第十六章二次根式测试题
- 格式:doc
- 大小:143.50 KB
- 文档页数:2
姓名: 班级: 学号: 成绩:一.选择题:(每小题3分,共15分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3 B.m <3 C .m≥3 D.m >32.以下运算错误的是( )A =B =C .2=D 2=3.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .143 4.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x 。
A .2个 B .3个 C .4个 D .5个5、若A =)A 、23a +B 、22(3)a +C 、22(9)a +D 、29a +二、填空题:(每空2分,共22分)6。
当x 时,式子1+x 有意义,当x 时,式子422--x x 有意义;7。
已知:()022=+++y x x ,则=-xy x 2 ; 8. 化简:=24 ;=3a ;=322 ; 9。
比较大小:23-______32-;10。
若x x x x --=--3232成立,则x 满足_____________________; 11. ()=-231 ,()=-25334 ;12. 要切一块面积为64002cm 的正方形大理石地板砖,则它的边长要切成 ㎝; 三.解答题: 13. 3222233--+ 14。
222333---15.⋅-121).2218( 16。
(4(3-16.已知:32-=x ,32+=y ,求代数式22y x +的值;17.有这样一类题目:如果你能找到两个数m 、n,使22m n a +=并且mn =则将a ±变成()2222m n mn m n +±=±(22232212111+=++=++=+==+ 仿照上例化简下列各式:(1)347+ (2)42213-18。
19。
.883x 252的值式或为相反数,求二次根与已知y x y y x -----20。
一、选择题1.是同类二次根式的是( )A B C D 2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 3.下列计算正确的是( )A =±B .=C =D 2=4. )A .1B .2C .3D .45.下列计算正确的是( )A 2=B 1=C .22=D =6.下列计算正确的是( )A . 3B .1122+=C .3=D 37. )A .3BC D8. ) A .1个 B .2个 C .3个D .4个 9.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 10.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .11.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或12.下列根式是最简二次根式的是( )A B C D 13.下列二次根式中,最简二次根式是( )AB C D14.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 15.已知a =,b =,则a 与b 的大小关系是( ).A .a b >B .a b <C .a b =D .无法确定二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.计算:2=___________.18.4y =,则y x =________.19.与-a 可以等于___________.(写出一个即可)20.23()a -=______(a≠0),2-=______,1-=______.21.已知1x =,求229x x ++=______.22.=______;23.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.24.比较大小:“>”、“<”或“=”).25.已知2160x x -=,则x 的值为________.26.20y =,则x y +=________.三、解答题27.先化简,再求值:2232()111x x x x x x +÷---,其中1x =-.28.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 29.计算(1) (2)22)-30.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.。
2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a4-a 1a;(2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .19.(本题满分10分 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x 2+2的有理化因式是1+x 2+2. (2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如: 11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2.【知识理解】(1)填空:2x 的有理化因式是________; (2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n .参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是(D)A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( C)A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( C) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022【解析】先求出a 1,a 2,a 3,…,a n 的值,代入原式利用公式1n (n +1)=1n -1n +1进行化简与计算,即可求解. 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-52__. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3; 解:原式=⎝⎛⎭⎪⎫33-233÷3=73. (2)20.75+12-|3-2|; 解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224; 解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a 1a ; 解:原式=2a +12a - a =32a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a . 解:原式=⎝⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a =-1623. 19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a +2a 2-6a +9a =-2 022.解:(1)小亮. (2)∵a =-2 022,∴a +2a 2-6a +9=a +2(a -3)2=a +2|a -3| =a +2(3-a)=-a +6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm3).22.(本题满分10分)先化简,再求值.⎝ ⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3. 解:原式=6xy +3xy -4xy -6xy=-xy , 当x =32,y =3时,原式=-32×3=-322. 23.(本题满分12分) 已知x =3+2,y =3-2,求:(1)x 2-y 2的值;(2)x y +y x的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22, ∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1, 则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10.24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h 5(不考虑风速的影响). (1)求从40 m 高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x 的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________. 【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n. 解:(1)∵2x ×x =2x ,∴2x 的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6. ②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n +1-n (n +1+n )(n +1-n ), =2-1+3-2+2-3+…+n +1-n ,=n +1-1.。
第十六章二次根式测试卷一、填空题1.一般地,把形如a (a ≥0)的式子叫做 ,“”称为 。
2.一般地,()2a = (a ≥0)。
3.二次根式的乘法法则:b a ⋅= (a≥0,b≥0)。
4.二次根式的除法法则:ba= (a≥0,b >0)。
5.把满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,叫做 二次根式。
6.一般地,二次根式加减时,可以先将二次根式化成 二次根式,再将 相同的二次根式进行合并。
