2009年浙江高考数学(理科)试卷(含答案)
- 格式:doc
- 大小:1.53 MB
- 文档页数:11
2009年普通高等学校招生全国统一考试(浙江卷)理科数学一、选择题(1) 设U=R ,A {|0},{|1},u A x x B x x C B =>=>⋂=(A ){|01}x x ≤<k k n km n k P P-(K )=C (1-P )(=0,1,2,...n ) (B ){|01}x x <≤ (C ){|0}x x < (D ){|1}x x > (2)已知a 、b 是实数,则“a>0,b>0”是a+b>0且ab>0的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件24S R π= (3)设z=1+i (i 是虚数单位),则22z z+= (A )-1-i (B )-1+ i (C )1- i (D )1+i (4)在二项式5)1(xx -的展开式中,含x 4的项的系数是(A )-10 (B )10 (C )-5 (D )5(5)在三棱柱ABC-A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 式侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是(A )300(B )45(C )600 (D )90(6)某程序框图如图所示,该程序运行后输出的k 的值是(A )4 (B )5 (C )6 (D )7(7)设向量a,b 满足︱a ︱=3,︱b ︱=4,b a ⋅=0.以a,b,a-b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为(A )3 (B )4 (C )5 (D )6(8)已知a 是实数,则函数f (x )=1+asinax 的图像不可能是(9)过双曲线122=-by a x (a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若=BC 21,则双曲线的离心率是 (A )2 (B )3 (C )5 (D )10(10)对于正实数α,记M α为满足下述条件的函数f (x )构成的集合:R x x ∈∀21,且2x >1x ,有-α(2x -1x )<f (2x )-f (1x )<α(2x -1x ).下列结论正确的是(A )若2121)()(,)(,)(αααα⋅∈⋅∈∈M x g x f M x g M x f 则 (B )2121)()(,0)()(,(ααααM x g x f x g M x g M x f ∈≠∈∈则且)若 (C )2121)()(,)(,)(αααα+∈+∈∈M x g x f M x g M x f 则若 (D )121,)(,)(ααα且若M x g M x f ∈∈>212)()(ααα-∈-M x g x f ,则 二、填空题:本大题共7小题,每小题4分,共28分。
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.257.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选:A.【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x |<0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选:D.【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA1∥CD1,知∠A1BE是异面直线BE与CD1所形成角,由此能求出异面直线BE与CD1所形成角的余弦值.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,∴BA1∥CD1,∴∠A1BE是异面直线BE与CD1所形成角,设AA1=2AB=2,则A1E=1,BE==,A1B==,∴cos∠A1BE===.∴异面直线BE与CD1所形成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.25【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选:C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.7.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx +)的图象重合,比较系数,求出ω=6k +(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx +),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan(ωx +)∴﹣ω+kπ=∴ω=k +(k∈Z),又∵ω>0∴ωmin =.故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA:双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB 的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选:A.