第1课时 概率及其意义
- 格式:ppt
- 大小:1.99 MB
- 文档页数:19
《概率的意义教案》课件第一章:概率的概述1.1 引言引入概率的概念,让学生了解概率在日常生活中的应用。
提问:什么是概率?你能给出一个具体的例子吗?1.2 概率的定义解释概率的定义:概率是某个事件发生的可能性。
强调概率的取值范围:0 ≤P(A) ≤1,其中P(A) 表示事件A 的概率。
1.3 概率的基本性质介绍概率的基本性质,如互斥事件、独立事件等。
通过示例解释互斥事件和独立事件的含义。
第二章:概率的计算方法2.1 古典概率介绍古典概率的计算方法,即当事件发生的样本空间为有限时,概率可以通过counting 方法计算。
举例说明如何计算古典概率。
2.2 条件概率引入条件概率的概念,即在已知某个事件发生的情况下,另一个事件发生的概率。
解释条件概率的计算公式:P(B|A) = P(A∩B) / P(A)。
2.3 联合概率介绍联合概率的概念,即两个事件发生的概率。
解释联合概率的计算公式:P(A∩B) = P(A) ×P(B|A)。
第三章:概率的性质和定理3.1 概率的互补性解释概率的互补性定理:P(A) + P(¬A) = 1,其中¬A 表示事件A 不发生。
3.2 概率的交换律和结合律介绍概率的交换律和结合律:P(AB) = P(BA) 和P(ABC) = P(AB) ×P(C|AB)。
3.3 贝叶斯定理介绍贝叶斯定理的概念,即在已知条件下,根据后验概率来更新先验概率。
解释贝叶斯定理的计算公式:P(A|B) = P(B|A) ×P(A) / P(B)。
第四章:概率的估计4.1 最大似然估计介绍最大似然估计的概念,即选择使得样本观测值最有可能发生的参数值。
解释如何使用最大似然估计来估计概率参数。
4.2 贝叶斯估计介绍贝叶斯估计的概念,即在已知先验概率的情况下,根据后验概率来估计参数值。
解释如何使用贝叶斯估计来估计概率参数。
4.3 蒙特卡洛模拟介绍蒙特卡洛模拟的方法,即通过随机抽样来估计概率。
高一数学概率的意义知识点概率是数学中一个非常重要的概念,它不仅仅存在于数学领域,还广泛应用于生活和各个领域中。
在高一数学学习中,我们将接触到一些基本的概率知识点,这些知识点的掌握对于我们理解和应用概率的意义非常重要。
1. 概率的基本定义和意义概率是指某一事件在所有可能事件中发生的可能性大小,它的取值范围在0到1之间。
当概率为0时,表示该事件不可能发生;当概率为1时,表示该事件一定会发生。
在生活中,我们经常使用概率来衡量一些事件发生的可能性,比如天气预报中说有80%的概率下雨,我们可以明确这种可能性的大小。
2. 试验和样本空间在概率计算中,我们需要进行一系列的试验,而试验的所有可能结果的集合称为样本空间。
比如掷硬币的试验,可能的结果为正面和反面,样本空间为{正面,反面}。
概率的计算需要基于清晰定义的样本空间,只有明确了试验的所有可能结果,才能计算出各个事件发生的概率。
3. 事件和事件的概率事件是指样本空间中的某个子集,表示我们感兴趣的某种结果。
比如在掷硬币的试验中,正面朝上可以看做一个事件。
概率可以通过计算事件中的元素个数与样本空间中元素个数的比值得到。
例如,正常掷一枚硬币出现正面的概率为1/2。
4. 互斥事件和包含事件互斥事件是指两个事件不可能同时发生的情况,例如掷一枚硬币出现正面和反面是互斥事件。
对于互斥事件A和B,它们的概率可以简单地相加得到总概率。
包含事件是指一个事件包含于另一个事件的情况,比如在一个班级中,A同学是数学课代表,B同学是班长,那么A同学也是班长这个事件包含了他是数学课代表这个事件。
对于包含事件A和B,它们的概率为P(A∪B)=P(A)+P(B)-P(A∩B)。
5. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
表示为P(B|A),读作在事件A已经发生的情况下,事件B发生的概率。
条件概率的计算公式为P(B|A)=P(A∩B)/P(A)。
条件概率的概念在实际生活中有非常重要的应用,比如根据某人某个特定症状的发生概率来判断他是否患有某种疾病。