7.下列各式,哪些是二次根式? (1)6;(2)=18-;(3)12+x ;(4)38-;(5)122++x x (6)()212--x ;(7)x ;(8)x 21+(x <-21)8.下列各式中,当字母分别取什么实数时,它就是二次根式?(2)(3) 二、选择题1.计算()213-的值为 ( ) A.169 B.-13 C.土13 D.132.使式子()23-x =3-x 成立的x 的取值范围是 ( ) A.x≥3 Bx≤3 C.x=3 D.任意实数3.已知()3+x =0,则x 的值为 ( ) A.x>-3 B.x ﹤-3 C.x=-3 D.不能确定4.下列式子:①0; ②2π; ③2+x =4; ④32-x =1; ⑤2a+3b ;⑥x -2(x ≤2).其中是代数式的有 ( ) A.2个 B.3个 C.4个 D.5个5.化简后×√一的结果是 ( ) A.23 B.23 C.325 D.215 6.下列式子的结果是有理数的是 ( ) A.52⋅ B.82732⨯ C.122⨯- D.3223⨯ 7.下列计算结果正确的是 ( )A.1248÷=4B.2223÷=1C.624÷=2D.632÷=2 8.下列二次根式中,最简二次根式是 ( ) A.51B.5.0C.5D.50 9.下列二次根式化简后,能与2合并的一共有 ( ) A.1个B.2个C.3个D.4个10.下列二次根式中,化简后可以合并的是 ( )A.a b a 与2B.yxxy 与C.550与D.22b a b a ++与 11.下列各式的计算中,正确的是 ( )A.5252=+B.15354=-C.y x y x +=+22D.52045=- 12.与2-3相乘,结果是1的数为 ( ) A.3 B.3- C.32+- D.32+ 13.计算310831312⨯⎪⎪⎭⎫ ⎝⎛+-的结果是 ( ) A .6 B.37 C.632+ D.21 三、计算题 1.计算:(1)26⨯; (2)yxy 14⋅; (3)3232785⨯-; (4)10156⨯⨯ 2.计算:(1)1259⨯; (2)()()16916-⨯-;(3)228n m (m ≥0,n ≥0); (4)2432;(5)345200c b a (ac ≤0); (6)243216x x +(x ≥0). 3.计算:(1)19.076.0; (2)275321÷-; (3)b b a 6722(a≥0)4.化简: (1)49; (2)21.1; (3)2541-5.把下列各式化为最简二次根式 (1)27; (2)55; (3)1256.计算(1)232233-+-; (2)25083+-;(3)4832315311312--+; (4)a a a a a a a 1084333273123-+-7.已知236.25≈,求⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛-455451354180的值(结果精确到0.01)。
…○…………○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………学校: 班级: 考号 姓名:第十六章二次根式测试题一、选择题(每题3分,共30分) 1.下列各式成立的是( )A.222-=-)(B.552-=-)( C.x =2x D.662=-)(2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.2a1C.12+aD.2a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22b a + C.2aD.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.45.等式(1)(1)11a a a a +-=+•-成立的条件是( ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤6.若x <2,化简x x -+-3)2(2的正确结果是 ( ) A.-1 B.1 C.2x-5 D.5-2x7.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=38.131x 3+-=+-x xx 成立的条件是( ) A.x ≥-1 B.x ≤3 C.-1≤x ≤3 D.-1<x ≤39.下列各式(1)752=+(2)x x 32x 5=-(3)72542508=+=+ (4)a a a 362733=+ 其中正确的是( )A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)10.实数a ,b 在数轴上的位置如图所示,则化简222)(a b a b ---的结果是( )A.-2bB.-2aC.2(b-a)D.0二、填空题(每题4分,共28分)11.当123x -=时,代数式22x 2++x 的值是12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若xx-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=•y xy 82 ,=⨯2712 . 16.比较大小:32 13(填“>”、“=”、“<”) 17.若2(2)2a a -=-,则a 的取值范围是三、解答题(42分)装订线内不许答题 18.计算(1)272833-+- (2)222664÷-)((3)22525522552)())((---+(4)a a aa a 278148a 72+-19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。
第十六章二次根式(培优卷)一、单选题1.(2021·山东河东·七年级期末)2021=0的值为()A.0B.2021C.-1D.12.(2021·福建南安·九年级期中)若x=y=222x xy y++的值为().A.2B.2021C.-D.8 3.(2021·=.=关于解答过程,下列说法正确的是().A.两人都对B.甲错乙对C.甲对乙错D.两人都错4.(2021·河北八年级期中)墨迹覆盖了等式“=中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷5.(2021·湖北)已知按照一定规律排成的一列实数:﹣1﹣2,﹣,…则按此规律可推得这一列数中的第2021个数应是()A B C D.20216.(2021·山东青州·八年级期末)如图是一个无理数生成器的工作流程图,根据该流程图,下列说法:①当输出值y x为5或25;②当输入值为64时,输出值y③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的有( )A.4个B.3个C.2个D.1个.7.(2021·山东河东·八年级期末)我们把形如b(a,b型无理数,如12属于无理数的类型为().A型B C型D8.(2021·浙江滨江·八年级期中)对式子m,正确的结果是()A B.C.D9.(2021·全国·九年级专题练习)=x、y、z为有理数.则xyz=()A.34B.56C.712D.131810.(2021·广西钦州·七年级期末)如图是一张正方形的纸片,下列说法:①若正方形纸片的面积是1,则正方形的长为1;②若一圆形纸片的面积与这张正方形纸片的面积都是2π,设圆形纸片的周长为C圆,正方形纸片的周长为C正,则C圆<C正;③若正方形纸片的面积是16,沿这张正方形纸片边的方向可以裁出一张面积为12的长方形纸片,使它的长和宽之比为3:2,其中正确的是( )A.①②B.①③C.②③D.①②③二、填空题11.(2021·山东青州·八年级期末)已知2x=,则代数式24x++的值等于___.12.(2021·江西·景德镇一中七年级期中)_______13.(2021·山东商河·八年级期中)计算:)20142)2015=______.14.(2021·河北·平泉市教育局教研室八年级期末)==a b =______.15.(2021·浙江金华市·八年级期末)对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:--2-=※________.16.(2021·安徽八年级期中)在数学课上,老师将一长方形纸片的长增加,宽增加,就成为了一个面积为2192cm 的正方形,则原长方形纸片的面积为________2cm .17.(2020·全国·八年级课时练习)已知x 、y 满足:1<x <y <100,且+.18.(2021·浙江杭州市·八年级模拟)比较下列四个算式结果的木小:(在横线上选填“>”、“<”或“=”)(1)①________;②__________;③_________.(2)通过观察归纳,写出反映这一规律的一般结论 .三、解答题19.(2021·山东·枣庄市台儿庄区教育局教研室八年级期中)(1(2)(3(41)20.(2021·洛阳市第五中学八年级期中)2)2)=1a (a≥0)、+1)﹣1)=b ﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有22(+2(22+2´22+2+1﹣1,次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1(2)计算:(3的大小,并说明理由.21.(2021·湖北沙区·三模)小颖利用平方差公式,自己探究出一种解某一类根式方程的方法.下面是她解5的过程.m,与原方程相乘得:×5m,x﹣2﹣(x﹣7)=5m,解之得m=1,1,与原方程相加得:+5+1,6,解之得,x=11,经检验,x=11是原方程的根.1.22.(2021·江西)1=-;==2==.试求:(1(2n为正整数)的值.(3)计算:)1L.23.(2021·四川大邑·八年级期中)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方.如,善于思考的小明进行了以下探索,若设a+ba,b,m,n均为整数),则有a=m2+2n2,b=2mn,这样小明就找到一种把类似a+(1)若a+,当a,b,m,n均为整数时,用含m,n的式子分别表示a,b,得:a= ,b= .(2)若a,当a,m,n均为正整数时,求a的值.(3.24.(2020·江苏省初二月考)甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.2(1=222(22m m n=+=++2(m=+2(m=+细心观察图形,认真分析下列各式,然后解答问题:)2+1=2,S 1)2+1=3,S 2;)2+1=4,S 3;….(1)请用含有n (n 是正整数)的等式表示上述变化规律,并计算出OA 10的长;(2)求出的值.25.(2021·北京·八年级单元测试),3,…按下面的方式进行排列:,,那么(1所在的位置应记为;(2)在的位置上的数是,所在的位置应记为;(3)这组数中最大的有理数所在的位置应记为.222123210S S S S +++¼+ 3,M(1,5)(2,3)(4,1)。