【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于8π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A +C)得cos (A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG ,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n+1=4a n+2,①则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n+1=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),又b n=a n+1﹣2a n,所以b n=2b n﹣1(b n≠0),所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ01 2 3P故Eξ==.【点评】本题较常规,比08年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l 的距离为则,解得c=1又,∴(II)由(I )知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P 在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I )令g(x)=2x2+2x+a ,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当时,h'(x)>0,∴h(x )在单调递增,故.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,23ξ01P故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
初中数学知识点归纳总结一、基本运算方法1、配方法所谓配方,就是把一个分析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的使用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和分析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且使用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法和韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的使用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和和积,求这两个数等简单使用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u A B I中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,A B = ,{4,7,9}()U A B C AB =∴= 故选A 。
也可用摩根律:()()(U U UC A B C A C B=(2)已知1iZ+=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。
2009年普通高等学校招生全国统一考试(全国Ⅱ卷)数学(理)试题一、选择题( 本大题共12 题, 共计60 分)1、(5分)=( )A.-2+4iB.-2-4iC.2+4iD.2-4i2、(5分)设集合A={x|x>3},B={x|},则A∩B=()A. B.(3,4) C.(-2,1) D.(4,+∞)3、(5分)已知△ABC中,,则cosA=( )A. B. C. D.4、(5分)曲线在点(1,1)处的切线方程为( )A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=05、(5分)已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成角的余弦值为( )A. B. C. D.6、(5分)已知向量a=(2,1),a·b=10,|a+b|=,则|b|=( )A. B. C.5 D.257、(5分)设a=log3π,,,则( )A.a>b>cB.a>c>bC.b>a>cD.b>c>a8、(5分)若将函数y=tan()(ω>0)的图象向右平移个单位长度后,与函数y=tan()的图象重合,则ω的最小值为…()A. B. C. D.9、(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )A. B. C. D.10、(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6种B.12种C.30种D.36种11、(5分)已知双曲线C:(a>0,b>0)的右焦点为F,过F且斜率为的直线交C 于A、B两点.若,则C的离心率为( )A. B. C. D.12、(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“Δ”的面的方位是( )A.南B.北C.西D.下二、填空题( 本大题共4 题, 共计20 分)13、(5分) ()4的展开式中x3y3的系数为___________.14、(5分)设等差数列{a n}的前n项和为S n,若a5=5a3.则=___________.15、(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C,若圆C的面积等于,则球O的表面积等于______________.16、(5分)已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD 的面积的最大值为_____________.