SOPC技术定义
- 格式:docx
- 大小:15.09 KB
- 文档页数:2
随着计算机技术和人工智能技术的快速发展,图像识别技术已成为人工智能的基础技术,它涉及的技术领域越来越广泛,应用越来越深入。
随着现代工业生产向高速化、自动化方向的发展,以形状为特征的图像识别在现代生产中的应用日益增加,不论是材料、工业自动化、遥感技术,还是产品质检都需要对形状进行检测。
因此,开发集图像信号的采集与处理于一体、具有高集成度、高保密性的图像处理系统将成为行业的发展趋势。
此外,基于32bit微处理器纯嵌入式系统的图像采集处理技术正处于方兴未艾阶段,发展前景广阔,可广泛应用于工业自动化生产、监护/防盗系统、机器人视觉等技术中。
SoPC技术是Altera公司提出的一种灵活、高效的SoC 解决方案,是一种新的软硬件协同设计的系统设计技术。
本系统就是在这种背景下提出的。
其主要工作是设计一个实用的图像采集和处理平台,能完成目标图像的采集输入,并能对采集到的图像进行处理和识别。
1系统整体方案及硬件设计系统要求在FPGA片内利用SoPC技术实现便携式的图像采集与处理。
它通过对原始图像的扫描,经数字图像处理与识别后即可将得到的大容量的承载信息(包括文字、头像、指纹等个人信息在LCD上显示,并可通过USB接口将信息拷贝,或通过RS-232接口将信息上传给PC机,也可以通过GPRS将获得的信息方便快捷地发往数据中心作验证。
整个系统的核心部分是内嵌Nios II软核的FPGA,外围设备和芯片包括图像获取设备、显示器及片外SDRAM 和FLASH存储器、输入设备等。
系统结构框图如图1所示。
系统的工作过程是:系统配置完成后,视频获取设备获取视频图像,每帧图像经模数转换生成图像数据进入预处理模块,经预处理后的图像数据送入SDRAM存储器,由Nios II处理器进行图像的后续处理和控制。
处理后的图像经数模转换在监视器上实时显示。
1.1图像采集接口电路设计本系统采用美国OmiVision公司的数字式彩色CMOS图像传感器OV7640。
一、EDA技术的主要特点1、软件硬化,硬件软化硬件软化,是说随着技术的发展,很多硬件的功能都可以用软件来代替了,比如说解压卡,就有所谓的硬解压,软解压。
软件硬化,是说用软件来实现很多以前需要用硬件才能实现的功能,比如用程序来控制硬件的动作。
2、自顶向下(top-down)的设计方法自顶向下(top-down)是一种先进的产品设计方法,是在产品开发的初期就按照产品的功能要求先定义产品架构并考虑组件与零件、零件与零件之间的约束和定位关系,在完成产品的方案设计和结构设计之后,再进行单个零件的详细设计。
这种设计过程最大限度地减少设计阶段不必要的重复工作,有利于提高工作效率。
3、集设计、仿真和测试于一体4、基于芯片设计方法EDA设计方法又称为基于芯片设计方法,集成化程度更高,可实现片上系统集成,进行更加复杂电路芯片化设计和专用集成电路设计,使产品体积小、功耗低、可靠性高;可在系统编程或现场编程,使器件编程、重构、修改简单便利,可实现在线升级;可进行各种仿真,开发周期短,设计成本低,设计灵活性高。
5、设计工作标准化,模块可移植共享6、自动化程度高EDA技术根据设计输入文件,将电子产品从电路功能仿真、性能分析、优化设计到结果测试全过程在计算机上自动处理完成,自动生成目标系统,使设计人员不必学习许多深入专业知识,也可免除许多推导运算即可获得优化设计成果,设计自动化程度高,减轻了设计人员工作量,开发效率高。
二、EDA技术的特点与发展趋势面对当今飞速发展的电子产品市场,设计师需要更加实用、快捷的EDA工具,使用统一的集成化设计环境,改变传统设计思路,将精力集中到设计构思、方案比较和寻找优化设计等方面,需要以最快的速度,开发出性能优良、质量一流的电子产品,对EDA技术提出了更高的要求。
未来的EDA技术将在仿真、时序分析、集成电路自动测试、高速印刷电路板设计及开发操作平台的扩展等方面取得新的突破,向着功能强大、简单易学、使用方便的方向发展。
名词解释1.DSPDSP数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