第16章 二次根式一、选择题(每小题2分,共20分)1.有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥2.12a -,那么( ) A.a <12 B.错误!未找到引用源。
≤12 C.a >12D.a ≥123.能够合并,那么a 的值为( )A.2B.3C.4D.54.已知3y =错误!未找到引用源。
, 则2xy 的值为( )A.15-B.15C.152-D.1525..对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 6.下列计算正确的是 ( )①69494=-⋅-=--))((;②69494=⋅=--))((;③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个7. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共24分)11.实数范围分解因式:⑴52-x =⑵742-a = (3)2223y x-=12.比较大小;______错误!未找到引用源。
;23-______32-. 13.计算:(1)=-222425 (2)=⋅baa b 182____________;(3)=⋅b a 10253___________.14.已知a ,b 为两个连续的整数,且a b ,则a b -= . 15.若实数y x ,2(0y =,则xy 的值为 .16.已知,a b 为有理数,,m n 分别表示5的整数部分和小数部分, 且21amn bn +=,则2a b += .17.当x___________时,x 31-是二次根式;当a=3时,则=+215a ___________.18.已知:2420-=x ,则221x x +的值是___________;若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.⑴))((36163--⋅-; ⑵63312⋅⋅;⑶521312321⨯÷;⑷)(b a b b a 1223÷⋅.(5)1); (6)20.先化简,再求值:(1)((6)a a a a --,其中12a =(2)111x x ⎛⎫- ⎪+⎝⎭其中x .21. (6分)已知22x y ==+,求下列代数式的值:(1)222x xy y ++ ; (2)22x y -.22.(6分)一个三角形的三边长分别为54 (1)求它的周长(要求结果化简); (2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.23.(4分)已知,a b 为等腰三角形的两条边长,且,a b满足4b ,求此三角形的周长.24.(6分)阅读下面问题:1=;2=. (1的值;(2(n 为正整数)的值; (3⋅⋅⋅25.(8分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:23(1+=,善于思考的小明进行了一下探索:设2(a m ++ (其中,,,a b m n均为正整数),则有2222a m n +=++, ∴ 222,2a m n b mn =+=.这样小明就找到一种把部分a +. 请仿照小明的方法探索并解决下列问题:(1)当,,,a b m n均为正整数时,若2(a m ++,用含有,m n 的式子分别表示a ,b ,得a =______,b =__________. (2)利用所探索的结论,找一组正整数,,,a b m n 填空:.(答案不唯一)(3)若2(a m ++,且,,a m n 均为正整数,求a 的值.。
八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1x 的取值范围是()A .2x >B .x ≥2C .2x <D .x ≤22有意义,则满足条件的a 的个数为()A .1B .2C .3D .43.下列计算正确的是()A =-3B .2=2C =D .+=4.下列计算正确的是()A =B =C .3-=D .8182+=5.估计8×3的运算结果应在()A .1到2之间B .2到3之间C .3到4之间D .4到5之间6.下列式子中,最简二次根式的是()A B C D .7中,最简二次根式是()A .①②B .③④C .①③D .①④8.若式子2−1−1−2+1有意义,则x 的取值范围是()A .x≥0.5B .x≤0.5C .x=0.5D .以上答案都不对9.算式⨯之值为何?()A .B .C .D .10.把()A .B C .D .-111.下列计算正确的是().A =B .÷==C .()(222557-=-=-D .(((226+=-=-12.设++ S 的最大整数[S]等于()A .98B .99C .100D .101评卷人得分二、填空题13x 的取值范围是__.14.计算:+=_________.15.如果最简二次根式3−3和7−2是同类二次根式,那么a 的值是_____________16-(填“>”、“<”或“=”)17.已知x ,y ﹣2)2=0,则x ﹣y=__________.18.若x=2,则x 2﹣4x+8=_____.评卷人得分三、解答题1920÷.21.计算:1324+-+22.计算:212+23.已知:1x =-,1y =2222x y xy x y +--+的值.24.先简化,再求值:x 25x 32x 6x 3--⎛⎫÷-- ⎪--⎝⎭,其中x 2=.25.若a 、b 都是实数,且12++的值.26.已知:,的值.27.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:255;1==+等运算都是分母有理化.根据上述材料,(1(2++(3++ 参考答案1.B【解析】【分析】根据二次根式中的被开方数必须是非负数,即可求解.【详解】根据题意得:x-2≥0,解得:x≥2.故选B .【点睛】本题考查的知识点为:二次根式的被开方数是非负数.2.A【解析】试题分析:根据二次根式有意义的条件和偶次方的非负性,可以得,﹣(1﹣a)2≥0,则(1﹣a)2≤0,又(1﹣a)2≥0,可得(1﹣a)2=0,解得,a=1,故选A.考点:二次根式有意义的条件3.B【解析】【分析】将选项中的各式子计算出正确的结果,然后对照即可解答本题.【详解】解:A.∵3=,故A错误;B.22=,故B正确;C.+=,故C错误;不能合并故错误.D.,,D故选B【点睛】本题考查二次根式的性质、混合运算,解题关键是明确二次根式的混合运算的计算方法.4.B【解析】【分析】根据二次根式加减法则即可判定.【详解】A、不是同类项不能合并,故选项错误;B、+=,故选项正确;C、不是同类项不能合并,故选项错误;D、8182+=22+3252=22,故选项错误.故选B.【点睛】此题主要考查二次根式的加减运算,注意只有同类二次根式才能合并.同类二次根式:①根指数是2,②被开方数相同.二次根式的加减运算,只有同类二次根式才能合并.5.C【解析】【分析】先计算出原式=2+3,再进行估算即可.【详解】8×3=22+3=2+3,3的数值在1-2之间,所以2+3的数值在3-4之间.故选C.6.B【解析】试题解析:3=,故该选项错误;是最简二次根式,故该选项正确;=,故该选项错误;3=,故该选项错误.故选B.考点:最简二次根式.7.C【解析】【分析】直接根据最简二次根式的定义求解即可.【详解】不能化简,是最简二次根式;=55,不是最简二次根式;不能化简,是最简二次根式;,不是最简二次根式,故选C.【点睛】本题考查了最简二次根式:满足①被开方数不含分母;②被开方数中不含开得尽方的因数或因式的二次根式叫最简二次根式.8.C【解析】试题解析:要使二次根式有意义,则2−1≥01−2≥0,解得x=12,故选C.考点:二次根式有意义的条件.9.D【解析】【分析】先算括号内乘法,再合并同类二次根式,最后算括号外乘法即可.【详解】原式=),故选D.【点睛】本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较好,难度适中.10.A【解析】【分析】直接利用二次根式的性质得出a的符号进而化简求出答案.【详解】由题意可知a<0,∴故选A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.11.D【解析】【分析】根据二次根式的运算法则计算各个选项,再判断.【详解】A、被开方数不同,不能相加,错误;B、原式==,错误;C、应利用完全平方公式计算,错误;D、符合平方差公式,正确.故选D.【点睛】本题考查了二次根式的混合运算.12.B【解析】【分析】1111n n=+-+,代入数值,求出=99+1-1100,由此能求出不大于S的最大整数为99.【详解】=()211n nn n++=+=111+1n n-+,∴S==1111111+11122399100-++-+++-=199+1100-=100-1100,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道1111nn=+-+是解答本题的基础.13.【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,同时结合分式的分母不能为0,即可求x的取值范围.由题意得,解得,故x的取值范围是.考点:本题主要考查了二次根式的意义和性质点评:解答本题的关键是掌握二次根式中的被开方数必须是非负数,分式的分母不能为0,否则二次根式、分式无意义14.