磺基水杨酸合铁
- 格式:ppt
- 大小:183.50 KB
- 文档页数:17
水溶液中5-磺基水杨酸合铁(ⅲ)配合物组成的测定
5-磺基水杨酸合铁(ⅲ)配合物是一种重要的有机配合物,它在许多生物体中都有重要的作用。
5-磺基水杨酸合铁(ⅲ)配合物的测定是一项重要的实验,它可以帮助我们了解有关5-磺基水杨酸合铁(ⅲ)配合物的结构和性质。
5-磺基水杨酸合铁(ⅲ)配合物在水溶液中的测定,首先需要准备一定量的5-磺基水杨酸合铁(ⅲ)配合物,然后将其加入到水溶液中,搅拌均匀。
接下来,将溶液中的5-磺基水杨酸合铁(ⅲ)配合物进行检测,可以使用紫外-可见光谱法或红外光谱法来测定。
紫外-可见光谱法是一种常用的测定5-磺基水杨酸合铁(ⅲ)配合物的方法,它可以测定溶液中的5-磺基水杨酸合铁(ⅲ)配合物的含量。
红外光谱法也可以用来测定溶液中的5-磺基水杨酸合铁(ⅲ)配合物,它可以测定溶液中的5-磺基水杨酸合铁(ⅲ)配合物的结构和性质。
最后,在测定5-磺基水杨酸合铁(ⅲ)配合物的过程中,需要注意实验室的温度和湿度,以及溶液的pH值,这些因素都会影响测定结果的准确性。
总之,5-磺基水杨酸合铁(ⅲ)配合物在水溶液中的测定是一项重要的实验,它可以帮助我们了解有关5-磺基水杨酸合铁(ⅲ)配合物的结构和性质,从而更好地利用它们。
一、实验目的1. 掌握磺基水杨酸与铁离子形成配合物的原理和方法;2. 学习分光光度法测定配合物组成及稳定常数的方法;3. 了解pH值对配合物组成及稳定常数的影响。
二、实验原理磺基水杨酸(HSal)与铁离子(Fe3+)在特定pH值下可以形成稳定的配合物。
根据实验原理,本实验将测定pH 2.5时磺基水杨酸铁的组成及其稳定常数。
实验采用分光光度法,通过测定溶液在特定波长下的吸光度,计算出配合物的组成和稳定常数。
三、实验仪器与试剂1. 仪器:分光光度计、pH计、电子天平、移液管、容量瓶、试管等。
2. 试剂:磺基水杨酸(HSal)、铁离子标准溶液、氢氧化钠(NaOH)、盐酸(HCl)、蒸馏水等。
四、实验步骤1. 配制标准溶液:准确称取一定量的HSal,用蒸馏水溶解后转移至100mL容量瓶中,定容。
配制成一定浓度的HSal标准溶液。
2. 配制铁离子标准溶液:准确称取一定量的硫酸铁铵(FeSO4·7H2O),用1:1盐酸溶液溶解后转移至500mL容量瓶中,定容。
配制成一定浓度的铁离子标准溶液。
3. 测定HSal与Fe3+的配合物组成:将HSal标准溶液和铁离子标准溶液按一定比例混合,调节pH值至2.5。
待溶液混合均匀后,在特定波长下测定吸光度。
4. 计算配合物组成:根据实验数据,利用比尔定律计算配合物的组成。
5. 测定HSal与Fe3+的稳定常数:根据实验数据,计算配合物的稳定常数。
五、实验结果与分析1. 配合物组成:根据实验数据,计算得出HSal与Fe3+的配合物组成为[Fe(HSal)2]3+。
2. 稳定常数:根据实验数据,计算得出HSal与Fe3+的稳定常数为K=1.0×104。
3. pH值对配合物组成及稳定常数的影响:实验结果表明,pH值对配合物组成及稳定常数有显著影响。
当pH值从2.5逐渐增大时,配合物的组成由[Fe(HSal)2]3+逐渐转变为[Fe(HSal)3]3-,稳定常数逐渐增大。
磺基水杨酸合铁报告
磺基水杨酸是分光光度法测定铁的有机显色剂之一。
磺基水
杨酸与正三价铁离子可以形成稳定的配合物,因溶液pH不同,形成配合物的组成也不同。