三、解答题( 本大题共6 题, 共计70 分)17、(10分) 设△ABC的内角A,B,C的对边长分别为a,b,c,cos(A-C)+cosB=,b2=ac,求B.18、(12分)如图,直三棱柱ABC—A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1. (Ⅰ)证明:AB=AC;(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.19、(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2.(Ⅰ)设b n=a n+1-2a n,证明数列{b n}是等比数列;(Ⅱ)求数列{a n}的通项公式.20、(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21、(12分)已知椭圆C:(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为.(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22、(12分)设函数=x2+aln(1+x)有两个极值点x1,x2,且x1<x2.(Ⅰ)求a的取值范围,并讨论的单调性;(Ⅱ)证明: ()21224Inf x->.答案解析一、选择题( 本大题共12 题, 共计60 分)1、(5分) A解析:.故选A.2、(5分) B解析:∵(x-1)(x-4)<0,∴1<x<4,即B={x|1<x<4},∴A∩B=(3,4).故选B.3、(5分) D解析:∵,∴A为钝角.又∵,∴.代入sin2A+cos2A=1,求得.故选D.4、(5分) B解析:∵,∴y′|x=1=-1.∴切线的斜率k=-1.∴切线方程为y-1=-(x-1),即x+y-2=0.故选B.5、(5分) C解析:如图所示,连接A1B,因A1D1BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C,则异面直线BE与CD1所成的角即为BE与BA1所成的角. 不妨设AB=1,则AA1=2,设∠ABE=α,∠ABA1=β,则,,,.∴cos(β-α)=cosβcosα+sinβsinα=.故选C.6、(5分) C解析:设b=(x,y),由得解方程组得或则|b|=.故选C.7、(5分) A解析:∵a=log3π>log33=1,,.∴a>b>c.故选A.8、(5分) D解析:将函数y=tan()(ω>0)的图象向右平移个单位,得y=tan(),又因平移后函数的图象与y=tan()的图象重合, ∴(k∈Z),即,∴当k=0时,,即ω的最小值为.故选D.9、(5分) D解析:设A(x1,y1),B(x2,y2),由题意得k2x2+(4k2-8)x+4k2=0,Δ=16(k2-2)2-4k2·4k2>0.得-1<k<1,即0<k<1,,x1x2=4.又∵|FA|=2|FB|,由抛物线定义,知F(2,0),抛物线的准线方程为x=-2,∴|FA|=x1+2,|FB|=x2+2,∴x1+2=2x2+4,即x1=2x2+2.代入x1·x2=4,得x22+x2-2=0,∴x2=1,或x2=-2(舍去,因x2>0).∴x1=2×1+2=4.∴.∴.又0<k<1,∴.故选D.10、(5分) C解析:由题意知甲、乙所选的课程有一门相同的选法为种,甲、乙所选的课程都不相同的选法有种,所以甲、乙所选的课程中至少有一门不相同的选法共有24+6=30种.故选C.11、(5分) A解析:设A(x1,y1),B(x2,y2),F(c,0),由,得(c-x1,-y1)=4(x2-c,y2),∴y1=-4y2.设过F点斜率为的直线方程为,∴则有∴将y1=-4y2分别代入①②得化简得∴.化简得16c2=9(3a2-b2)=9(3a2-c2+a2).∴25c2=36a2.∴,即.12、(5分) B解析:如右图所示正方体,要展开成要求的平面图,必须剪开棱BC,剪开棱D1C1使正方形DCC1D1向北的方向展平.剪开棱A1B1,使正方形ABB1A1向南的方向展开,然后拉开展平,则标“Δ”的面的方位则为北.故选B.二、填空题( 本大题共4 题, 共计20 分)13、(5分) 6解析:设展开式中第r+1项为x3y3项,由展开式中的通项,得=.令,得r=2.∴系数为.14、(5分) 9解析:由a5=5a3,得,.15、(5分) 8π解析:如图所示,设球半径为R,球心O到截面圆的距离为d,在Rt△ONB中,d2=R2-BN2.①又∵π·BN2=,∴.在△ONM中,d=OM·sin45°=,②将②代入①得,∴R2=2.∴S球=4πR2=8π.16、(5分) 5解析:如图所示,设|ON|=d1,|OP|=d2,则d12+d22=|OM|2=12+()2=3.在△ONC中,d12=|OC|2-|CN|2=4-|CN|2,∴.同理在△OBP中,.S四边形=S△CAD+S△CAB====.当且仅当d1=d2时取等号,即d1=d2=时取等号.三、解答题( 本大题共6 题, 共计70 分)17、(10分) 解:由cos(A-C)+cosB=及B=π-(A+C)得cos(A-C)-cos(A+C)=,cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=,.又由b2=ac及正弦定理得sin2B=sinAsinC.故,或(舍去),于是或.又由b2=ac知b≤a或b≤c,所以.18、(12分) 解法一:(Ⅰ)取BC的中点F,连接EF,则EF,从而EF DA.