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】=2-)2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.15.2【解析】【分析】根据最简二次根式及同类二次根式的定义列方求解.【详解】解:∵最简二次根式3−3与7−2是同类二次根式,∴3−3=7−2,解得:=2.故答案是:2.【点睛】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.16.<【解析】【分析】根据二次根式的加减,可化简二次根式,根据被开方数越大,算术平方根越大,可得答案.【详解】=,故答案为<.【点睛】本题考查了实数比较大小,先化简,再比较大小.17.-3【解析】【分析】根据非负数的性质得到3020x y y -+⎧⎨-⎩==,再利用代入消元法解方程组得到x 和y 的值,然后计算x-y 的值.【详解】根据题意得3020x y y -+⎧⎨-⎩==,解得12x y -⎧⎨⎩==,所以x-y=-1-2=-3.故答案为-3.【点睛】本题考查了解二元一次方程组:利用加减消元法或代入消元法解二元一次方程组.也考查了非负数的性质.18.14.【解析】根据配方法,原式变形为2x 4x 8-+=(x-2)2+4,代入可得(-2)2+4=10+4=14.故答案为14.19.7【解析】【分析】先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【详解】7==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式,再进行二次根式的乘除运算.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.7【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】,,=7.【点睛】在进行二次根式相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.21.27344--【解析】【分析】先把括号内的各二次根式化为最简二次根式,再去括号,合并同类二次根式即可得解.【详解】1324+-,=1324+-+=233293+2244--,=-44-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,再进行去括号,然后进行二次根式的加减运算.22.2【解析】原式=43+23-3=63-43=2323.【解析】试题分析:根据x 、y 的值可以求得x-y 的值和xy 的值,从而可以解答本题.试题解析:∵x =1,y =1+,∴x -y =(1)-(1)=-,xy =(1-)(1)=-1,∴x 2+y 2-xy -2x +2y=(x -y)2-2(x -y)+xy=(-)2-2×(-)+(-1)=7+.24.24-【解析】【分析】根据分式混合运算的法则把原式进行化简,再把x 的值代入进行二次根式化简即可.【详解】解:原式=()()()()()()()x 2x 2x 2x 2x 312x 3x 32x 3x 2x 22x 2-+----÷=⋅=-----+-+.当x 2=时,原式=4==-.25【解析】【分析】先由二次根式的非负性可知,1﹣4a=0,求解出a 值后再代入求解b 值,最后将a 和b 的值代入原式进行求解.【详解】解:∵1﹣4a≥0且4a ﹣1≥0,∴1﹣4a=0,解得a=14,则b=12,所以原式22=-=【点睛】本题考查了利用二次根式的非负性求解参数并进行二次根式运算.26.【解析】【分析】先化简a ,b ,最后代值计算.【详解】∵=(2)2=7﹣)2,∴a+b=14,ab=1,∴a 2+4ab+b 2=(a+b)2+2ab=142+2×1=198,.【点睛】=a(a≥0)27.(1;(2﹣1;(3﹣1.【解析】【分析】(1+,即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】(1)==+;(2+1...++1=(3+⋯1...+-+﹣1【点睛】运用了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.。
八年级数学下册第十六章《二次根式》测试题-人教版(含答案)一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 2.化简16的结果为( ) A .2 B .-4 C .4D .±43. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .56.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤127. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 610.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组二、填空题(每小题 3 分,共 18 分)11. 18_________,2(27)=__________43__________.13. 在实数范围内分解因式x 3-5x =________________. 14. 已知 x =5-1,则 x ²+2x -7=___________. 15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________. 16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: (1) 118288-+; (2) 11(6)2()|32|2--⨯-+-; (3) 231(32)31+---; (4) 20202021(23)(23)-+.18. (8分)先化简,再求值: 3142y xx y x y +-+,其中 x =4,y =19.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6,求长方形内阴影部分的面积S.20. (8分)已知实数23+的整数部分为x,小数部分为y,求224x yx y+-+的值.21. (8分)已知x3+1,y31,求:(1)代数式xy的值; (2)代数式x3+x2y+xy2+y3的值.22. (10分)(1) 已知:a32,b3+2,求代数式a2b-ab2 的值;(2)运用乘法公式计算:①2+.(32)(23)(32)(2233);②2(3)已知实数x、y满足x2+10x4y-=-25 ,则(x+y)2021的值是多少?23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(1)423+________526-=__________;(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).24.(12分)对于任意正实数a、b,均有2()a b≥0,∴a-ab b≥0,∴a+b≥ab当且仅当a=b时,等号成立. 结论:在a+b≥ab a、b均为正实数)中,若ab为定值p,只有当a=b时,a+b有最小值p根据上述内容,回答下列问题:(1)初步探究:若n>0,只有当n=_______ 时,n+1n有最小值;(2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形,矩形的长和宽分别为a、b . 试利用大正方形与四个矩形的面积的大小关系,验证a+b≥ab并指出等号成立时的条件;(3)拓宽延伸:如图,已知A(-6,0),B(0,-8),点P是第一象限内的一个动点,过P 点向坐标轴作垂线,分别交x轴和y轴于C、D两点,矩形OCPD的面积始终为 48,求四边形ABCD面积的最小值以及此时P点的坐标.……ABC yD O Px参考答案一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 【答案】A .2.化简16的结果为( ) A .2 B .-4 C .4 D .±4【答案】C .3. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 【答案】C .4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=【答案】A .5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .5【答案】A .6.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤12【答案】D .7. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -【答案】B .8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -【答案】B . 9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 6【答案】D . 提示:2211()()4a a aa-=+-=10-4=6,∴1a a-=±6.10.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组【答案】A . 提示:由已知等式,得b 2+22b =ac +(a +c )2,∵a 、b 、c 为有理数, 比较上述等式的两边,得:b 2=ac ,2b =a +c .由2b =a +c ,得4b 2=(a +c )2,把b 2=ac 代入,得4ac =(a +c )2,∴(a -c )2=0, ∴a =c ,与题设a ≠c 不符,故选A .二、填空题(每小题 3 分,共 18 分)11. 计算:18=_________,2(27)=__________,43=__________. 【答案】32, 28,233.12. 若45n 是整数,则正整数 n 的最小值为___________. 