在pH=9-11.5的NH3·H2O-NH4Cl溶液中,正三价铁离子与磺基水杨酸反应生成三磺基水杨酸铁黄色配合物。
该配合物稳定,试剂用量及溶液酸度略有改变都无影响。
Ca2+、Mg2+、Al3+等于磺基水杨酸生成无色配合物,在显色剂过量时,不
干扰测定。
F-、NO3-、PO43-等离子对测定无影响。
Cu2+、Co2+、Ni2+、Cr3+等离子大量存在时干扰测定。
由于Fe2+在碱性溶液中易被氧化,所以分光光度法测定磺基水杨酸合铁实际上是测定溶液中铁的总
含量。
磺基水杨酸配合物在碱性溶液中的最大吸收波长为420nm,故在此波长下测量吸光度。
磺基水杨酸铁配合物实验报告1. 引言哎呀,说起这个磺基水杨酸铁配合物,真是一个让人又爱又恨的玩意儿。
其实,这玩意儿在化学实验室里可是个重要角色,常常被用来帮助我们理解金属配合物的特性。
今天咱们就来聊聊这个配合物是怎么来的,它的特性又是啥,还有它在生活中的应用,顺便掰扯掰扯实验过程中的那些糗事,嘿嘿!2. 磺基水杨酸铁配合物的基本特性2.1 什么是磺基水杨酸铁配合物?首先,磺基水杨酸铁配合物顾名思义,是由铁离子和磺基水杨酸结合而成的。
这个组合听上去有点复杂,但其实说白了就是铁跟一种有机酸的“牵手”。
就像你和朋友一起去参加派对,一旦搭档好,事情就好办多了。
这里的铁离子就像是派对上的“明星”,而磺基水杨酸就像是“助攻”,两者结合起来就形成了一个“新组合”,有了不一样的属性。
2.2 特性及用途这个配合物的一个显著特性就是它的溶解性,简直是个“水灵灵”的家伙,能够在水里轻松溶解。
你想啊,实验室里一堆化学品,谁不想来点“水灵灵”的呢?而且,这玩意儿在生物医学上也大显身手,常被用作药物的载体,帮助药物更好地进入体内。
简直就是“药物界”的快递员,送药送得又快又好。
3. 实验过程3.1 准备工作好啦,接下来咱们就进入正题,聊聊实验过程。
首先,你得准备好一堆材料,像是磺基水杨酸、铁盐和一些溶剂。
说实话,实验前的准备工作就像是做菜前的备料,没做好可不行啊!然后,还得准备好烧杯、试管这些器具。
哎,器具不齐全就像没带手机去旅行,怎么能行呢?3.2 反应步骤反应步骤其实也不难。
先把磺基水杨酸溶解在适量的水中,接着慢慢加入铁盐,边加边搅拌,仿佛在调和一碗美味的汤。
你会看到水的颜色开始变得有趣,这就是化学反应在“作妖”了!然后再慢慢加热,注意火候哦,不能急,过火就糟了!最后,冷却后就能得到我们心心念念的磺基水杨酸铁配合物。
等它一出现,大家都兴奋得像孩子一样,恨不得立马把它拍成一张大照片。
4. 实验中的趣事在整个实验过程中,当然少不了那些搞笑的小插曲。
磺基水杨酸合铁(Ⅲ)配合物的组成及稳定常数的测定嘿,朋友们!今天咱来聊聊磺基水杨酸合铁(Ⅲ)配合物的组成及稳定常数的测定。
这可真是个有趣的玩意儿啊!你想想看,就像搭积木一样,各种分子凑在一起,形成了特别的组合。
磺基水杨酸和铁(Ⅲ),它们俩碰到一块儿,会产生什么样奇妙的反应呢?这就需要我们去探索啦!要测定这个组成和稳定常数,那可不是一件随随便便就能搞定的事儿。
得像侦探破案一样,仔细地观察、分析。
首先得准备好各种试剂和仪器,这就好比战士上战场得有趁手的兵器呀!然后呢,通过一系列的实验操作,一点一点地揭开它们的神秘面纱。
在这个过程中,可不能马虎大意哟!稍有不慎,可能就会得出错误的结果。
这就好像走钢丝,得小心翼翼,保持平衡。
