时发现并处理边坡工程的问题,确保边坡工程的安全性和稳定性。
一般来说,边坡工程变形监测包括以下几个方面的内容:(1)水平位移监测:对边坡工程水平方向的位移进行监测,及时发现边坡的侧向位移情况。
(2)垂直位移监测:对边坡工程垂直方向的位移进行监测,及时发现边坡的垂直位移情况。
(3)变形速率监测:对边坡工程的变形速率进行监测,了解边坡变形的速度情况。
(4)裂缝监测:对边坡工程的裂缝进行监测,及时发现并处理边坡的裂缝问题。
3. 边坡工程变形监测技术方案在边坡工程变形监测中,常用的技术方案包括全站仪监测技术、GPS监测技术、遥感监测技术、振动监测技术等。
下面将分别对这些技术方案进行详细介绍。
(1)全站仪监测技术全站仪是一种测量仪器,可以测量水平角、垂直角和斜距,适用于边坡工程的水平位移和垂直位移监测。
全站仪监测技术的具体操作步骤如下:① 设置全站仪:首先在测量点附近设置好全站仪,进行水平校准和垂直校准。
② 观测目标:使用全站仪对边坡工程的监测点进行观测,记录下水平角、垂直角和斜距。
③ 数据处理:将观测到的数据进行处理,得到边坡工程的水平位移和垂直位移情况。
全站仪监测技术能够实现边坡工程的实时监测,具有响应速度快、准确度高、数据处理简便等优点。
(2)GPS监测技术全球卫星定位系统(GPS)是一种通过卫星信号进行位置测量的技术,适用于边坡工程的水平位移监测。
GPS监测技术的具体操作步骤如下:① 设置GPS测量点:在边坡工程的监测点附近设置好GPS测量点,确保能够接收到卫星信号。
周边管线垂直位移监测方案
地下结构开挖时伴随着土方的大量卸载,周边水土压力重新分布,势必对相邻地下管线造成一定影响,甚至使管线产生位移。
对相邻地下管线变形进行监测,及时采取有效措施保证管线安全,不仅关系到施工的顺利进行,更关系到周边居民的正常生活。
地下管线变形监测点的埋设主要有4种方法,工程中按实际条件选择a.抱箍式:由扁铁做成的稍大于管线直径的圆环,将测杆与管线连接成为整体,测杆伸直至地面。
适用于可进行开挖且开挖至管线底部的情况。
b.直接式:用敞开式开挖和钻孔方式挖至管线顶表面,在管线上直接设置测点。
C.套筒式:采用一硬塑料管或金属管打设或埋设于所测管线顶面和地表之间,量测时,将测杆放入埋管,再将标尺搁置在测杆顶端,进行沉降量测。
d.模拟式:选取代表性管线,在其邻近打孔,孔深至管底标高,底部放入钢板,然后放入钢筋作为测杆。
适用于地下管线排列密集且管底标高相差不大,或因种种原因无法开挖的情况,精度较低。
地下管线监测点的布置应符合下列要求:
①应根据管线年份、类型、材料、尺寸及现状等情况,确定监测点设置;
②监测点宜布置在管线的节点、转角点和变形曲率较大的部位,监测点平面间距宜为15~25m,并宜延伸至基坑以外20m;
③上水、煤气、等压力管线宜设置直接监测点。
直接监测点应设置在管线上,也可以利用阀门开关、抽气孔以及检查井等管线设备作为监测点;
④在无法埋设直接监测点的部位,可利用埋设套管法设置监测点,也可采用模拟式测点将监测点设置在靠近管线埋深部位的土体中。
钻孔灌注桩施工前后的地基监测与变形分析引言钻孔灌注桩是一种常用的地基处理工程方法,它通过在地下钻孔后注入水泥砂浆来增加地基的承载力和稳定性。
在进行钻孔灌注桩施工前后,进行地基监测与变形分析是非常重要的,以确保施工过程中地基的安全性和稳定性。
本文将探讨钻孔灌注桩施工前后的地基监测方法和变形分析。
钻孔灌注桩施工前的地基监测在进行钻孔灌注桩施工前,需要对地基进行监测,以确保施工过程中地基的稳定性。
地基水平位移监测地基水平位移监测是一种常用的地基监测方法。
通过在地基上设置水平位移测点,可以实时监测地基水平位移的变化情况。
