(完整版)数学模型(第四版)课后详细答案
- 格式:pdf
- 大小:271.76 KB
- 文档页数:9
[数学建模与数学实验第4版答案]数学建模思想在提升数学核心素养中的应用(最新版)-Word文档,下载后可任意编辑和处理-摘要数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。
由于小学教育是培养学生学习习惯和方式的最重要的阶段之一,因此在小学数学教育的过程中,我们需要利用数学建模思想不断的提高小学生数学核心素养,提高学生对数学学习的兴趣。
关键词数学建模思想;核心素养;应用《数学课程标准》提出:“数学素养是现代社会每一个公民应该具有的基本素养。
”发展学生的核心素养是教学教育的重要任务。
学生获得核心素养的主要途径还是课堂。
因此在实际的小学教学的过程中就应该在小学数学教学的过程中将数学建模思想应用在教学的过程中,将教学与数学建模的思想结合在一起,促进和提高学生的数学核心素养。
一、数学建模思想发挥的作用(一)提高了小学生学习数学的兴趣小学数学是生活中的数学。
在传统的小学数学教学中,教师重视知识的传授、公式的推导以及相关定理的证明,相对忽略了知识形成的过程,缺乏数学学习的趣味性。
数学建模思想的有效运用恰能弥补这一不足。
如教师在讲授正方形和长方形的时候,将生活中与其相关的图形带到教学中,通过这样的方式让学生了解正方形和长方形,而且还需要让学生通过直观想象,理解建立基本的数学模型,而且在这个过程中,由于小学生的年龄较小,对事物感兴趣的时间短,因此数学教师在教学的过程中就需要结合小学生的年龄特点和心理特点,在应用数学建模思想的过程中,牢牢把握数形结合,这样就能够激发学生学习数学的兴趣和欲望。
(二)提高学生学习数学的能力数学教育家米山国藏指出:“数学知识可能只记忆一时,但数学的精神、思想与方法却永远发挥作用,可以受益终生,是数学能力所在,是数学教育根本所在。
通过数学思想方法的渗透可以促进学生获得适应个人发展和社会发展所需要的必备品格和关键能力。
核心素养的提高不是空泛的,要落实到具体的数学教学过程之中,体现在数学教学的各个环节中,只有切实做好数学教学,才能为核心素养的提高奠定基础。
数学建模第三版答案【篇一:数学模型第四版课后答案姜启源版】t>第二章(1)(2012年12月21日)1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,p1?235,p2?333,p3?432,方法一(按比例分配)q1??pi?13i?1000.p1n?pi?13?2.35,q2?p2ni?pi?13?3.33, q3?p3ni?pi?13?4.32i分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为235233324322q1??9204.17, q2??9240.75, q3??9331.22?33?44?5q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pi是ni每席位代表的人数,取ni?1,2,?,从而得到的近.pip中选较大者,可使对所有的i,i尽量接nini再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得?tvdt?2?k?(r?wkn)dnn2?rk?wk22n22vv《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k,其它假设及符号约定同课本. 10 对于不允许缺货模型,每天平均费用为:c(t)?c1c2rt??kr t2ccrdc??12?2 dt2t令dc?0 ,解得 t*?dt2c1c2r2c1rc2由q?rt ,得q??rt??与不考虑购货费的结果比较,T、Q的最优结果没有变.20 对于允许缺货模型,每天平均费用为:1c(t,q)?t??c2q2c32c??(rt?q)?kq?1?2r2r??c1c2q2c3rc3q2kq?c??2????2 22?t2t2rt2rttcqk?cc2q??c3?3? ?qrtrtt??c?0???t令? ,得到驻点:?c?0????q?????q????t??2c1c2?c3k2?rc2c3c2c322c3kr2c1rc3kr??c2c2?c3c2(c2?c3)c2?c3与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k?r.在每个生产周期T内,开始的一段时间?0?t?t0?一边生产一边销售,后来的一段时间(t0?t?t)只销售不生产,画出贮存量g(t)的图形.设每次生产准备费为c1,单位时间每件产品贮存费为c2,以总费用最小为目标确定最优生产周期,讨论k??r和k?r的情况.解:由题意可得贮存量g(t)的图形如下:t(k?r)t0?t2贮存费为 c2lim?t?0?g(?i)?ti?c2?g(t)dt?c2i?1又? (k?r)t0?r(t?t0) ?t0?rr(k?r)t?tt , ? 贮存费变为c2? k2k于是不允许缺货的情况下,生产销售的总费用(单位时间内)为c1c2r(k?r)t2c1r(k?r)t???c2c(t)? t2ktt2kcdcr(k?r)??12?c2. dt2ktdc?0 ,得t??dt?令2c1kc2r(k?r)2c1kc2r(k?r)易得函数c(t)在t处取得最小值,即最优周期为: t??当k??r时,t??2c1. 相当于不考虑生产的情况. c2r当k?r时,t??? .此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度?与开始救火时的火势b有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度?与火势b有关,可知火势b越大,灭火速度?将减小,我们作如下假设: ?(b)?k, b?1中的1是防止b?0时???而加的. 分母b?1c1?t12c1?2t12(b?1)c2?t1x(b?1)总费用函数c?x?????c3x22(kx??b??)kx??b??最优解为 x?ckb12?2c2b(b?1)?(b?1)(b?1)?? 2k2c3k5.在考虑最优价格问题时设销售期为t,由于商品的损耗,成本q 随时间增长,设q(t)?q0??t,?为增长率.又设单位时间的销售量为x?a?bp(p为价格).今将销售期分为0?t?t和t?t?t两段,每段的价格固定,记作p1,p2.求p1,p2的最优值,使销售期内的总利润最大.如果要求销售期t内的总售量为q0,再求p1,p2的最优值.解:按分段价格,单位时间内的销售量为??a?bp1,0?t? x??ta?bp2,?t?t??又? q(t)?q0??t.于是总利润为?(p1,p2)??t?p1?q(t)?(a?bp1)dt??t?p2?q(t)?(a?bp2)dttt?2??2???=(a?bp1)?p1t?q0t?t?2?(a?bp2)?p2t?q0t?t?t2?2???02p1tq0t?t2p2tq0t3?t2??)?(a?bp2)(??) =(a?bp1)(228228【篇二:数学建模习题及答案课后习题】>1. 学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍。