华东师范大学出版社九年义务教育数学课本九年级上册《25.2.1 概率及其意义》第一课时教学设计海南省儋州市民族中学刘洋洋一、教学内容分析1.课标内容课标内容:了解事件的概率;知道通过大量的重复试验,可以用频率估计概率。
2.教材内容分析传统的概率教学常常重在概率的计算,修订后的教材试图通过从定性到定量,从试验观察到理论分析,逐步达到提高学生对概率理解水平的目的。
所以结合教材和课标内容,设定本节的教学重点是:在具体情景中理解概率及它的意义。
知道获得概率的方法有两种:大量重复试验,用频率的稳定值估计概率,和分析的方法;理解运用分析方法获得概率的公式。
3.教材地位分析本节是对上一节不确定事件发生可能性大小的探索,是后面研究简单及复杂问题情景下事件发生概率的基础。
二、教学目标分析1. 教学目标设置根据教材和课标内容,我认为本节课应完成的教学目标有:1.理解概率的含义,让学生知道获得概率的方法有两种:大量重复试验,用频率的稳定值估计概率和分析的方法。
2.发现、归纳并理解用分析方法预测概率的公式。
3.在具体情景中理解概率的意义。
4.通过动手实验与合作交流,进一步提高学生收集、整理、描述数据的技能,培养学生分析数据的素养。
2.教学目标分析本节课在知识与方法上侧重的是学生的理解,在技能上培养的是学生分析数据的素养。
三、学生学情分析1. 知识基础分析根据《课程标准》,学生在小学阶段已经通过实例感受简单的随机现象,并能对一些简单的随机现象发生的可能性大小作出定性的描述。
所以学生对于事件发生概率的含义是可以理解的。
学生在上一节《25.1在重复试验中观察不确定现象》已通过试验观察体会到,随机事件在每一次试验中是否发生是不可预言的,但在大量重复试验后,随机事件发生的频率会逐渐稳定在某一数值附件。
2. 技能分析学生在八年级已学习了数据的收集与表示、数据的整理与初步处理,已有关于频率、平均数的知识基础,和收集、描述、分析数据的技能。
“概率的意义”(第1课时)教学设计教学任务分析教学目标知识技能从频率稳定性的角度,了解概率的意义.数学思考学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界.解决问题怎样从数量上刻画一个随机事件发生的可能性的大小.情感态度学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼.. 重点对概率意义的正确理解.难点对随机现象的统计规律性的深刻认识.教学流程安排活动流程图活动内容和目的活动1 复习与回顾活动2 硬币抛掷实验活动3 概率的定义活动4 练习以及想一想,议一议活动5 小结与布置作业回顾上一节学习过的一些概念,承上启下.学生通过亲身试验,深刻感受随机现象的统计规律性.同时通过回望历史,感受数学规律的真实的发现过程.给出概率的定义,分析频率与概率的区别与联系.通过练习,思考,讨论进一步加深对概率意义的理解和认识. 梳理知识,学生获得巩固和发展.教学过程设计问题与情境师生行为设计意图[活动1]问题:什么是必然事件?什么是不可能事件?什么是随机事件?你如何理解随机事件?[活动2]把全班同学分成10组,每组同学掷一枚硬币100次,整理同学们获得的试验数据,并记录在下表(见教科书表25-2)和下图中(见教科书图25.1-1).问题(1):随着抛掷次数的增加,正面向上的频率在那个数字的左右摆动?问题(2):随着抛掷次数的增加,正面向上的频率在0.5的左右摆动幅度有何规律?问题(3):当正面向上的频率逐渐稳定到0.5时,反面向上的频率呈现什么规律?教师提出问题.学生独立回忆,思考并回答问题.学生应从以下三个方面理解随机事件:(1)试验是在相同条件下;(2)可以大量重复试验;(3)每一次试验结果不一定相同,且无法预测下一次试验结果.教师应安排全体同学参与试验,每名同学都要亲自感受随机事件的统计规律性的发现过程.活动中教师应要求全体同学态度端正,认真记录试验数据,以培养学生一丝不苟,严谨求实的科学精神.活动中教师应注意培养同学之间相互合作,相互沟通的能力.第一组的数据填在第一列,第一,二组的数据之和填在第二列,,10个组的数据之和填在第10列.学生独立观察试验数据,思考,回答问题.教师提出问题(2).建议教师安排学生,先根据教材中给出的历史上部分数学家的试验数据,绘制散点图,学生仔细观察,思考问题(2). 