使用水平位移测量仪对测点进行测量,并记录数据,以便后续分析。
地基垂直位移监测地基垂直位移监测是另一种常用的地基监测方法。
通过在地基上设置垂直位移测点,可以监测地基的垂直位移情况。
使用垂直位移测量仪对测点进行测量,并记录数据,以便后续分析。
地基应力监测地基应力监测可以通过钢筋应力计等设备进行。
在施工前,可以在地基上设置应力测点,并监测地基的应力变化情况。
通过应力测量仪器对测点进行测量,并记录数据,可以了解地基的应力变化情况。
钻孔灌注桩施工后的地基监测与变形分析在进行钻孔灌注桩施工后,需要对地基进行监测,以评估施工后地基的稳定性和变形情况。
钻孔灌注桩荷载试验在施工后,进行钻孔灌注桩的荷载试验是一种常用的地基监测方法。
通过在已施工完成的钻孔灌注桩上施加一定的荷载,可以通过测量荷载与位移的关系,了解地基的变形情况。
施加荷载后,使用位移传感器等设备对钻孔灌注桩进行监测,并记录数据。
地基沉降监测地基沉降监测是评估地基稳定性的重要指标。
通过在施工完成后的地基上设置沉降监测点,可以实时监测地基的沉降情况。
使用沉降测量仪器对监测点进行测量,并记录数据,以便后续分析。
地基倾斜监测地基倾斜监测可以通过倾斜传感器等设备进行。
在施工后,可以在地基上设置倾斜测点,并监测地基的倾斜情况。
通过倾斜测量仪器对测点进行测量,并记录数据,可以了解地基的倾斜情况。
挡土墙变形监测方法挡土墙是一种用于支撑土体或山坡,防止其坍塌或滑坡的结构。
为了确保挡土墙的稳定性和安全性,对其进行变形监测是非常重要的。
变形监测可以及时发现挡土墙的异常变形,为采取相应的加固或修复措施提供依据,从而避免可能的安全事故。
下面将详细介绍一些常见的挡土墙变形监测方法。
一、水平位移监测1、全站仪测量法全站仪是一种高精度的测量仪器,可以精确测量出测点的水平坐标。
在挡土墙的顶部和底部设置监测点,定期使用全站仪测量这些点的坐标。
通过比较不同时期的坐标值,可以计算出水平位移的大小和方向。
2、视准线法在挡土墙的两端设置基准点,在其中一端的基准点上设置经纬仪或全站仪,通过望远镜瞄准另一端的基准点,形成一条视准线。
在挡土墙上设置若干个监测点,定期测量监测点到视准线的垂直距离。
如果距离发生变化,就说明挡土墙发生了水平位移。
3、激光准直法利用激光的良好准直性,在挡土墙的一端设置激光发射器,在另一端设置接收装置。
当挡土墙发生水平位移时,激光束在接收装置上的光斑位置会发生变化,通过测量光斑的位移量可以计算出水平位移。
二、垂直位移监测1、水准测量法水准测量是一种常用的测量高差的方法。
在挡土墙周围设置水准基点,在挡土墙上设置监测点。
使用水准仪测量监测点与水准基点之间的高差,通过比较不同时期的高差数据,可以计算出垂直位移的量值。
2、静力水准测量法静力水准测量系统是一种基于连通器原理的高精度垂直位移测量系统。
在挡土墙上布置一系列的静力水准仪,通过测量液体压力的变化来计算各监测点的相对垂直位移。
三、倾斜监测1、倾斜仪测量法倾斜仪可以直接测量挡土墙的倾斜角度。
常见的倾斜仪有水准式倾斜仪、电子倾斜仪等。
将倾斜仪安装在挡土墙上,定期读取倾斜仪的测量数据,从而了解挡土墙的倾斜情况。
2、差异沉降法通过测量挡土墙上不同位置的垂直位移,如果不同位置的垂直位移存在差异,就可以推断出挡土墙发生了倾斜。
四、裂缝监测1、人工观测法定期对挡土墙的表面进行巡视,用肉眼观察是否有裂缝出现。
变形监测简单易考知识点一、名词解释:1、挠度:建筑物在应力的作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂直方向的线位移称为挠度2、工作基点:它是基准点与变形观测点之间起联系作用的点3、视准线测量:它是利用经纬仪或视准仪的视准轴构成基准线,通过该基准线的铅锤面作为基准面,测定其他观测点相对于该铅锤面的水平位移量的一种方法。
