DIN3990_与_ISO6336_的对应关系
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
螺栓拧紧力矩标准M6~M24螺钉或螺母的拧紧力矩(操作者参考)未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)公制螺栓扭紧力矩 Q/STB 范围:本标准适用于机械性能级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。
★对于设计图纸有明确力矩要求的,应按图纸要求执行。
套管螺母紧固力矩 Q/STB B07833-1998紧固件的同行!您好!我是mDesign机械设计平台中国区总代理。
非常期待与您的合作。
我们希望在紧固件领域能有所作为。
我姓张,联系电话137*。
以下是MDESIGN机械设计平台的简要介绍:?? mDesign是源于德国的一款机械设计平台。
软件编制始于1983年,主要由mDesign公司、德累斯顿工业大学(Technische?Universit?t?Dresden)、VDI(德国工程师协会)、DIN的人员一同编制完成。
?软件主要是基于德国机械标准(VDI、DIN以及ISO)进行编制,对机械零件(齿轮、轴、轴承、螺栓、梁、联轴器、皮带、链条、胶接等等)进行计算和验证。
轴基于DIN743,高强度螺栓基于VDI2230,齿轮尺寸设计基于DIN3960,齿轮强度校核基于DIN3990/ISO6336。
MDESIGN对高强度螺栓、轴、齿轮箱、LVR、LVR?planet开发了独立的模块,除这些模块同时可对计算结果进行优化。
以下是这5个模块的主要功能:高强度螺栓模块:高温低温工况服役的螺栓、可计算最多5层的被连接件、空心螺栓、自定义齿轮螺栓、不可简化的多螺栓分布、偏心负载工况。
同时我公司聘请了德国波鸿大学的技术支持,专门研究vdi2230的。
以下模块如果您有朋友在做的话也请帮忙推荐。
轴模块:同时对一根轴的8个轴承和50个轴段进行设计、校验和优化、空心轴、锥形轴、自定义槽口、寿命以及疲劳。
齿轮模块:齿轮设计、校验及优化,齿轮修形,行星轮修形。
机械基础件标准汇编
首先需要明确,机械基础件指的是机械结构中用于支撑,定位,连接
等基础功能的零部件,如螺栓、螺母、螺杆、弹簧、垫片、轴承、齿轮等。
机械基础件通常需要符合一系列国际、行业、企业等标准,以保证其
质量、可靠性、互换性等。
下面列举一些常见的机械基础件标准:
1.螺栓、螺母:ISO4014、ISO4017、ISO4032、DIN931、DIN933、
DIN934等。
2.轮廓密封件:ISO3601、DIN3760等。
3.垫片:ISO7089、DIN125等。
4.弹簧:ISO10243、DIN2093等。
5.齿轮:ISO6336、DIN3990等。
6.轴承:ISO15、ISO492、DIN620等。
7.键:ISO2491、DIN6885等。
以上标准只是举例,实际应用中需要根据具体情况选择相应的标准。
此外,还应注意到不同国家或地区可能对标准的要求不同,所以在跨国合
作或出口贸易中需要了解相关的国家或地区标准,以避免出现问题。
验证圆柱齿轮的KISSsoft中文基础教程KISSsoft教程系列圆柱齿轮的计算 1. 设计任务本系列教程将介绍如何对已知数据的齿轮通过KISSsoft软件进行详细的分析和计算从而得出一系列的结果。
因此圆柱齿轮完整计算需要规定以下几个方面 1 所需原始的数据输入KISSsoft重新计算 2 按照DIN3990标准规范 3 根据实际要求创建文档的级别标准。
1.1 输入原始数据对于随后进行的数据输入说明请参阅本教程系列的第二章内容 1.1.1 载荷参数性能功率P 3.5 kw 驱主动速度n 2500 1/min 小齿轮 1 应用系数KA 1.35 寿命周期 750 h 1.1.2 几何法面模数mn 1.5 mm 斜齿螺旋角β 25 ? 度法面压力角 20 ? 度齿数 16/43 中心距a 48.9 mm 变位系数x 小齿轮1 0.3215 齿宽b 齿1/齿2 14/14.5 mm 1.1.3分度齿廓齿根高系数hfP 齿根半径系数齿顶高系数haP 齿1 主动轮 1.25 0.3 1.0 齿2 1.25 0.3 1.0 1.1.4附加数据材料 ? 