交巡警服务平台的设置与调度优化分析摘要本文综合应用了Floyd算法,匈牙利算法,用matlab计算出封锁全市的时间为1.2012小时。
并在下面给出了封锁计划。
为了得出封锁计划,首先根据附件2的数据将全市的道路图转为邻接矩阵,然后根据邻接矩阵采用Floyd算法计算出该城市任意两点间的最短距离。
然后从上述矩阵中找到各个交巡警平台到城市各个出口的最短距离,这个最短距离矩阵即可作为效益矩阵,然后运用匈牙利算法,得出分派矩阵。
根据分派矩阵即可制定出封锁计划:96-151,99-153,177-177,175-202,178-203,323-264,181-317, 325-325,328-328,386-332,322-362,100-387,379-418,483-483, 484-541,485-572。
除此以外,本人建议在编号为175的路口应该设置一个交巡警平台,这样可以大大减少封锁全市的时间,大约可减少50%。
关键词: Floyd算法匈牙利算法 matlab一、问题重述“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:警车的时速为60km/h, 现有突发事件,需要全市紧急封锁出入口,试求出全市所有的交巡警平台最快的封锁计划,一个出口仅需一个平台的警力即可封锁。
二、模型假设1、假设警察出警时的速度相同且不变均为60/km h 。
2、假设警察出警的地点都是平台处。
3、假设警察接到通知后同时出警,且不考虑路面交通状况。
三、符号说明及一些符号的详细解释A 存储全市图信息的邻接矩阵 D 任意两路口节点间的最短距离矩阵X 01-规划矩阵ij a ,i j 两路口节点标号之间直达的距离 ij d 从i 路口到j 路口的最短距离 ij b 从i 号平台到j 号出口的最短距离ij x 取0或1,1ij x =表示第i 号平台去封锁j 号出口在本文中经常用到,i j ,通常表示路口的编号,但是在ij d ,ij b ,ij x 不再表示这个意思,i 表示第i 个交巡警平台,交巡警平台的标号与附件中给的略有不同,如第21个交巡警平台为附件中的标号为93的交巡警平台,本文的标号是按照程序的数据读取顺序来标注的,在此声明;j 表示第j 个出口,如:第5个出口对应于附件中的路口编号为203的出口。
对于6。
4节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数量1+k x 和k x 决定。
如果设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与6.4的结果进行比较。
(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 决定,试分析稳定平衡的条件是否还会放宽。
解:(1)设1+k y 由1+k x 和k x 的平均值决定,即价格函数表示为:)2(11k k k x x f y +=++ 则 0),2(0101>-+-=-++ααx x x y y k k k 0),(001>-=-+ββy y x x k k消去y, 得到 012)1(22x x x x k k k +=++++αβαβαβ ,k=1,2,….该方程的特征方程为022=++αβαβλλ与6.4节中 )2(11-++=k k k y y g x 时的特征方程一样, 所以0〈αβ〈2, 即为0p 点的稳定条件。
(2)设 )2(11k k k x x f y +=++ )2(11-++=k k k y y g x , 则有 0),2(0101>-+-=-++ααx x x y y k k k 0),2(0101>-+=--+ββy y y x x k k k 消去y ,得到0123)1(424x x x x x k k k k +=++++++αβαβαβαβ 该方程的特征方程为02423=+++αβαβλαβλλ令λ=x ,αβ=a , 即求解三次方程0a 2ax ax 4x 23=+++ 的根 在matlab 中输入以下代码求解方程的根x :syms x asolve(4*x^3+a*x^2+2*a*x+a==0,x)解得 1x = (36*a^2 — 216*a — a^3 + 24*3^(1/2)*(-a^2*(a — 27))^(1/2))^(1/3)/12 — a/12 + (a*(a — 24))/(12*(36*a^2 — 216*a — a^3 + 24*3^(1/2)*(-a^2*(a — 27))^(1/2))^(1/3));2x = -(2*a*(36*a^2 - 216*a — a^3 + 24*3^(1/2)*(—a^2*(a - 27))^(1/2))^(1/3) — 3^(1/2)*a*24*i — 3^(1/2)*(36*a^2 — 216*a — a^3 + 24*3^(1/2)*(—a^2*(a — 27))^(1/2))^(2/3)*i - 24*a + 3^(1/2)*a^2*i+ (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a — 27))^(1/2))^(2/3) + a^2)/(24*(36*a^2 — 216*a - a^3 + 24*3^(1/2)*(-a^2*(a — 27))^(1/2))^(1/3));3x =—(2*a*(36*a^2 - 216*a — a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3) + 3^(1/2)*a *24*i + 3^(1/2)*(36*a^2 - 216*a — a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i — 24*a - 3^(1/2)*a^2*i + (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3) + a^2)/(24*(36*a^2 — 216*a — a^3 + 24*3^(1/2)*(—a^2*(a -27))^(1/2))^(1/3));其中1x 为实根,2x 与3x 为一对共轭虚根。