4、水平位移:建筑物的水平位移是指建筑物整体平面移动5、变形体:一般包括工程建筑物、技术设备以及其他自然或人工对象。
6、.变形监测:是对被监测的对象或物体(简称变形体)进行测量以确定其空间位置及内部形态随时间的变化特征。
变形监测又称变形测量或变形观测。
二、填空1、水平位移监测常用方法:1)大地测量法,主要包括三角网测量法、精密导线测量法、交会法等;2)基准线法,主要包括视准线法、引张线法、激光准直法和垂线法等;3)专用测量法;4)GPS测量法。
2、建筑物内部监测项目主要包括:位移监测、应力/应变监测、温度监测、渗流监测和挠度监测等。
3、变形监测的数学模型(4类):灰色系统分析模型、时间序列分析模型、多元线性回归模型、逐步回归统计模型4、变形监测的分类:一般分类,静态和动态;特征分类,分为变形体自身的形变(伸缩、错动、弯曲、扭转)和变形体的刚体位移(整体平移、转动、升降、倾斜)按变形速度分类(长周期变形,短周期变形,瞬时变形)按变形特点分类(弹性变形,塑性变形)5、简述灰色系统模型及其特点。
一个贫信息的系统或灰色信息的系统,称为灰色系统。
表征灰色系统行为的离乱观测数据,按生成原理处理后可建立系统的灰色模型。
灰色系统理论提出了一种新的分析方法,它对样本量的多少没有过分要求,也不需要典型的分布规律,计算工作量小,因此,灰色系统在许多领域中得到应用。
6、垂直位移监测方法分类:常用的方法有几何水准测量方法、三角高程测量法、液体静力水准法,压力测量放,GSP测量三、简答1、变形监测的特点:(1)周期性重复观测;(2)精度要求高;(3)多种观测技术的综合应用;(4)监测网着重于研究点位的变化。
大坝变形监测方案1. 简介大坝是人类工程中保护水源、调节水量的重要设施之一。
由于大坝长期承受水压和地质运动的力量,随着时间的推移,大坝可能会发生变形。
为了保障大坝的安全性,需要进行定期的变形监测。
本文档将介绍一种大坝变形监测方案,帮助工程师进行科学有效的大坝变形监测。
2. 监测目标大坝变形监测的主要目标是提前发现大坝的变形情况,以防止严重事故的发生。
监测的主要内容包括以下几个方面:•大坝的水平位移变形:主要指大坝在水平方向上的位移情况,通过测量水平位移来判断大坝是否存在下滑或滑坡的风险。
•大坝的竖向位移变形:主要指大坝在垂直方向上的位移情况,通过测量垂直位移来判断大坝是否存在沉降的风险。
•大坝表面的裂缝情况:通过监测大坝表面的裂缝情况,可以了解大坝是否存在结构破裂或渗漏的风险。
3. 监测方法3.1 测量仪器选择为了进行大坝变形的定量测量,需要选择合适的测量仪器。
以下是一些常见的大坝变形监测仪器:•GPS测量仪:可用于测量大坝的水平位移变形,具有高精度、实时性强的特点。
•倾斜仪:可用于测量大坝的竖向位移变形,一般采用水平方向和垂直方向两个方向的倾斜角度进行测量。
•应变计:可用于测量大坝表面的应变情况,一般通过电阻、电容或光纤等方式进行测量。
3.2 监测方案设计根据大坝的具体情况,制定相应的监测方案。
以下是一个常见的大坝变形监测方案设计示例:1.确定监测点位:根据大坝的结构和地质条件,确定监测点位,包括水平位移监测点和竖向位移监测点。
2.布设测量仪器:根据监测点位,布设相应的测量仪器。
GPS测量仪可以布设在大坝上不同位置进行水平位移监测,倾斜仪可以布设在大坝表面进行竖向位移监测,应变计可以布设在大坝表面的关键部位进行应变监测。
3.数据采集与处理:定期采集测量仪器的数据,并进行数据处理。