【答案】5.13. 在实数范围内分解因式x 3-5x =________________.【答案】x (x +5)(x -5). 提示:原式=x (x 2-5)=x (x +5)(x -5). 14. 已知 x =5-1,则 x ²+2x -7=___________.【答案】-3. 提示:移项得:x +1=5,两边平方,得 x 2+2x +1=5,∴x 2+2x =4, 则x ²+2x -7=4-7=-3.15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________.【答案】-3a . 提示: 由数轴,知a <b <0,∴a +b <0,-a +2>0,b -2<0, ∴原式=|a |+|a + b | +| −a +2|-|b -2|=-a -(a +b )+(-a +2)+(b -2)=-3a .16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.【答案】1+1(1)n n +. 提示:22222222(1)(1)(1)(1)n n n n n a n n n n +++=+++=222222(1)(1)(1)n n n n n n +++++=22222(1)221(1)n n n n n n +++++=2222(1)2(1)1(1)n n n n n n +++++=222[(1)1](1)n n n n +++,∴a n =(1)1(1)n n n n +++=1+1(1)n n +.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: 118288 (2) 11(6)2()32|2--+; (3) 231(32)31+- (4) 20202021(23)23). 【答案】(1)原式=2124711247 (2)原式=-32+(23=-3(3)原式=(3-34)2(31)(31)(31)+-+7-3423+=7-3235-3(4)原式=20202020(23)(23)(23)=2020(23)(23)-23.18. (8分)先化简,再求值: 3142y xy x ++,其中 x =4,y =19. 122x y x y 132x y当x =4,y =19114329=1+1=2.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6, 求长方形内阴影部分的面积S .【答案】依题意,AM 2,DM =CD 6AD 26 ∴长方形ABCD 626, 则S 626-2-6=3 2. 方法2:S =AM ·AB -22·62=3 2.20. (8分)已知实数23+ 的整数部分为x ,小数部分为y ,求224x yx y +-+ 的值.23+23,∴023+1,∴x =0,y =23∴ 224x y x y +-+02(23)02(23)4+---+2(23)4234--++2(23)23-233-233-21. (8分)已知x 3+1,y 31,求:(1)代数式xy 的值; (2)代数式x 3+x 2y +xy 2+y 3的值. 【答案】(1) xy =33-1)=3-1=2. (2) x +y =31)+31)=3原式=x 2(x +y )+y 2(x +y )=(x +y )(x 2+y 2)=(x +y )[(x +y )2-2xy ] =332-2×2]=3-4)=322. (10分)(1) 已知: a 32,b 3+2,求代数式 a 2b -ab 2 的值; 【答案】a -b =-4,ab =332)=3-4=-1, ∴原式=ab (a -b )=-1×(-4)=4.(2)运用乘法公式计算:①2(2233); ②2(32)(23)(32)+. 【答案】①原式=8+627=35+6②原式=4-3+(3-62)=1+5-66-6(3)已知实数 x 、y 满足 x 2+10x 4y -=-25 ,则(x +y )2021的值是多少? 【答案】由已知条件,得 (x +5)24y -0,∵(x +5)2≥04y -0,∴(x +5)2=04y -0, ∴x =-5,y =4,∴(x +y )2021=(-5+4)2021=-1.23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).【答案】42331+52632-2m n ±2a b ab +±2()a b ±a b(3)∵32221+52632+721243+ 21+32+43+54+98+ =21)+32)+43+54+…+98) =-191+3=2.24.(12分)对于任意正实数 a 、b ,均有2()a b ≥0,∴a -ab b ≥0,∴a +b ≥ab 当且仅当 a =b 时,等号成立. 结论:在 a +b ≥ab a 、b 均为正实数)中,若 ab 为定 值p ,只有当a =b 时,a +b 有最小值p 根据上述内容,回答下列问题: (1)初步探究:若 n >0,只有当 n =_______ 时,n +1n有最小值; (2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形, 矩形的长和宽分别为 a 、b . 试利用大正方形与四个矩形的面积的大小关系,验证 a +b ≥ab 并指出等号成立时的条件;(3)拓宽延伸:如图,已知 A (-6,0),B (0,-8),点 P 是第一象限内的一个动点,过 P 点向坐标轴作垂线,分别交 x 轴和 y 轴于 C 、D 两点,矩形 OCPD 的面积始终为 48, 求四边形 ABCD 面积的最小值以及此时 P 点的坐标.【答案】(1) n =1. 提示: 根据a +b ≥ab 112n n nn+≥⋅当且仅当n =1n时成立,此时n =1.……ABCy DOP x(2) 大正方形的边长为a+b,中空小正方形的边长为b-a,由图形的面积,得:(a+b)2-4ab=(b-a)2≥0,∴(a+b)2-4ab≥0,∴(a+b)2≥4ab,则a+b≥ab显然,只有当a=b时,上述各式中等号成立.(3) 设P(x,y),则OC=x,OD=y,xy=48.∵A(-6,0),B(0,-8),∴OA=6,OB=8,∴四边形ABCD的面积为S=12AC·BE=12(x+6)(y+8)=12(xy+8x+6y+48)=12(48+8x+6y+48)=4x+3y+48≥43x y⋅+48=3xy48=348⨯48=96.取等号时,4x=3y,又xy=48,∴x=6,y=8,∴P(6,8).∴四边形ABCD面积的最小值为96,此时P点的坐标为P(6,8).。
2023年八年级数学下册第十六章《二次根式》检测卷(满分100分)一、单选题(共30分)1.在函数5y x =-,自变量x 的取值范围是()A .1x ≥B .1x ≤C .1x ≤且5x ≠D .1x ≥且5x ≠2.下列二次根式中,是最简二次根式的是()A BC D 3.下列各式中,正确的是()A 3=-B .3=-C 3=±D 3=±4.下列各式计算正确的是()A B .1C .D 3=5.如图,数轴上有O ,A ,B ,C ,D2的点会落在()A .点O 和A 之间B .点A 和B 之间C .点B 和C 之间D .点C 和D 之间61+的值在()A .1到2之间B .2到3之间C .3到4之间D .4到5之间7.若0x <化简()A .B .-C .D .-8.已知2102x x -+=,则441x x +等于().A .114B .12116C .8916D .2749.下列命题中,真命题的是()①若2x =-,则2x <②两直线平行,同旁内角相等③若一组数据2,4,,1x -极差为7,则x 的值是6或3-.④已知点(),P m n 在一次函数23y x =-+的图象上,则212m n +-=A .①③B .②④C .①②D .③④10.实数a ,b )A .2b-B .2a -C .22b a -D .0二、填空题(共20分)11.一个正方形的面积变为原来的8倍,它的边长变为原来的__________倍.12=a ___________.13.实数a ,b 在数轴上的位置如图所示,化简1a +______________.14.实数a ,b 分别是623a b -的值是__________.15.若4y =+,则22xy +的平方根是________.三、解答题(共50分)16.(本题8分)计算:3(2)()()2013π-+-17.(本题6分)阅读下列材料,并回答问题:<<34<<,的整数部分为33.(1)(2)a,小数部分为b ,求()()a b a b +-的值.18.(本题6分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为218dm 和232dm 的正方形木板.(1)截出的两块正方形木料的边长分别为________dm ,________dm ;(2)求剩余木料的面积;(3)如果木工想从剩余的木料中截出长为1.5dm ,宽为1dm 的长方形木条,最多能截出几块这样的木条,并说明理由.19.(本题6分)已知31,31x y =+=-,求下列代数式的值.(1)22x xy y ++;(2)y x x y+20.(本题6分)实数a 、b 在数轴上对应的位置如图所示,化简()()2232321a a b b ++-+-21.(本题8分)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是________;(2)求()()11m m +-的值;(3)在数轴上还有C ,D 两点分别表示实数c 和d ,且3c +5d -3c d +的平方根.22.(本题10分)小明在解决问题:已知123a =+2281a a -+的值.他是这样分析与解的:∵32323(23)(23)a ===++-,∴23a -=∴22(2)3,443a a a -=-+=,∴241a a -=-,∴()222812412(1)1a a a a -+=-+=⨯-=-.请你根据小明的分析过程,解决如下问题:(1)1111315375121119+++++L .(2)若121a =-①求2361a a -+的值.②直接写出代数式的值3231a a a ++-=_______;21252a a a-++=________.