数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
数值分析第四版答案第一章绪论1.设x 0,x的相对误差为,求In x的误差。
解:近似值x*的相对误差为* e* x* x =ex* x*而In x 的误差为el nx* Inx* In x e* x*进而有(In x*)2.设x的相对误差为2%,求 E x n的相对误差。
解:设f(x) x n,则函数的条件数为C p丨空^丨f(x)H n 1又 f '(x) nx n 1, C p | x nx | n1n—11又「((x*) n) C p r(x*)且e (x*)为2r((x*)n) 0.02 n3•下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:x;1.1021,x2 0.031 , x3 385.6,沧56.430 ,x57 1.0.解:x1 1.1021是五位有效数字;x2 0.031是二位有效数字;x;385.6是四位有效数字;x4 56.430是五位有效数字;X;7 1.0.是二位有效数字。
4•利用公式(2.3)求下列各近似值的误差限:(1) x;x;x;,(2) x;x;x;,(3) x;/x;. 其中X1,X2,X3,x4均为第3题所给的数。
解:*1 (X 1)2 10(1) (X 1X 2 X 4)(X ;)(x 2) (x 4)11021.05 10(2) (x ;x ;x ;)(3) (X 2/X 4) * I **X 2I(X 4) X 4* 2 X40.031 1 3 13-10 56.430 — 102 2 10 5 56.430 56.4305计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 4 °解:球体体积为V - R 33*1(X 2) 2 10 * 1 (X 3) 2 10 * 1 (X 4) 2 10 * 1 (X 5— 123 131101103X 1X 2 (X 3) 1.1021 0.031 0.215X 2X 31 2101X 1X 3 (X 2)10.031 385.6 - 101.1021 385.6 1 103*(X 2)则何种函数的条件数为C R(4 R2 4 R3 3r(V*) Cp|「(R*)3 r (R*)又;r (V*)11故度量半径R 时允许的相对误差限为r (R*) - 1 0.33 36 •设 Y o 28,按递推公式 Y, Y n-1,783 (n=1,2,…) 100计算到丫100。
数学模型课后答案新编 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学模型》作业答案第二章(1)(2012年12月21日)1.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, 方法一(按比例分配)分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为: 第10个席位:计算Q 值为3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p中选较大者,可使对所有的,i iin p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型.解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ⎰⎰+=ntdn wkn r k vdt 0)(2π《数学模型》作业解答第三章1(2008年10月14日)1. 在节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QC TC, 得到驻点:与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况. 解:由题意可得贮存量)(t g 的图形如下:又 ∴ T =0于是不允许缺货的情况下,生产销售的总费用(单位时间内)为k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,T r k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t T T t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值.解:按分段价格,单位时间内的销售量为 又 t q t q β+=0)(.于是总利润为=22)(022)(20222011T T t t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- 0,021=∂∂=∂∂p p 令, 得到最优价格为: 在销售期T 内的总销量为 于是得到如下极值问题: 利用拉格朗日乘数法,解得: 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++= 令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克, B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30y. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =70S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为这是一个整线性规划问题. 用图解法求解. 可行域为:由直线1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2y. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s (2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成(1).s s(t) .s(t) .100≤∴单调减少由若σs (2)().00.1-s ,1,1dtdit s s σσσ从而则若 4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =--.222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),,0t f (1)快速静脉注射: ).0t k e V D-= (2)恒速静脉滴注(持续时间为τ): 设滴注速率为(),00,000==C k t f k ,则解得 (3) 口服或肌肉注射: ()(),解得)式节(见134.5010010t k e D k t f -= 3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e e ba vaw Q v bl a vl β ()10/10==l M w 其中,(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbla eb a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v blee b a v aw Q 1'21'04 4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 《数学模型》作业解答第六章(2008年11月20日)1.在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22Nx > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rNh =, 但2*0Nx =这个平衡点不稳定.这是与节的产量模型不同之处. 要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同. 设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.由前面的结果可得 h =得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h . 10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x .解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =.Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22Nx ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x,且尽量接近2N ,但不能等于2N. 《数学模型》第七章作业(2008年12月4日)1.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为: 在),(000y x P 点附近用直线来近似曲线h f ,,得到由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 对应齐次方程的特征方程为 02 2=++αβαβλλ 特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为: 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则 对(7)作变换:,12αβμλ-= 则其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w p q q p q qμμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件. 2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1.证明节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换 B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有 ()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次. 解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的. 等都是完全路径.此竞赛图的邻接矩阵为令()Te 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==, ()()()T AS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334== 由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.问题要分成哪3答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为当mn 2较小,1 n 时,有 E D -=1 , m n E 4≈ ② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-; 记m q m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为于是带走产品的平均数是 ()122-+-n n npq q m m ,未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- 当1 n 时,并令'1'D E -=,则 226'm n E ≈ ④ 两种办法的比较:由上知:mn E 4≈,226'm n E ≈∴ m n E E 32/'=,当n m 时,132 mn , ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)?