可以使用专业的监测设备自带的软件对数据进行分析和展示,也可以使用MATLAB或Excel等软件进行数据处理。
4.结果分析与报告:对监测数据进行分析,判断大坝的变形情况,并及时生成监测报告。
测绘工程之变形监测考试名词解释水平位移:指工程建筑物在水平面内的变形,表现形式为在不同时期平面坐标或距离的变化。
垂直位移:指工程建筑物及其基础在垂直方向的变形。
饶度:在建筑物的垂直面内各不同高程点相对于底点的水平位移称为..基准点:位置固定或变化较小的点观测点:变形体上有代表性的点工作点:介于观测点和几点之间的过渡点。
变形监测网:由变形观测基准点,工作基点和观测点按照一点的控制网形式组成的网。
变性分析:对野外观测所得到的数据信息进行科学整理、分析找出真正的变形信息和变化规律的过程。
FIG:国际测量师联合会变形观测:频率:在某一段时间内观测的次数;周期:每观测一次所间隔的时间。
变形监测:定期对变形体的有关几何量进行量测,并从观测成果中整理、分析出变化规律的整个过程。
变性监测的目的:获得变形体产生变形的空间状态和事件特征,确定变形值得大小及稳定程度,同时解释变形原因。
变形观测的特点:重复观测精度要求高综合应用各种观测方法要求用严格的数据处理方法多学科的配合沉降观测中的三固定以及优点:固定测量员,固定仪器,固定施测路线提高沉降观测的精度(原因:在整个变形观测过程中把偶然误差加以系统化,使其在各时期观测的差值中自动消除)布设基准点的方法:1深埋:在垂直方向上将基准点设在变形体之外。
2.远设:在水平方向将基准点设在变形体之外。
要求;变形速度小,且观测点之间的距离较近基准线法测定的基本原理:以通过建筑物的轴线或平行于建筑物的轴线的竖直平面为基准面,在不同时期分别测定大致位于轴线的观测点相对于此基准面的偏离值,比较同一点在不同时期的偏离值即可求出观测点在垂直于轴线方向的水平位移。
形式:测小角法活动(站)牌法激光对准法引张线法深埋双金属标的原理及特点:原理:深埋金属标在施工埋设时先钻孔穿过地层或风化岩石,达到坚硬的新鲜岩石,用水泥砂浆固定套管,然后在套管内装置直径各位30mm的刚铝管,以钢管标点高程为基准,并借助铝管点高程提供温度改正资料特点:深埋两根具有不同膨胀系数的金属管,并由标志顶部的读数设备测定温度变化对标志所引起的两管长度变化的差*,由此差数即可计算出金属管本身长度的变化,以改正温度变化对标志高程的影响如何确定变形观测的必要精度?主要根据变形观测的目的,允许变形值得大小,变形的速度以及工程的性质来决定1.按照允许变形值来确观测精度例:设允许变形值为*容,则观测的必要精度M=*容/(10-20),某核电长边坡允许变形为*容=20mm,则可确定变形观测的必要精度为M=+-1mm2.按变形观测实测数据的统计分析确定观测精度:例特殊精密工程,高能粒子加速器,大型抛物面天线,平面位移测量中误差要求为正负0.1-0.5mm,则沉降观测的精度为正负0.05-0.2mm布设变形观测网的原则:网点的视野要开阔2.网点之间构成的图形要规矩,最好是等边三角形,3.三角形的角度在30-150度之间变形观测的意义?1.由于各种因素的影响,工程建筑物在施工运营过程中都会产生变形,这种变形在一定限度内是允许的正常现象,但是如果超过了规定的限度,就会影响建筑物的正常使用,严重的还可能危及建筑物的安全。
尾矿库位移监测原理一、引言尾矿库是指用于储存尾矿、废渣等固体废弃物的地质工程设施。
由于尾矿库的安全性直接关系到人民群众的生命财产安全和环境保护,因此对尾矿库的位移进行监测显得尤为重要。
本文将介绍尾矿库位移监测的原理及相关技术。
二、尾矿库位移监测原理尾矿库位移监测的原理是通过测量尾矿库的实际位移和变形来评估其稳定性。