参考答案:1.D 【详解】解:∵1x y -=10,50x x -≥-≠,∴1x ≥且5x ≠;故选D .2.D【详解】解:A 150.255==0.2不是最简二次根式,不符合题意;B 1222=12不是最简二次根式,不符合题意;C 123=12不是最简二次根式,不符合题意;D 6故选:D .3.B【详解】A 2(3)3-,故A 错误;B .233-=-,故B 正确;C 2(3)3-,故C 错误;D 233=,故D 错误.故选:B .4.D【详解】解:23A 选项错误,不符合题意;B.43333=B 选项计算错误,不符合题意;C.23318,所以C 选项计算错误,不符合题意;D.2733=,计算正确,所以D 选项符合题意;故选:D .5.B 2122242=1624254245<<,∴22423<<,2122的点会落在点A 和B 之间,故选:B .6.B 1231-2331=31=∵134<<,∴132<,∴2313<<1231+的值应在2和3之间.故选:B .7.D【详解】解:0x <Q ,()22x y x y x y -=--=--D .8.C【详解】解:根据题意得:0x ≠,∵219102x x -+=,∴11902x x +-=,即1192x x +=,∴2222111922x x x x ⎛⎫⎛⎫+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭,∴221114x x +=,∴2242411121216x x x x ⎛⎫+=++= ⎪⎝⎭,∴4418916x x +=.故选:C 9.D【详解】解:①若()222x x -=-,则2x ≤,原命题是假命题,故①不符合题意;②两直线平行,同旁内角互补,原命题是假命题,故②不符合题意;③若一组数据2,4,,1x -极差为7,则x 的值是6或3-,原命题是真命题,故③符合题意;④已知点(),P m n 在一次函数23y x =-+的图象上,则23n m =-+,即212m n +-=,原命题是真命题,故④符合题意;综上分析可知,③④是真命题,故D 正确.故选:D .10.A【详解】解:由数轴可知:a <0,b >0,a -b <0()222a b a b -a b a b ---=-a -b +a -b =2b-故选A .11.22【详解】一个正方形的面积变为原来的8822=2212.427与最简二次根式51a -273=∴13a -=,解得:4a =.故答案为:413.22a +【详解】解:由数轴可得:10a -<<,12b <<,∴10a +>,10b ->,0a b +>,∴原式()11a b a b =+--++()11a b a b=+-+++22a =+,故答案为:22a +.14.655-或565-+【详解】解:∵2<53<,∴3<654<,∴3a =,65335b =-=∴23a b -(23335=--×(9145=--655=,故答案为:655.15.25±【详解】解:根据题意得,20x -≥且20x -≥,解得2x ≤且2x ≥,∴2x =,∴4y =,∴22222420x y +=+=,∵20的平方根是205±=±∴22x y +的平方根是25±故答案为:25±16.(1)52+2【详解】(1)解:原式23232=+52=+(2)解:原式1212=+-2=17.40的整数部分为6406-(2)455-【详解】(1)解: 364049<6407<,40的整数部分为6406;(2) 459<<,即253<,52a =,小数部分为52b -,()()54555a b a b ∴+-=-=-,即()()a b a b +-的值是455.18.(1)3242(2)26dm (3)2,理由见解析【详解】(11832dm =3242dm =,(2)矩形的长为)324272dm +=,宽为42dm ,∴剩余木料的面积(()2724218325618326dm =--=--=;(3)剩余木条的长为32dm ,宽为)42322dm -=,∵21.53231.5⨯<⨯21>,∴能截出212⨯=个木条.19.(1)10(2)4【详解】(1)∵31,31x y ==,∴23x y +=2xy =,∴22x xy y ++222x xy y xy=++-2()x y xy=+-2(23)2=-10=;(2)∵31,31x y ==,∴23x y +=2xy =,∴22x y +()22x y xy=+-(22322=-⨯=124-=8,∴y xx y +22y x xy+=82==4.20.1【详解】根据数轴可知,20a <<-,12b <<,则20a +>,10-<b ,()()2232321a a b b +-()2(1)a a b b =++--+-21a a b b =+--+-1=.21.(1)22(2)25(3)12的平方根为23±【详解】(1)∵一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,∴22m =-,故答案为:22;(2)()()()()11221122m m +-=++-()3221=-32322=-425=;(3)∵3c +5d -350c d ++-,∴30c +=,50d -=,∴3c =-,5d =,∴3c d+335=-+⨯12=;∴12的平方根为3±.22.(1)5(2)①4;②0,2【详解】(1)解:原式315375121119----=+⋯+1(315311119)2=⨯⋯+-1(111)2=-+5=;(2)解:①2121(21)(21211)a +-+=-==+ ,12a ∴-=2212a a ∴-+=,221a a ∴-=2363a a ∴-=23614a a ∴-+=;②3231a a a -++ 3222221(2)1a a a a a a a a a =--++=--++221a a -= ∴原式221(2)1110a a a a a =-++=--+=-+=; 22212125224a a a a a a a a ---++=--,221a a -= ∴原式202=-=.故答案为:0,2.。
2023年八年级数学下册第十六章《二次根式》综合测试卷1.下列各式是二次根式的是()A.-7B.m C.a 2+1D.332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-13.下列二次根式中,是最简二次根式的是()A.2B.12C.12D.94.4.下列运算正确的是()A.2+3=5B.30=0C.(-2a )3=-8a 3D.a 6÷a 3=a 25.化简二次根式(-5)2×3的结果为()A.-53B.53C.±53 D.30×3的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x <0,则x -x 2x 的结果是()A.0B.-2C.0或2D.29.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c |=0,则△ABC 的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a 在数轴上对应的点的位置如图所示,则(a -4)2+(a -11)2化简后为________.15.【2022·贺州】若实数m ,n 满足|m -n -5|+2m +n -4=0,则3m +n =________.16.△ABC 的面积S =12cm 2,底边a =23cm,则底边上的高为__________.17.已知a ≠0,b ≠0且a <b ,化简-a 3b 的结果是__________.18.已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,其余每题10分,共66分)19.计算:(1)(6+8)×3÷32;-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-21x -5x =12,y =4.21.已知等式|a -2023|+a -2024=a 成立,求a -20232的值.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5 (不考虑风速的影响).(1)求从40m高空抛物到落地的时间.(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C2.C 3.A 4.C 5.B 6.D 7.B 8.D 9.B 10.B 二、11.>12.613.>14.715.716.43cm17.-a -ab点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.∴a ,b 异号.又∵a <b ,∴a <0,b >0.∴-a 3b =-a -ab .18.3154三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;6-412+3×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524.21.解:由题意得a -2024≥0,∴a ≥2024.原等式变形为a -2023+a -2024=a .整理,得a -2024=2023.两边平方,得a -2024=20232,∴a -20232=2024.22.解:长方形花坛的面积为140π×35π=70π(m 2),∴圆形花坛的面积为70πm 2.设圆形花坛的面积为S m 2,半径为r m,则S =πr 2,即70π=πr 2,∴r=70ππ=70.故这个圆形花坛的半径为70m. 23.解:(1)由题意知h=40m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6s时,6=h5,∴h=180m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1.+n=a,=b.理由:把a±2b=m±n两边平方,得a±2b=m+n±2mn,+n=a,=b.。
