可以验证,5和-5是方程 ① 的两根, 但是棱长不能是负值,所以正方体 的棱长为5 dm.
用方程解决实 际问题时,要考虑 所得结果是否符合 实际意义.
探究
( x 3) 2 5, 解 : 由 方 程 ( x 3) 2 5,
①
得
x 3 5,
即 x 3 5,或 x 3 5.
③
于是,方程 ( x 3) 2 5 的两个根为
x1 3 2 ,
x2 3 2
上面的解法中,由方程②和③, 实质上是把一元二次方程“降 次”,转化为两个一元一次方程, 这样就把方程②转化为我们会解 的方程了.
练习
解下列方程:
2 x 8 0; 2 9 x 5 3; 3 1 x 6 9 0; 2 2 2 4 3 x 1 6 0 ; 5 x 4 x 4 5; 6 9 x +6 x+ 1 4.
2 2 2
解:
1 2x
2
2
8 0
9 x2 5 3 2
移项 x 4,
移项 9 x2 8,
得 x 2,
方程的两根为:
8 得 x 2 , 9
x
2 2 , 3
方程的两根为:
x1 2 2 3
x1 2 x2 2.
x2
2 2 . 3
x2 1 2 .
方程两根为
x1 1 2
5 x2 4x 4 5
解:
x 2
2
5,
x 2 5,
x 2 5, x 2 5, x 2 2 5. 方程的两根为 x 1 2 5