然后根据学生分组试验数据,绘制散点图,学生重新观察,思考问题(2).此时可安排学生交流,讨论:这两个散点图反映出的规律是否相同?如果不同,为什么?根据学生分组试验数据,绘制而成的散点图,有可能不能反映出这一规律.这时教师应指出:本次实验不能称为严格意义上的大量重复实验.进而教师可引导学生,课后继续进行分组硬币抛掷试验,获得大量数据,重新绘制散点图,继续观察随着抛掷次数的增加,正面向上的频率在0.5的左右摆动幅度是否越来越小. 教师提出问题(3).学生独立思考并回答.承上启下.充分理解上一小节学习过的一些概念(特别是随机事件这一概念)是准确把握概率定义的基础和前提.让全体学生动手参与试验,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生存在着统计规律性. 说明:活动2中全班同学的分组可根据实际班额酌情调整. 通过逐步深入的一系列问题的提出,使学生加深对随机事件的统计规律性的认识.对于问题(1),学生相对容易理解.由于问题2不易理解,这样做可使学生首先获得正确的认识. 这两个散点图反映出的规律有可能是相同的.也可能是不同的,这是由于试验数据太少(仅有1000个),即有可能随着抛掷次数的增加,正面向上的频率在0.5的左右摆动幅度不完全是越来越小.此时学生容易产生困惑,可能会提出一些疑问.教师应给出有针对性的,具体的指导与帮助.同时教师还应帮助学生理解,无论试验次数多么大,我们都无法保证事件的频率值充分地接近事件的概率值.事实上,频率值远离概率值的可能性永远存在,但这种可能性随试验次数增大,确实会越来越小.频率由量变到达质变成为概率,反映了量变与质变的对立统一.对于问题(3),同学们不难理解.问题(3)的设置,为后面的学习做好铺垫.[活动3]给出事件A的概率的定义.问题(1)频率与概率有什么区别与联系?(2)当A是必然发生的事件时,P(A)是多少?当A是不可能发生的事件时,P(A)是多少?当A是随机事件时,P(A)是多少教师给出事件A的概率定义.教师提出问题(1).学生思考,讨论,相互交流.教师应帮助学生理解:(1)一般地,频率是随着试验者,试验次数的改变而变化的.(2)概率是一个客观常数,(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.教师应指出:随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下,进行大量重复试验时,却又呈现出一种规律性.教师提出问题(2).学生独立思考,回答.教师应帮助学生理解:任何事件的发生都可以用概率来描述.其中必然事件的概率为1,不可能事件的概率为,随机事件的概率大于0而小于1.概率对于学生是一个较难理解的概念.教师应帮助学生从不同方面,不同角度,不同层次去理解概率的意义.例如:通过比较频率与概率的区别与联系.学生通过充分交流,讨论,探究,深化了对事件A的概率定义的理解,发展了学生的数学能力.事件和不可能事件可以看作是随机事件的两种极端情形. [活动4]问题(1)天气预报说下星期一降水概率是90%,下星期三降水概率是10%,于是有位同学说:下星期一肯定下雨,下星期三肯定不下雨.你认为他说的对吗?(2)你能谈谈概率的定义与你原先想象的一样吗?有什么区别吗?(3)概率并不提供确定无误的结论,这是由随机现象的本质所确定的.那末,学习概率有用吗?[活动5]小结你如何理解概率的意义?布置作业:教科书习题25.1第5题.教师提出问题.学生思考回答.对于问题(1),教师应指出:预报的降水概率是根据大量统计记录得出的,是符合大多数同等气象条件下的实际情况的,某些例外情况是可能发生的.对于问题(2),问题(3)可要求同学根据自己的理解,有感而发,选择回答.应允许学生尽可能充分地发表意见,或互相辩论.引导学生总结:(1)从频率稳定性的角度,了解概率的意义;(2)概率从数量上刻画了一个随机事件发生的可能性的大小.教师布置作业.学生记录作业.问题(1)比较具体,直观.从不同方面,不同视角进一步加深对概率意义的理解和认识,培养了同学对于数学的积极感情.学生可能发表各种想法,意见,或正确,或错误,或正确与错误混在一起,教师应有充分准备梳理知识,概念进一步清晰,明确,本节课的内容得到巩固和发展.。