解:设每天订购n 百份纸,则收益函数为收益的期望值为G(n) = ∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×+7×+7×(+++)=;G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=;G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14=G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10=当报童每天订300份时,收益的期望值最大.数模复习资料第一章1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型 2. 数学模型 对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中着名的牛顿第二定律使用公式22dt x d m F =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N 随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型c. 按建模目的来分类 数学模型 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧控制模型决策模型优化模型预报模型分析模型描述模型 d.层次分析法的基本步骤:1.建立层次结构模型2.构造成对比较阵3.计算权向量并作一致性检验4.计算组合权向量并作组合一致性检验阶正互反正A 是一致阵的充要条件为A 的最大特征值为nf.正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .9. (1)某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经过路径中的同一地点.为什么?(2)37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点方法二:设想有两个人,I ) 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇I )t。
数学模型作业六道题作业一1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数。
解:要求鱼的体重,我们利用质量计算公式:M=ρV。
我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。
至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。
我们假设鱼的体积和鱼身长的立方成正比。
即:V=k 1L 3,因此,模型为:……………………………模型一33111M V k l K L ρρ===利用Eviews 软件,用最小二乘法估计模型中的参数K 1,如下图1所示:图1从图1结果可以得到参数K 1=0.014591,所以模型为:31M 0.014591 L =上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。
因此,有必要改进模型。
如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成正比,即:V=k 2d 2L ,因此,模型为:身长/cm 36.831.843.836.832.145.135.932.1质量/g 76548211627374821389652454胸围/cm24.821.327.924.821.631.822.921.6t h i ng sin………………………………模型二22222M V k d K d L L ρρ===利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示:图2从图2可以得到参数K 2=0. 032248,所以模型为:22M 0.032248d L=将实际数据与模型结果比较如表1所示:表1实际数据M 76548211627374821389652454模型一M 1727.165469.2141226.061727.165482.6291338.502675.108482.619模型二M 2729.877465.2481099.465729.877482.9601470.719607.106483.9602.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。
每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。
解:将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系:记r 为第i 区的大学生人数,用0-1变量x ij =1表示(i ,j )区的大学生由一个代售点供应图书(i<j ,且i ,j 相邻),否则x ij =0,建立该问题的整数线性规划模型。
i j iji.jMax r r x s.t.21,{0,1}i j i j ijj ji j x x xix =+≤+≤∀∈∑∑∑∑相邻()即:12132325344546566747121323242534454647566712131223242513233424455646Max 63*x 76*x 71*x 85*x 63*x 77*x 39x *x 74*x 89*x 92*x s.t.x x x x x x x x x x x 2 x x 1x x x x 1 x x x 1 x x x 1 x =+++++++++++++++++++≤+≤+++≤++≤++≤5667ij ij x x 1 x 0x 1++≤==或将上述建立的模型输入LINGO ,如下: modle:max=63*x12+76*x13+71*x23+85*x25+63*x34+77*x45+39x*x46+74*x56+89*x67+92*x47 