八年级数学(下)第十六章《二次根式》基础测试题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x(4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
第十六章《二次根式》测试题一、单选题(每小题只有一个正确答案)1有意义,则x 的取值范围是( ).A .3x ≥B .3x >C .3x ≤-D .3x <2.下列式子正确的是A B C 7± D 7-3=( ) A .x ≥1B .x ≥﹣1C .﹣1≤x ≤1D .x ≥1或x ≤﹣14.3ab 最简二次根式有( ) A .1个B .2个C .3个D .4个5( ) A .4至5之间 B .5至6之间 C .6至7之间 D .7至8之间6.若a b > )A .-B .-C .D .7.已知a ,b ,c ,则下列大小关系正确的是( ) A .a >b >c B .c >b >a C .b >a >c D .a >c >b8.已知实数a 在数轴上的位置如图,则化简|1-a |( )A .1B .﹣1C .1﹣2aD .2a ﹣19的结果是( )A .1B -1C .1)±D .(1±10.已知x ,y 1,则x 2+xy+y 2的值为( )A .4B .6C .8D .1011)2019﹣1)2018的结果是( )A+1 B﹣1 CD.112.下列计算正确的是( )A.B6 ==C.-==D5 ==二、填空题13=_____________.14.把代数式(a-1中的a-1移到根号内,那么这个代数式等于______.15n=________.16.如图,从一个大正方形裁去面积为15cm²和24cm²的两个小正方形,则留下的部分的面积为____________cm².17===,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.三、解答题18.计算:(1(2;(3)-);(4)(().19.已知a,b,ca b b c +++.20.先简化,再求值:x 25x 32x 6x 3--⎛⎫÷-- ⎪--⎝⎭,其中x 2=.21.一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.22m ,n ,使m 2+n 2=a ,且,则,变成m 2+n 2+2mn=(m±n)2因为=12+)2=()2,2±1.仿照上例化简下列各式:(1(2.参考答案1.A 2.A 3.A 4.C 5.B 6.D 7.A 8.C 9.B 10.D 11.A 12.D13.0 14..3 16.(1)n n=+≥18.解:(1-;(2.(3)-).(4)()(=()2-(2=18-12=6.19.解:如图所示:∴a<0,a+b<0,c-a>0,b+c<0,a b b c+++=-+++---a abc a b c=a-;20.解:原式=()()()()()()()x2x2x2x2x312x3x32x3x2x22x2-+----÷=⋅=-----+-+. 当x2=时,原式===.21.解:(1)周长54===;(2)当x=20时,周长25=(或当x=45时,周长5=等).(答案不唯一,符合题意即可)22.解:(1)原式=1,(2)原式=。
八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1.已知01x <<,那么在21,x x x中,最大的数是()A .xB .1xC D .2x2.若a ﹥0,则a的值为()A .1B .-1C .±1D .-a3.下列各式属于最简二次根式的有()A B CD .4.下列运算中,错误..的是().A .2×3=6B 2=2C .22+32=52D .(2−3)2=2−35.化简16x ).A .-B .-C .2D .06.下列命题正确的是().A a =B .是最简二次根式C .化成最简二次根式后被开方数相同D 7.如图,在山坡上种树,已知∠A=30°,AC=3m ,则相邻两株树的坡面距离AB=().A .6mB 3C .3mD .2m82a a =-则实数a 在数轴上的对应点一定在()A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧92244123x x x -+-得()A .2B .44x -+C .-2D .44x -10.若a=7+433-7,则a 、b 的关系为()A .互为相反数B .互为倒数C .互为负倒数D .绝对值相等评卷人得分二、填空题11.24的倒数的相反数是_________________.12.已知最简二次根式3b -与3ab a=_________________.13.在二次根式13x x -+中,x 的取值范围是__________________.14225328-=_________021821)(2)-+++-=___________.15.计算:1123xy x -;3463xx ÷=________.16x y+_________________.17.若a b c 、、为△ABC 的三边,化简22()()a b c a b c --+-+.18.若20062007a a a -+-=22006a -=__________.19.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.评卷人得分三、解答题20.已知+1,y=-1,求x 2+xy+y 2的值.21.直角三角形两直角边长分别为1,1b =.求斜边c 的长及直角三角形的面积.22.已知:实数x y 、满足4310280x y x y ++=⎧⎨--=⎩的值.23.已知:210250b b +++=24.已知a =,求2212211a a a a a-+---的值.25.有一道题“先化简,再求值:22241244x x x x x -+÷+--(+x 2-3,其中x =.”小玲做题时把“x =错抄成了“x =,但她的计算结果也是正确的,请你解释这是怎么回事?26.如果记()1xy f x x==+,并且f 表示当x=时,y 的值,即12f ==;f表示当x=时,y的值,即f =f 表示当时,y 的值,即f ==;求f+f+f+f+f+…+f+f 的值.参考答案1.B 【解析】【分析】根据0<x <1,可设x=12,从而得出x ,1x x 2分别为12,2,22,14,再找出最小值即可.【详解】∵0<x <1,∴设x=12,∴x ,1x x 2分别为12,2,22,14,故2的值最大,故选B .【点睛】本题考查了实数的大小比较,解本题的关键是特殊值法.2.B【解析】【分析】化简,然后代入数式计算求值.【详解】a>0,∴a=.a a =aa-=-1.所以B选项正确.【点睛】||a=化简,然后代入数式计算求值是本题解题的关键.3.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A=A选项错误;B是最简二次根式,故B选项正确;C=,故不是最简二次根式,故本选项错误;D=D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.4.D【解析】试题分析:根据2=|U 可得:(2−3)2=|2−3|=3−2.考点:二次根式的计算5.D 【解析】【分析】根据二次根式的加减运算法则进行计算.【详解】原式=216x x -2x 2x=1122=0.所以D 选项正确.【点睛】本题考查的是二次根式的加减法运算法则,化简二次根式是本题解题的关键.6.C 【解析】【分析】根据二次根式的性质、二次根式的化简法则、二次根式的开方法则、二次根式的乘法法则进行判断.【详解】A 、当a<0时,算式不成立,所以A 选项错误;B 的最简二次根式是22,所以B 选项错误;C 化成最简二次根式后为,所以C 选项正确;D =,所以D 选项错误.【点睛】本题考查的是二次根式的性质、二次根式的化简法则、二次根式的开方法则、二次根式的乘法法则,熟练掌握法则是本题的解题关键.7.C【分析】根据坡度角的余弦值=水平距离:坡面距离即可解答.【详解】cos30°=3 AB,∴AB=2.故选C.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是坡度角的余弦值=水平距离:坡面距离.8.C【解析】试题分析:一个数开方后等于它的相反数,说明这个数是负数或者等于零.故非正数在数轴上对应点都在原点或者原点的左侧.选C.考点:实数点评:本题难度较低,主要考查学生对实数和平方根等概念的掌握.9.A【解析】【分析】-2,可得2x-3>0,由于2x-1>2x-3,所以2x-1>0,再进行开方运算即可.【详解】原式-2=2x-1-2x+3=2.故选A.【点睛】本题考查二次根式的性质与化简,熟练掌握性质是解题的关键.【解析】【分析】根据互为负倒数的性质进行计算.【详解】(-7)=48-49=-1ab=7+所以C选项正确.【点睛】本题考查的是互为负倒数的性质,熟练掌握性质是本题的解题关键.11.-【解析】【分析】根据倒数相反数的定义、性质进行运算.【详解】24的倒数为,2.4的倒数的相反数是化简的结果为-.又故答案为-.【点睛】本题考查的是倒数相反数的定义、性质,熟练掌握定义、性质是本题的解题关键. 12.3【解析】【分析】根据最简二次根式的定义以及同类二次根式的性质,列方程求解.【详解】由题意可知与∴3b=ab ,解得a=3.故答案为:3.【点睛】本题考查的知识点是最简二次根式,解题的关键是熟练的掌握最简二次根式.13.1x ≥【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:x-10x+30≥⎧⎨≠⎩,解得:x≥1.故答案为x≥1.【点睛】本题考查的知识点是函数自变量的取值范围,解题的关键是熟练的掌握函数自变量的取值范围.14.45114+【解析】【分析】分别应用平方差公式以及根式和次方即可得到答案.【详解】=)()0212-+-+1+14=114.故答案为45,114.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.15.【解析】【分析】直接进行二次根式的乘除运算即可,然后再化简.【详解】-=÷=.故答案为.【点睛】本题考查的知识点是二次根式乘除法,解题的关键是熟练的掌握二次根式乘除法.16【解析】【分析】将分子x-y化成,再约分即可.