材料硬度弯曲疲劳强度极限齿面接触疲劳极限齿1 主动轮 15 CrNi 6表面硬化 HRC 60 430N/mm2 1500N/mm2 齿2 15 CrNi 6 表面硬化 HRC 60430N/mm2 1500N/mm2 润滑脂润滑微量润滑油 GB00 80?C 基圆正切长度公差范围: 齿1 小齿轮 3 数最大基圆正切长度 Wkmax 最小基圆正切长度 Wkmin 齿11.782mm 11.758mm 齿2 6 25.214mm 25.183mm 质量Q DIN3961 8/8 2主要轮齿修形方法轮齿齿面轮廓修形线性和抛物线形接触方式正常不发生改变或不正确啮合小齿轮轴的性质图1.1 小齿轮轴的应变图 ISO 6336 图片13a I53mmS5.9mm dsh14mm 2. 解决方式 2.1 启动程序通常在注册以及安装之后通常的步骤有开始gt程序gtKISSsoft 04-2010gtKISSsoft才可以启动KISSsoft软件以下为整个操作的截图2.1 2.2 计算方式的选择在树型窗口下有一个活动的Module模块选择双圆柱齿轮副这样一个命令。
/Product/index-ps.asp?menucolr=3平面轴传动系设计平面轴传动系设计模块介绍平行轴传动系设计功能:∙提供复杂的传动系统建模(包括直齿和斜齿轮、滚子轴承、复杂轴及离合器);∙基于ANSI/ASME,SAE/GM以及DIN743标准的应力集中系数计算和轴疲劳寿命计算;∙考虑轴承啮合错位和游隙影响的轴承修正寿命计算;∙考虑润滑油温升和轴承装配对轴承游隙和轴承寿命的影响;∙基于ISO6336,DIN3990和AGMA 2001标准的齿轮强度校核;∙齿轮宏观参数设计和齿轮宏观参数优化;∙齿轮啮合错位计算,齿轮修形计算;∙考虑轴、轴承等变形导致的系统变形计算;∙同步器尺寸计算与容量计算;∙花键设计与强度校核以及花键修形计算;∙传动系统效率分析;∙齿轮齿面接触应力计算和齿根弯曲应力计算;∙齿轮接触分析与传动误差计算;∙传动系统传动误差激励下啸叫分析;∙箱体柔性考虑与箱体强度计算分析;相交轴传动系设计相交轴传动系设计模块介绍相交轴传动系设计模块:∙对垂直轴/轴承系统的建模(包括锥齿轮、螺旋锥齿轮、准双曲面齿轮、差速齿轮、滚子轴承和滑动轴承、离合器等);∙支持Gleason或Oerlikon制式的锥齿轮;∙基于ANSI/ASME,SAE/GM以及DIN743标准的应力集中系数计算和轴疲劳寿命计算;∙滚子轴承载荷和应力分布以及考虑间隙和平行度误差的轴承额定寿命计算> ;∙与KIMoS软件接口,能够进行锥齿轮接触印痕调整与LTCA分析;∙考虑轴、轴承、箱体等变形的系统变形计算;∙支持外壳和差速器的3D有限元模型的输入和结构柔性影响;∙功率流分流过程中的扭矩波动和载荷分布。
行星齿轮传动设计行星齿轮传动设计模块介绍行星齿轮传动设计模块:∙提供复杂的行星齿轮传动系统建模(包括齿轮对、轴承、行星架等);∙行星齿轮设计工具,能够快速进行行星齿轮设计与校核;∙基于ANSI/ASME,SAE/GM以及DIN743标准的应力集中系数计算和轴疲劳寿命计算;∙考虑轴承啮合错位和游隙影响的轴承修正寿命计算;∙考虑润滑油温升和轴承装配对轴承游隙和轴承寿命的影响;∙基于ISO6336,DIN3990和AGMA 2001标准的齿轮强度校核;∙行星齿轮多工况均载分析与制造误差考虑;∙由于功率分流导致的扭矩波动和载荷分布;∙考虑轴、轴承变形导致的系统变形计算;∙传动误差对系统模态响应的影响分析和瞬态扭振分析;∙支持行星架和箱体的3D有限元模型输入及柔性考虑和强度分析。
图片:齿轮淬火的“最佳”硬化层深与“适当”硬化层深戴忠森众所周知,齿轮的淬硬层深“过浅”,对接触和弯曲承载能力都不利。
但淬硬层也不是越深越好,最佳或适当的硬化层深度,可使齿面和齿根都具有较高的强度(承载能力)。
另外,不同的热处理方法,其“最佳”值也不是一样的。
二十世纪七、八十年代,随着齿轮强度计算方法ISO标准的公布,以及国内GB/3480“圆柱齿轮承载能力计算方法”标准的实施,特别是工业硬齿面齿轮的广泛采用,国内外齿轮工作者(专家、学者),就热处理硬化层深问题,进行了大量的试验研究和理论分析。
其实质都是基于接触(弯曲)疲劳强度,其核心问题是:疲劳裂纹发生(萌生)在何处?破坏后的形状是点蚀(pitting贝壳状),还是片蚀(剥落spalling)?研究表明,一般软齿面大多是点蚀,而硬齿面大齿轮大多是剥落(片蚀)。
疲劳裂纹的萌生,有可能在表面,也有可能在表层。
至今,有关硬齿面齿轮接触疲劳强度(剥落)计算的理论和方法,主要有:最大剪切应力τmax (τ45°);正交剪切应力(τyz);当量剪切应力(τeffa);深部接触应力;最大剪切应力/剪切强度的峰值;正交剪切应力/强度(硬度)(τyz/HV)max;当量剪切应力/强度的峰值等,通过理论计算可以确定接触疲劳强度(安全系数);或者确定最佳淬硬层深度。
这些理论和方法一直都有争议,因此至今也没有一个权威的理论和方法被大家所能完全接受。