2.FPGA是英文Field-Programmable Gate Array的缩写,即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
目前以硬件描述语言(Verilog 或VHDL)所完成的电路设计,可以经过简单的综合与布局,快速的烧录至FPGA 上进行测试,是现代IC 设计验证的技术主流。
这些可编辑元件可以被用来实现一些基本的逻辑门电路(比如AND、OR、XOR、NOT)或者更复杂一些的组合功能比如解码器或数学方程式。
在大多数的FPGA里面,这些可编辑的元件里也包含记忆元件例如触发器(Flip-flop)或者其他更加完整的记忆块。
3.CPLDCPLD(Complex Programmable Logic Device)复杂可编程逻辑器件,是从PAL和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。
是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。
其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。
以我给的标题写文档,最低1503字,要求以Markdown 文本格式输出,不要带图片,标题为:sopc的技术方案# SOPC的技术方案## 1. 简介系统级片上系统(System-on-a-Chip, SOC)是将多个不同类型的硬件功能集成在一个芯片上的技术。
可编程逻辑器件(Programmable Logic Device, PLD)也得以发展,最终演变为可编程系统单片(System-on-Programmable Chip, SOPC)。
SOPC是一种集成了处理器核、外设和可编程逻辑资源的芯片。
本文将介绍SOPC的技术方案,包括其核心概念、设计流程和应用领域。
## 2. 核心概念### 2.1 可编程逻辑资源SOPC的核心是可编程逻辑资源,通常是通过可编程逻辑器件(如FPGA)实现的,用于实现不同的硬件功能。
可编程逻辑资源包括逻辑门、寄存器、复杂的算术逻辑单元(Complex Arithmetic Logic Unit, ALU)等,可以通过编程方式重新配置其功能和连接关系。
### 2.2 处理器核SOPC通常包含一个或多个处理器核,用于执行软件程序。
处理器核能够与可编程逻辑资源进行通信,并与外围设备进行交互。
处理器核有不同的架构和性能,常见的例子包括ARM Cortex-M系列和Intel x86系列。
### 2.3 外围设备外围设备包括各种接口和控制器,用于与外部设备进行数据交换。
常见的外围设备有串行接口(UART)、并行接口、时钟管理模块、存储器控制器等。
## 3. 设计流程SOPC的设计流程包括以下几个关键步骤:1. **需求分析**:确定所需的功能和性能指标,包括处理器核选择、外设选择和可编程逻辑资源容量等。
2. **系统设计**:根据需求分析结果,进行系统框架设计和模块划分。
3. **硬件设计**:根据系统设计,实现硬件模块的详细设计,包括处理器核、外设和可编程逻辑资源的配置和连接。
SOPC方案引言:在当今数字技术高速发展的时代,各类电子设备的设计与开发成为了不可或缺的一环。
嵌入式系统的设计需求越来越复杂,为了满足这一需求,诞生了SOPC(System on a Programmable Chip)方案。
本文将详细介绍SOPC方案的定义、优势以及应用领域,以便更好地理解和应用该方案。
定义:SOPC是一种将系统级硬件和软件集成在一个可编程芯片上的设计方案。
通过SOPC方案,用户可以根据自己的需求灵活设计硬件系统,并利用编程方式控制系统的功能和性能。
SOPC方案的核心是可编程逻辑器件,如FPGA(Field Programmable Gate Array)。
优势:1. 灵活性:SOPC方案采用可编程芯片,使得系统硬件可以根据需求进行灵活定制。
不同于传统固定功能的硬件电路,SOPC方案可以根据用户的具体需求进行设计和修改,提供更加灵活的解决方案。