位移监测通常包括水平位移、垂直位移和倾斜监测。
1. 水平位移监测水平位移监测是指测量尾矿库在水平方向上的位移。
常用的水平位移监测方法有全站仪法、GNSS法和激光测距法。
全站仪法是通过在监测点上设置全站仪,测量监测点与参考点之间的水平距离和方向角,然后计算位移。
全站仪法具有测量精度高、适用范围广的特点,但需要人工操作,工作效率相对较低。
GNSS法是利用全球导航卫星系统(GNSS)测量尾矿库监测点的三维坐标,通过比较不同时刻的坐标数据,计算位移。
GNSS法具有操作简便、测量精度较高的特点,但受到信号遮挡和多路径效应影响。
激光测距法是利用激光仪器测量尾矿库监测点与参考点之间的距离,通过比较不同时刻的距离数据,计算位移。
激光测距法具有测量速度快、精度较高的特点,但受到大气折射和目标反射率影响。
2. 垂直位移监测垂直位移监测是指测量尾矿库在垂直方向上的位移。
常用的垂直位移监测方法有水准仪法和测斜仪法。
水准仪法是通过在监测点上设置水准仪,测量监测点与参考点之间的高差,然后计算位移。
水准仪法具有测量精度高、适用范围广的特点,但需要人工操作,工作效率相对较低。
测斜仪法是通过在尾矿库内设置测斜仪,测量监测点的倾斜角度,然后计算位移。
测斜仪法具有操作简便、测量精度较高的特点,但受到重力变化和仪器漂移的影响。
3. 倾斜监测倾斜监测是指测量尾矿库的倾斜变形。
常用的倾斜监测方法有倾斜仪法和应变测量法。
倾斜仪法是通过在尾矿库内设置倾斜仪,测量尾矿库的倾斜角度,然后计算倾斜变形。
倾斜仪法具有操作简便、测量精度较高的特点,但受到重力变化和仪器漂移的影响。
测绘基础知识-变形观测变形观测的概念:变形是指变形体在各种荷载作用下,其形状、大小及位置在时间域或空间域的变化。
变形监测又称为变形测量或变形观测,变形测量则是对设置在变形体上的观测点进行周期性地重复观测,求得观测点各周期相对于首期的点位或高程的变化量。
变形体用一定数量的有代表性的位于变形体上的离散点(称监测点或目标点)来代表,监测点的变形可以描述变形体的变形。
变形分类:1)变形体自身的形变。
变形体自身的形变包括:伸缩、错动、弯曲和扭转四种变形,2)变形体的刚体位移。
刚体位移则含整体平移、整体升降、整体转动和整体倾斜。
变形监测分类:(1)静态变形监测,静态变形是时间的函数,观测结果只表示在某一期间内的变形,静态变形通过周期测量得到。
(2)动态变形监测,动态变形指在外力(如风、阳光)作用下产生的变形,它是以外力为函数表示的,动态变形需通过持续监测得到。
变形观测对象1)研究全球性变形,如监测全球板块运动、地极运动、地球自转速率变化、地潮等;2)区域性变形研究,如地壳形变监测、城市地面沉降;3)工程和局部性变形研究,工程变形监测一般包括工程(构)建筑物及其设备以及其他与工程建设有关的自然或人工对象,这是本课程研究的主要内容。
工程变形的原因一、自然条件及其变化;二、与建筑物本身相联系的原因;三、勘测设计、施工及运营管理工作做的不合理,也会引起建筑物额外的变形。
变形监测的内容1)垂直位移(沉降)监测2)水平位移监测3)倾斜监测4)裂缝监测5)挠度监测6)日照和风振监测等变形观测的意义(1)首先是实用上的意义,主要是掌握各种工程建筑物的地质构造的稳定性,为安全诊断提供必要的信息,以便发现问题并采取措施;(2)其次是科学上的意义,包括更好地理解变形的机理,验证有关设计的理论和地壳运动的假说,进行反馈设计以及建立有效的预报模型对于工程的安全来说:监测是基础,分析是手段,预报是目的。
工程变形监测技术在工程和局部变形监测方面,地面常规测量技术、地面摄影测量技术、特殊和专业的测量手段、以及以GPS为主的空间定位技术等均得到了较好的应用。