【详解】..【点睛】本题考查的知识点是分式的化简,解题的关键是熟练的掌握分式的化简.17.2c【解析】【分析】根据三角形两边之和大于第三边,可得a、b、c的关系,根据二次根式的性质,可得答案.【详解】∵a,b,c是三角形的三边,两边之和大于第三边∴b+c a,a-(b+c)0,即a-b-c0同理a-b+c0=b+c-a+a+c-b=2c.故答案为2c.【点睛】本题考查的知识点是二次根式的性质与化简,解题的关键是熟练的掌握二次根式的性质与化简.18.【解析】【分析】根据被开方数大于等于0可以求出a≥2007,然后去掉绝对值号整理,再两边平方整理即可得解.【详解】根据题意得,a−2007≥0,解得a≥2007,∴原式可化为:,,两边平方得,a−2007=20062,=..故答案为.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.19.(1)a2,a3=2,a4=;(2)a n(n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,AC.同理:AE=2,EH=,…,即a 2,a 3=2,a 4=.(2)a n n 为正整数).20.7【解析】【分析】根据二次根式的加减法法则、平方差公式求出x+y 、xy ,利用完全平方公式把所求的代数式变形,代入计算即可.【详解】∵+1,-1,∴x+y=+1)+-1),xy=+1)-1)=1,∴x 2+xy+y 2=x 2+2xy+2y -xy=2x y ()+-xy=2(-1=7.故答案为:7.【点睛】本题考查二次根式的化简求值,灵活运用平方差公式是解题的关键.21.112c S ==【解析】【分析】根据勾股定理即可得到斜边长,直角边相乘即直角三角形的面积.再化简即可.【详解】∵直角三角形两直角边长分别为a=2-1∴斜边=.直角三角形面积为:12ab=121)+1)=12(12-1)=112.【点睛】本题考查的知识点是勾股定理以及有理数的混合运算,解题的关键是熟练的掌握勾股定理以及有理数的混合运算.22.-6【解析】【分析】先将方程组解得x ,y ,再直接带入即可.【详解】∵实数x ,y 满足4310280x y x y ++=⎧⎨--=⎩∴解得23x y =⎧⎨=-⎩-=-6.【点睛】本题考查的知识点是解一元二次方程组,解题的关键是熟练的掌握解一元二次方程组.23.12【解析】【分析】先根据非负数之和求得a ,b ,带入式中即可求得答案.【详解】∵210250b b +++=∴(b+5)2=0∴50210b a +=⎧⎨-=⎩,即a=12,b=-5=12.【点睛】本题考查的知识点是非负数的性质:算术平方根,偶次方,解题的关键是熟练的掌握非负数的性质:算术平方根,偶次方.24.212-【解析】【分析】这道求代数式值的题目,不应考虑把x 的值直接代入,通常做法是先把代数式化简,然后将a 的值代入求解.【详解】原式=()()211111112a a a a a a a ---=--=---【点睛】本题考查的知识点是二次根式的化简求值,解题的关键是熟练的掌握二次根式的化简求值.25.7【解析】【分析】先根据分式混合运算的法则把原式进行化简,结果是22x +1,不论x=−,x 2的值均为3,原式的计算结果都是7,所以把”错抄成了”,计算结果也是正确的.【详解】22241244x x x x x -+÷+--(+2x -3=224444x x x x -++-(2x -4)+2x -3=2x +4+2x -3=22x +1.因为化简原式的结果是22x +1,不论x=或,x 2的值均为3,原式的计算结果都是7,所以把错抄成了,计算结果也是正确的.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.26.991 2【解析】【分析】根据f(x)+f(1x)=1xx++111xx+=11xx++=1,原式结合后,计算即可得到结果.【详解】由题意可知:1 f f+=,所以化简,原式= f+99=991 2【点睛】本题考查的知识点是二次根式的化简求值,解题的关键是熟练的掌握二次根式的化简求值.。
第十六章 二次根式单元测试题 班级 姓名 成绩一、选择题:(每小题4分,共40分)1x 的取值范围是( )A .1x >B .1x ≥C .1x ≤D .1x <2)A. BC.- D3.下列根式中属最简二次根式的是( ) A. 5.0 B. 12 C. 36x D. 12+x4.下列正确的是( )A 、()5-5-2=B 、D. 36 =±6C 、()5-5-2=D 、442= 5.若最简二次根式a a 241-+与可以合并,则a 的值为( )A .43-=a B .34=a C .a=1 D .a= —16.下列式子成立的 ()A.323)2(2-=⨯-B.y x y x +=+22C.532=+D.2332=⋅x x7. 化简)22(28+-得( )A .—2B .22-C .2D . 224-8.式子xyx 1-+有意义,则点P ()y x ,在( )A.第一象限B.第二象限C.第三象限D.第四象限9.如果 32<<x ,那么()=-+-232x x ( )A .1B .2x-5C .-5D .-110.已知1a a +=1a a -的值为( )A.± B . 8 C. D .6二、填空题:(每小题4分,共40分)11.计算:①=-2)3.0( ; ②=-2)52( 。
12.计算:)9()4(-⨯-+()22=13.比较大小:3 , 2314. 二次根式31-+x x 有意义,则x 的取值范围是 15.已知三角形底边的边长是6cm,面积是12cm 2,则底边的高线长16、已知0<a ,化简212a =17. 若0)2(32=++-n m ,则nm 的值为18.已知214-的整数部分是a ,小数部分是b ,求=-b a19、 如图,字母b 的取值如图所示,化简251022+-+-b b b = . 20.观察下列各式:①312311=+,②413412=+ ③514513=+,…… 请用含n (n ≥1)的式子写出你猜想的规律: .三、解答题:(共6小题,共70分)21.计算:(每小题4分,共16分)(1)-; (2)32112323⨯⎪⎭⎫ ⎝⎛-(3) 2-41-2-1-3118⎪⎭⎫ ⎝⎛⨯ (4) ()()()2)3-3(232-3-2128++÷+22.(10分)已知15+=x ,15-=y ,求下列各式的值:(1)222y xy x ++, (2)22y x -.23.(10分)已知433+-+-=x x y ,求()2017-y x 的值24. (10分)先化简,再求值:)111(1222+-+÷+-x x x x x ,其中12+=x .25.(12分)阅读下面问题:12)12)(12()12(1211-=-+-⨯=+; ();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+. 试求:(1)671+的值; (3分) (2)n n ++11(n 为正整数)的值.(3分)(3)计算:201720161-201620151--231-321-211-++⋅⋅⋅+++.(6分)26.(12分)如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?(结果用最简二次根式表示)。
第十六章二次根式测试题
一、选择题(每题3分,共30分) 1.下列各式成立的是(
)
A.2
22
-=-)( B.552
-=-)( C. x =2
x D.662
=-)( 2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.
2a
1 C.12+a D.2
a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22
b a + C.
2
a
D.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.4
5.= ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤
6.若x <2,化简x x -+-3)2(2
的正确结果是 ( ) A.-1 B.1 C.2x-5 D.5-2x 7.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=3 8.
1
31
x 3+-=
+-x x
x 成立的条件是( ) A.x ≥-1 B.x ≤3 C.-1≤x ≤3 D.-1<x ≤3
9.下列各式
(1)752=+(2)x x 32x 5=-(3)72542
50
8=+=+ (4)a a a 362733=+
其中正确的是( )
A.(1)和(3)
B.(2)和(4)
C.(3)和(4)
D.(1)和(4)
10.实数a ,b 在数轴上的位置如图所示,
则化简222)(a b a b ---的结果
是( )
A.-2b
B.-2a
C.2(b-a)
D.0
二、填空题(每题4分,共28分)
11.当123x -=时,代数式22x 2++x 的值是
12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若
x
x
-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=∙y xy 82 ,=⨯
2712 . 16.比较大小:(填“>”、“=”、“<”) 17.2a =-,则a 的取值范围是
三、解答题(42分) 18.计算
(1)272833-+- (2)222664÷-)(
(3)2
2525522552)
())((---+
(4)a a a
a a 2781
48a 72
+-
19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。
20.阅读下面问题:
12)12)(12()12(11
21-=-+-⨯=
+;
;23)
23)(23(2
3231-=-+-=
+
34)34)(34(3
43
41-=-+-=+.
……
试求:(1)671
+的值; (2)
n
n ++11
(n 为正整数)的值.。