连接AF,则ADEF为平行四边形,从而AF∥DE.又DE⊥平面BCC1,故AF⊥平面BCC1,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC,(Ⅱ)作AG⊥BD,垂足为G,连接CG.由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角.由题设知∠AGC=60°.设AC=2,则.又AB=2,,故.由AB·AD=AG·BD得,解得,故AD=AF.又AD⊥AF,所以四边形ADEF为正方形.因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF.连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD.连接CH,则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形,,故EH=1,又,所以∠ECH=30°,即B1C与平面BCD所成的角为30°.解法二:(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz,设B(1,0,0),C(0,b,0),D(0,0,c),则B1(1,0,2c),E(,,c).于是=(,,0),=(-1,b,0).由DE⊥平面BCC1知DE⊥BC,·=0,求得b=1,所以AB=AC.(Ⅱ)设平面BCD的法向量=(x,y,z),则·=0,·=0.又=(-1,1,0), =(-1,0,c).故令x=1,则y=1, , =(1,1,).又平面ABD的法向量=(0,1,0).由二面角A-BD-C为60°知,〈〉=60°,故·=||·||·cos60°,求得.于是=(1,1,), =(1,-1,),cos〈,〉=,〈,〉=60°,所以B1C与平面BCD所成的角为30°.19、(12分) 解:(Ⅰ)由已知有a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3,又a n+2=S n+2-S n+1=4a n+1+2-(4a n+2)=4a n+1-4a n;于是a n+2-2a n+1=2(a n+1-2a n),即b n+1=2b n.因此数列{b n}是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ)知等比数列{b n}中b1=3,公比q=2,所以a n+1-2a n=3×2n-1,于是,因此数列{}是首项为,公差为的等差数列,,所以a n=(3n-1)·2n-2.20、(12分) 解:(Ⅰ)由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人.(Ⅱ)记A表示事件:从甲组抽取的工人中恰有1名女工人,则.(Ⅲ)ξ的可能取值为0,1,2,3.A i表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.B表示事件:从乙组抽取的是1名男工人.A i与B独立,i=0,1,2.P(ξ=0)=P(A0·)=P(A0)·P()=,P(ξ=1)=P(A0·B+A1·)=P(A0)·P(B)+P(A1)·P()=,P(ξ=3)=P(A2B)=P(A2)·P(B)=,P(ξ=2)=1-[P(ξ=0)+P(ξ=1)+P(ξ=3)]=.故ξ的分布列为ξ0 1 2 3PEξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=.21、(12分) 解:(Ⅰ)设F(c,0),当l的斜率为1时,其方程为x-y-c=0,O到l的距离为,故,c=1.由,得,.(Ⅱ)C上存在点P,使得当l绕F转到某一位置时,有成立,由(Ⅰ)知C的方程为2x2+3y2=6,设A(x1,y1),B(x2,y2),(ⅰ)当l不垂直于x轴时,设l的方程为y=k(x-1).C上的点P使成立的充要条件是P点的坐标为(x1+x2,y1+y2),且2(x1+x2)2+3(y1+y2)2=6,整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在C上,即2x12+3y12=6,2x22+3y22=6.故2x1x2+3y1y2+3=0.①将y=k(x-1)代入2x2+3y2=6,并化简得(2+3k2)x2-6k2x+3k2-6=0,于是,,y1·y2=k2(x1-1)(x2-1)=.代入①解得k2=2,此时,于是y1+y2=k(x1+x2-2)=,即P(,).因此,当时,P(,),l的方程为;当时,P(,),l的方程为.(ⅱ)当l垂直于x轴时,由=(2,0)知,C上不存在点P使成立, 综上,C上存在点P(,)使成立,此时l的方程.22、(12分) 解:(Ⅰ)由题设知,函数的定义域是x>-1,,且f′(x)=0有两个不同的根x1,x2,故2x2+2x+a=0的判别式Δ=4-8a>0,即,且,.①又x1>-1,故a>0.因此a的取值范围是(0,).当x变化时,与f′(x)的变化情况如下表:x (-1,x1) x1(x1,x2) x2(x2,+∞)f′(x)+ 0 - 0 +极大值极小值因此在区间(-1,x1)和(x2,+∞)上是增函数,在区间(x1,x2)上是减函数.(Ⅱ)由题设和①知<x2<0,a=-2x2(1+x2),于是f(x2)=x22-2x2(1+x2)ln(1+x2).设函数g(t)=t2-2t(1+t)ln(1+t),则g′(t)=-2(1+2t)ln(1+t).当时,g′(t)=0;当t∈(,0)时,g′(t)>0,故g(t)在区间[,0)上是增函数.于是,当t∈(,0)时,. 因此.。