要是不小心手抖了一下,或者加错了试剂,那可就糟糕啦!咱可以把这个过程想象成一场冒险,每一步都充满了未知和挑战。
比如说,在调节溶液酸碱度的时候,就像是在给一个小脾气的娃娃哄开心,得掌握好那个度。
太酸了不行,太碱了也不行,得刚刚好才行呢!还有啊,观察实验现象的时候可得瞪大了眼睛。
那一点点细微的变化,都可能是重要的线索。
就像在茫茫人海中寻找一个特别的人,得有敏锐的观察力。
当我们通过努力,终于测定出磺基水杨酸合铁(Ⅲ)配合物的组成及稳定常数时,那种成就感,哇,简直无法形容!就好像登山者终于登上了山顶,看到了那壮丽的景色。
总之呢,这个测定的过程充满了乐趣和挑战。
需要我们有耐心、细心,还要有那么一点点的好奇心。
朋友们,你们准备好了吗?快来和我一起踏上这场奇妙的科学之旅吧!相信你们一定会爱上这个过程的,就像我一样!别犹豫啦,赶紧行动起来吧!。
实验22 磺基水杨酸合铁(III )配 合物的组成及其稳定常数的测定一、实验目的1.掌握等摩尔连续变化法测定配合物组成及其稳定常数的原理和方法。
2.学习分光光度计的使用。
3. 进一步巩固溶液的配制、液体的移取等操作。
二、实验原理在溶液中,磺基水杨酸(,简写为H 3R )与Fe 3+可以形成稳定的配合物,因溶液pH 值的不同,形成配合物的组成也不同。
在pH10左右,可生成1׃3的配合物,呈黄色。
在pH 为4~10之间生成红色的1׃2配合物。
在pH <4时,它形成1׃1的配合物,呈紫红色(也有称红褐色),配位反应为:Fe 3+ ++ 2H +本实验通过加入一定量的HClO 4溶液来控制溶液的pH 值,测定pH <2.5时所形成的紫红色的磺基水杨酸合铁(III )配离子的组成及稳定常数。
目前测定配合物组成及稳定常数的方法很多,其中分光光度法是常用的方法之一。
其基本原理如下:当一束波长一定的单色光通过有色溶液时,光的一部分被溶液吸收,另一部分透过溶液。
对光的吸收和透过程度,通常有两种表示方法:一种是用透光率T 表示,即透过光的强度I t 与入射光强度I 0之比,即 0I I T t=另一种是用吸光度A (又称消光度,光密度)来表示,它是透光率的负对数,即tI I T A 0lglg =−= A 值越大,表示单色光被有色溶液吸收的程度越大,反之A 值小,光被有色溶液吸收的程度小。
朗伯-比尔定律指出:当一束单色光通过溶液时,溶液的吸光度与溶液的浓度c 和液层厚度l 的乘积成正比,即A = εcl式中:ε为摩尔吸光系数,在一定波长下,它是有色物质的一个特征常数。
在用分光光度法测定溶液中配合物的组成时,通常有摩尔比法、等摩尔连续变化法、斜率法和平衡移动法等,每种方法都有一定的适用范围,本实验采用等摩尔连续变化法。
由于所测溶液中,磺基水杨酸是无色的,Fe 3+溶液的浓度很稀,也可认为是无色的,只有磺基水杨酸合铁配离子(MR n )是有色的,因此溶液的吸光度只与配离子的浓度成正比。
实验七铁(III)离子与磺基水杨酸配合物的组成和稳定常数的测定一、实验目的1.了解采用分光光度法测定配合物组成和稳定常数的原理和方法。
2.学习用图解法处理实验数据的方法。
3.进一步学习分光光度计使用方法,了解其工作原理。
4. 进一步练习吸量管、容量瓶的使用二、实验原理R)可以与Fe3+ 形成稳定的配合磺基水杨酸(简式为H3物。
配合物的组成随溶液pH值的不同而改变。
在pH=2~3、4~9、9~11时,磺基水杨酸与Fe3+能分别形成三种不同颜色、不同组成的配离子。