2. 可重构性:利用SOPC方案,用户可以通过重新配置硬件逻辑通过编程方式快速修改和调整系统功能。
这种可重配置性使得系统在设计阶段和实际应用中具备更强的适应性和可扩展性。
3. 性能优化:通过SOPC方案,用户可以根据应用的需求和资源限制精确控制系统的功能和性能。
此外,由于硬件和软件的紧密结合,SOPC方案有助于提高系统的运行效率和优化功耗。
4. 开发效率:SOPC方案通过软件和硬件的集成,简化了系统设计的流程。
借助现成的IP核(Intellectual Property Core)和开发工具,开发人员可以快速搭建嵌入式系统,并且可以使用高级编程语言进行开发。
应用领域:1. 通信领域:SOPC方案在通信设备的设计中得到了广泛应用。
通过SOPC方案,通信设备可以适应不同的接口、协议和传输速率,并且可以进行灵活的调试和维护。
2. 工业自动化:SOPC方案可以用于工业自动化控制系统的设计与开发。
通过SOPC方案,工控系统可以根据具体要求进行硬件逻辑的编程,实现自动化控制和数据采集等功能。
SOPC
System-on-a-Programmable-Chip
即可编程片上系统
用可编程逻辑技术把整个系统放到一块硅片上,称作SOPC。
可编程片上系统(S OPC)是一种特殊的嵌入式系统:首先它是片上系统(SOC),即由单个芯片完成整个系统的主要逻辑功能;其次,它是可编程系统,具有灵活的设计方式,可裁减、可扩充、可升级,并具备软硬件在系统可编程的功能。
SOPC的特点
SOPC结合了SOC和PLD、FPGA各自的优点,一般具备以下基本特征:
至少包含一个嵌入式处理器内核;
具有小容量片内高速RAM资源;
丰富的IP Core资源可供选择;
足够的片上可编程逻辑资源;
处理器调试接口和FPGA编程接口;
可能包含部分可编程模拟电路;
单芯片、低功耗、微封装。
SOPC的技术内容
SOPC设计技术涵盖了嵌入式系统设计技术的全部内容,除了以处理器和实时多任务操作系统(RTOS)为中心的软件设计技术、以PCB和信号完整性分析为基础的高速电路设计技术以外,SOPC还涉及目前以引起普遍关注的软硬件协同设计技术。
由于SOPC的主要逻辑设计是在可编程逻辑器件内部进行,而BGA封装已被广泛应用在微封装领域中,传统的调试设备,如:逻辑分析仪和数字示波器,已很难进行直接测试分析,因此,必将对以仿真技术为基础的软硬件协同设计技术提出更高的要求。
同时,新的调试技术也已不断涌现出来,如Xilinx公司的片内逻辑分析仪Chip Sco pe ILA就是一种价廉物美的片内实时调试工具。
SOPC技术主要应用以下三个方向:
1)基于FPGA嵌入IP硬核的应用。
这种SOPC系统是指在FPGA中预先植入处理器。
这使得FPGA灵活的硬件设计与处理器的强大软件功能有机地结合在一起,高效地实现SOPC系统。
2)基于FPGA嵌入IP软核的应用。
这种SOPC系统是指在FPGA中植入软核处理器,如:NIOS II核等。
用户可以根据设计的要求,利用相应的EDA工具,对N IOS II及其外围设备进行构建,使该嵌入式系统在硬件结构、功能特点、资源占用等方面全面满足用户系统设计的要求。
3)基于HardCopy技术的应用。
这种SOPC系统是指将成功实现于FPGA器件上的SOPC系统通过特定的技术直接向ASIC转化。
把大容量FPGA的灵活性和AS IC的市场优势结合起来,实现对于有较大批量要求并对成本敏感的电子产品,避开了直接设计ASIC的困难。
现在市场上Altera公司支持SOPC的FPGA芯片有:
1)Cyclone系列
2)Cyclone II系列
3)Cyclone III系列
4)Stratix系列
5)Stratix II系列
6)Stratix III系列
SOPC的前景
SOPC是PLD和ASIC技术融合的结果,目前0.13微米的ASIC产品制造价格仍然相当昂贵,相反,集成了硬核或软核CPU、DSP、存储器、外围I/O及可编程逻辑的SOPC芯片在应用的灵活性和价格上有极大的优势。
SOPC被称为“半导体产业的未来”。