s.t. x12+x13+x23+x24+x25+x34+x45+x46+x47+x56+x67<=2; x12+x13<=1;x12+x23+x24+x25<=1; x13+x23+x34<=1;x24+x45+x56<=1; x46+x56+x67<=1@gin(x12); @gin(x13); @gin(x23); @gin(x25); @gin(x34); @gin(x45); @gin(x46);@gin(x47); @gin(x67); End 运行,得到的输出如下:Local optirnal solution found at iteration Objective value: Vauable Value Reduced Costx12 0.000000 0000000 x13 0.000000 0000000 x23 0.000000 0000000 x24 0.000000 0000000 x25 1.000000 0000000 x34 0.000000 0000000 x45 0.000000 0000000 x46 0.000000 0000000 x47 1.000000 0000000 x56 0.000000 0.000000 x67 0.000000 0000000从上述结果可以得到:最优解 (其他的均为0),最优值为177人. 2547x x 1==即:第2、5区的大学生由一个销售代理点供应图书,代理点在2区或者5区,第4、7区区的大学生由另一个销售代理点供应图书,代理点在4区或者7区。
作业二3.P181.14 在鱼塘中投放n 0尾鱼苗,随着时间的增长,尾数将减少而每尾的重量将增加。
(1)设尾数n(t) 的(相对)减少率为常数;由于喂养引起的每尾鱼重量的增加率与鱼表面积成正比,由于消耗引起的每尾鱼重量的减少率与重量本身成正比。
分别建立尾数和每尾鱼重的微分方程,并求解。
(2)用控制网眼的办法不捕小鱼,到时刻T 才开始捕捞,捕捞能力用尾数的相对减少量|ṅ/n| 表示,记作E ,即单位时间捕获量是En(t)。
问如何选择T 和E ,使从T 开始的捕获量最大。
解:(1)鱼塘的初始鱼苗为n 0尾,且随着时间的增长,尾数将减少。
设尾数n(t) 的(相对)减少率为为k 1,因此由题意建立微分方程为:,(0)(0)dnkn k dtn n =->=求解得:0()ktn t n e -= 在鱼塘里,由于喂养引起的每尾鱼重量的增加率与鱼表面积成正比,即:SαI (t )=在鱼塘里,由于消耗引起的每尾鱼重量的减少率与重量本身成正比,即:mβD (t )=所以每尾鱼重量的净增长率r(t)为:S mαβ-r (t )=因此,建立微分方程为:dmS m dtαβ-=因为该微分方程涉及多个变量间的数量关系,所以我们暂时无法求解该微分方程。
但是要想解决此微分方程还需要更多的信息,例如,每尾鱼表面积与其重量间的关系,一旦此关系确定,便可轻松解出每尾鱼的质量随时间的变化,即m(t)。
(2)用控制网眼的办法不捕小鱼,假设t=T 时开始捕捞,且单位时间的捕捞率为E ,依题意建立微分方程:,()dnkn En t T dt=--≥因此得:()()0()t E t T n t n e e λλ--+-=所以单位时间的捕捞鱼的尾数为En(t),因此从T 时刻开始的总捕捞量为:()()Ty m t En t dt∞=⎰问题就转化为求E 和λ的值,使得y 最大,由于条件不足导致m(t)求解不出,因此无法求出y 的具体解释式。
4.P213.2 雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在空气中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。
解:雨滴速度问题中涉及的物理量:雨滴的速度,空气密度,粘滞系数,v ρμ重力加速度,长度。
要寻找的关系是:g γ(,,,)v g ψγρμ=更一般的将各个物理量之间的关系写作:),,,,(=g v f μργ这里没有因变量与自变量之分,进而设:35124 (1)y y y y y v g πγρμ=其量纲表达式为:0130110002[]LM T []L MT ,[]L MT []LM T []LM T g νρμγ-----=====,,,其中L ,M ,T 是基本量纲。
因此量纲表达式可以写成:5120000*********(LM T )(L MT )(L MT (LM T (LM T )y y y L M T -----=34y y ))根据量纲原则可写成:⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 量纲矩阵为:11311()00110()10012()()()()()()L A M T v g γρμ--⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦解得方程的基本解为:1211(1,,0,0,)22......................(2)31(0,,1,1,)22Y Y ⎧=--⎪⎪⎨⎪=---⎪⎩将(2)代入(1)可得两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ为了得到形如的关系,取,其中是某个函数,(,,,)v g ϕγρμ=12()πψπ=ψ所以(2)式为:1/21/23/211/2()v g g γψγρμ-----=于是:3/211/21/21/2()()v g g ψγρμγ---=作业三5.P248.13 一个岛屿上栖居着食肉爬行动物和哺乳动物,又长着茂盛的植物。
爬行动物以哺乳动物为食物,哺乳动物又依赖植物生存。
在适当假设下建立三者关系的模型,求其平衡点。
解:、、分别表示植物、哺乳动物、食肉爬行动物在时刻的数)(1t x )(2t x )(3t x t 量。
假设不考虑植物、哺乳动物和食肉爬行动物对自身的阻滞增长作用。
设为植物的固有增长率,而哺乳动物的存在使植物的增长率减少,设减1r 小的程度与捕食者数量成正比,于是建立植物数量的模型:)()(21111x r x dtt dx λ-=比例系数反映了哺乳动物消耗植物的能力。
1λ哺乳动物离开植物无法生存,设其死亡率为,则哺乳动物独自存在时有:2r 222)(x r dtt dx -=而植物的存在可以为哺乳动物提供食物,但是食肉爬行动物的存在使哺乳动物数量减少,设减少的程度与食肉爬行动物数量成正比,于是建立哺乳动物数量模型:)()(312222x x r x dtt dx μλ-+-=其中比例系数反映了植物对哺乳动物的供养能力,反映了食肉爬行动物掠2λμ取哺乳动物的能力。