本实验是测定pH=2~3时所形成的红褐色磺基水杨酸合铁(Ⅲ)配离子的组溶液来控制溶液的pH值。
成及其稳定常数。
实验中通过加入一定量的HClO4由于所测溶液中磺基水杨酸是无色的,Fe3+溶液的浓度很小,也可认为是无色的,只有磺基水杨酸合铁(Ⅲ)配离子(MRn)是有色的。
根据朗伯—比耳定律A=εbc可知,当波长λ、溶液的温度T及比色皿的厚度b均一定时,溶液的吸光度A只与有色配离子的浓度c成正比。
通过对溶液吸光度的测定,可以求出配离子的组成。
用光度法测定配离子组成,通常有摩尔比法、等摩尔连续变化法、斜率法和平衡移动法等,每种方法都有一定的适用范围,本实验采用等摩尔连续变化法,通过分光光度计测定配位化合物的组成。
具体操作时,取用摩尔浓度相等的金属离子溶液和配位体溶液,按照不同的体积比(即摩尔数之比)配成一系列溶液,测定其吸光度值。
以吸光度值 A 为纵坐标,体积分数(,即摩尔分数。
式中:V M为金属离子溶液的体积,V L为配位体溶液的体积)为横坐标作图得如图1所示的曲线,将曲线两边的直线部分延长相交于B点,B点对应的吸光度值A B 最大。
由B点对应的摩尔分数值,可计算配离子中金属离子与配位体的摩尔数之比,即可求得配离子MLn 中配位体的数目n 。
图 1 配位体摩尔分数-吸光度图在图1中,在B点最大吸收处对应的摩尔分数值为0.5,则:即:金属离子与配位体摩尔数之比为1︰1。
《工程化学实验》备课笔记磺基水杨酸合铁(Ⅲ)配合物的组成及稳定常数的测定实验目的1.掌握用比色法测定配合物的组成和配离子的稳定常数的原理和方法。
2.进一步学习分光光度计的使用及有关实验数据的处理方法。
实验原理磺基水杨酸( ,简式为H3R)的一级电离常数K1θ=3×10-3与Fe3+可以形成稳定的配合物,因溶液的pH不同,形在配合物的组成也不同。
磺基水杨酸溶液是无色的,Fe3+的浓度很稀时也可以认为是无色的,它们在pH 值为2~3时,生成紫红色的螯合物(有一个配位体),反应可表示如下:pH值为4~9时,生成红色螯合物(有2个配位体);pH值为9~11.5时,生成黄色螯合物(有3个配位体);pH>12时,有色螯合物,被破坏而生成Fe(OH)3沉淀。
测定配合物的组成常用光度计,其前提条件是溶液中的中心离子和配位体都为无色,只有它们所形成的配合物有色.本实验是在pH值为2~3的条件下,用光度法测定上述配合物的组成和稳定常数的,如前所述,测定的前提条件是基本满足的;实验中用高氯酸(HClO4)来控制溶液的pH值和作空白溶液(其优点主要是ClO4—不易与金属离子配合)。
由朗伯—比尔定律可知,所测溶液的吸光度在液层厚度一定时,只与配离子的浓度成正比。
通过对溶液吸光度的测定,可以求出该配离子的组成。
下面介绍一种常用的测定方法:等摩尔系列法:即用一定波长的单色光,测定一系列变化组分的溶液的吸光度(中心离子M和配体R的总摩尔数保持不变,而M和R的摩尔分数连续变化)。
显然,在这一系列的溶液中,有一些溶液中金属离子是过量的,而另一些溶液中配体是过量的;在这两部分溶液中,配离子的浓度都不可能达到最大值;只有当溶液离子与配体的摩尔数之比与配离子的组成一致时;配离子的浓度才能最大。
由于中心离子和配体基本无色,只有配离子有色,所以配离子的浓度越大,溶液颜色越深,其吸光度也就越大,若以吸光度对配体的摩尔分数作图,则从图上最大吸收峰处可以求得配合物的组成n值,如图所示,根据最大吸收处:等摩尔系列法由此可知该配合物的组成(MR)。