所谓“最佳硬化层深”,其说法也是较含糊的,而且众说不一,以渗碳淬火齿轮为例,德国DIN3990,硬化(渗碳)层深度,给出一个经验公式:(推荐)Eht= 0.15mn(mn——法面模数)(1)。
该经验公式,有一个突出的问题,就是未考虑实际载荷的情况。
所以,对于轻载齿轮,允许比经验公式稍浅的硬化层深度。
Thomas Tobie近年来提出在用ISO/DIN 进行标准化承载能力计算时,考虑硬化层深度对承载能力的影响,引入了影响系数ZEht(接触承载能力影响系数);УEht(弯曲承载能力影响系数)。
KISSsoft高级教程:交叉斜齿轮,结合金属蜗杆和塑料齿轮,考虑长齿高制设计方法1. 概述由于交叉斜齿轮系统中蜗杆和塑料齿轮的材料不同,将会导致啮合时齿厚的分布大小不一。
金属材料的杨氏弹性模量(材料在弹性变形阶段,其应力和应变成正比例关系,标志了材料的刚性,杨氏模量越大,越不容易发生形变,符合胡克定律)为210000MPa,而塑料材料则只有3000MPa。
所以,金属蜗杆的齿厚需要缩小,而增加塑料齿轮的齿厚。
通常,在实际啮合过程中,蜗杆上轮齿断裂的可能性占到20%-40%,而塑料斜齿轮占到60%-80%。
不采用齿廓修形的情况下,蜗轮和蜗杆的齿厚分布一般为,齿厚分布均衡。
法向齿厚Sn需要缩小ΔSn(Mn*0.5),从而使蜗杆的齿厚分布占到34%,蜗轮的轮齿厚度占到66%。
塑料齿轮的齿根强度因为金属蜗杆的轮齿减小而得到巨大提升,齿数也会相应增加。
同时,齿根和齿顶圆仍然保持和先前而修改齿形时的大小。
所以,DIN3960标准采用的公式为:考虑变位系数时,在分度圆上的齿厚:Sn=Mn*(α)。
齿根圆直径:df=d+2**Mn-2h fp 。
2. KISSsoft计算过程解析在KISSsoft软件模块中,打开交叉斜齿轮模块,如图1所示。
图1 交叉斜齿轮模块将已知数据输入到基本界面,如图2、图3和图4所示。
图2 交叉斜齿轮基本数据输入模块图3 塑料齿轮长齿制齿廓设置图4 公差界面设置点击计算按钮,会出现下面错误,如图5所示:公差设置依据资料 ②请注意:在选项框中会提示怎样解决该错误的方法。
塑料齿轮计算采用DIN3990或ISO6336,需要在“特殊模块设置”窗口中点击“塑料”栏后,激活选项“允许根据DIN3990/ISO6336简单计算塑料齿轮类型”。
② ① ①塑料齿轮不适用于DIN3990或ISO6336标准。
KISSsoft软件中,为准确计算该类型系统,需要考虑塑料的S-N 曲线,其温度依靠VDI2545标准确定。
DIN3990 与ISO6336 的对应关系,部分GB/T 与ISO 的对应关系
DIN 3990-1齿轮承载能力的计算.引言和一般影响因素===〉ISO 6336-1=====〉GB/T 3480-1997 (ISO 子集)
DIN 3990-2圆柱齿轮承载能力的计算.耐点蚀计算====〉ISO 6336-2 =====〉GB/T 3480-1997(ISO 子集)
DIN 3990-3齿轮承载能力的计算.齿根承载能力计算====〉ISO 6336-3=====〉GB/T 3480-1997(ISO 子集)
DIN 3990-4圆柱齿轮承载能力的计算.啮合承载能力的计算====〉90年代没有发布
关于胶合ISO 发布了
ISO / TR 13989-1:2000 (胶合,闪温法)====〉GB/T 6413.1-2003
ISO / TR 13989-2:2000 (胶合,积分温度法)====〉GB/T 6413.2-2003
DIN 3990-5圆柱齿轮承载能力的计算.疲劳限值和材料质量====〉ISO 6336-5 ===> GB/T 8539-2000
DIN 3990-6圆柱齿轮承载能力计算.第6部分-工作强度计算====〉ISO 6336-6
---------------------------------------------
还有DIN3990 与ISO 9082---9085 的对应关系
DIN 3990-11:1989 圆柱齿轮承载能力的计算.工业传动应用标准.详细方法===〉ISO 9085 :2002 ===〉GB/T 14906-2003
DIN 3990-21:1989 圆柱齿轮承载能力计算.高速齿轮和类似要求齿轮的应用标准===〉ISO 9084 :1998 ===〉JB/T8830-2001
DIN 3990-31:1990 圆柱齿轮的承载能力计算.船用减速齿轮箱的应用标准===〉ISO 9083 :2001 ===〉ISO 9085 :2002
DIN 3990-41:1990 圆柱齿轮的承载能力计算.汽车变速箱的使用标准===〉ISO 9082 (尚未出。