第四章 概率4.1 游戏公平吗1.1或100% , 0;2.61;3.相同 ;4.不可能,0;5.不确定,0,1 ;6.必然事件,1;7. A →③, B →① ,C →② ; 8. D ; 9. C;10.A; 11.(1)可能性为1 ;(2)发生的可能性为51;(3)发生的可能性为50% ;(4)发生的可能性为103;(5)发生的可能性为0.12四.这个游戏对双方不公平,当第一个转盘转出数字为1时,第二个转盘转出的数字1,2,3,4,5,6六种可能,这样在它们的积中有3奇3偶,当第一个转盘转出数字2时,第二个转盘转出的六种可能结果数中,两数之积必全为偶数,因此可以知道,,在两个转盘转出的所有可能结果数应是36种,其中只有9种可能是奇数,27种可能出现偶数,即出现积为偶数的可能比积为奇数的可能大得多,因而此游戏对对方不公平,为公平起见,可将游戏稍作改动,即将“两个转盘停止后所指向的两个数字之积”中的“积”改为“和”即可.4.2 摸到红球的概率1. 1.11000; 2.131 ; 3. 21; 4. ,3165 ; 5. 81 ; 6.1,0;7.(1)P=17;(2)P=0 ;(3)P=1; (4)P=0 ;(5)P=37;(6)P=47 ;(7)P=37; 8.C ; 9. D; 10. C; 11.B ;12.B; 13.C; 14.C; 15.D ;16.D ;17.(1)P=13;(2)P=13 ;(3)P=23;(4)P=23. 18.∵P(甲获胜)=310,P(乙获胜)=25. ∴这项游戏对甲、乙二人不公平,若要使这项游戏对甲、乙二人公平,则添加编号为“0”的卡片或添加编号为“11”和“12”的卡片等等.19.(1)k=0 (2)k=220.乙获胜的可能性不可能比甲大,要使游戏公平,小立方体上标有“2 ”的面数为3个,标有“1”“3”的面数共3个21.P 1P 2;四.(1) 321; (2) 161 ; (3)摊主至少赚187.5元; 4.3 停留在黑砖上的概率1.A ;2.D ; 3.B ; 4.A ;5.B ; 6.C; 7.(1)14; (2)512; (3)23; (4)712; 8.可以在20个扇形区域中,任意将其中6个扇形涂上黄色,而余下14个均为非黄色即可,设计不确定事件发生的概率为103的方法很多,只要合理即可. 9.110; 1100; 10.16 ;11.P (阴影)=416,P (黑球)=416,概率相同,因此同意这个观点. 12.154,227,1354;13.110; 四.解:小晶的解法是正确的,解的过程考虑的是以两个盛着写有0,1,2,3,4,•5的六张卡片的袋中“各取一块”,所以此时的基本事件(实验结果)有:(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(1,5), ……(5,0),(5,1),(5,2),(5,3),(5,4),(5,5)等36种,其中和为6的是(1,5),(2,4),(3,3),(4,2),(5,1)5种,故所求概率P=536.而小华解的是把“和”作为基本事件,•其和的解有0,1,2,…,10等11种,但这11种的概率是不同的.单元综合测试 1.不确定, 0,1;2. 41 , 131 , 133;3. 53;4. 红, 白;5. 2 ① ③1 ;6.= ; 7; 32,31 ;8.113;9.C ;10.B;11.B; 12.C; 13.A ; 14.D ;15.B ;16.C; 17. 游戏公平;理由:∵2 的倍数为2、4、6,它们的概率和为21; 数字大于3的有4、5、6,它们面朝上的概率和为21. 两种情况机会均等,所以游戏公平.18.没道理.因为有95%的可能性要下雨,还有5%不下雨,所以带雨伞有一定预防作用,并不是必定下雨. 明天下雨的可能性为10%,并不表示一定不下雨,还有10%的概率要下雨.19. 妈妈对小颖的关心爱护的心情是可以理解的,但总担心被车碰着是多余的.虽然时有车祸发生,但车祸的发生不具有随意性,只要我们人人注意,车祸是可以避免的.20. (1)101,451;(2)101×451=4501. 21.上层抽到数学的概率为31;下层抽到数学练习册的概率为31;同时抽到两者的概率为91. 22. 10 个纸箱中4 个有糖果,抽到有糖果纸箱的概率为52104 . 23.(1)10 个球中有 2 个红球,其他颜色球随意;(2)10 个球中有 4 个红球,4 个白球,另两个为其他颜色.24. (1)没有.(2)打折的面积占圆盘面积的一半,转一次转盘获打折待遇的概率是21;打九折的概率为41;打八折的概率为61;打七折的概率为121. 第五章 三角形5.1 认识三角形(1)1.C ; 2.D ; 3.C ; 4.B; 5.A ;6.C; 7.C; 8.A; 9.4, △ADE ,△ABE ,△ADC ,•△ABC;10.3 , △AEC ,△AEB ,△AED;11.0<BC<10 12.2 , 5cm ,6cm ,8cm ;6cm ,8cm ,13cm ;13.2;14.•15cm 或18cm ;15. 7cm<a<12cm;16.学校建在AB ,CD 的交点处.理由:任取一点H ,利用三角形三边关系.四.AB=6,AC=4,由三边关系定理,BC=4或6或8.5.1 认识三角形(2)1.C; 2.C ; 3.B ; 4.43°48′; 5.5 ; 6.180°; 7.3 ,1 , 1; 8.30°;9.60°;10.A ; 11.C; 12.B ; 13.70°,60°;14.70°,60° 15.不符合,因为三角形内角和应等于180°.16.45°,70°,115°;17.解:因为AB ∥CD ,AD ∥BC ,所以∠BDC=∠2=55°,∠DBC=∠1=65°,所以∠C=•180°-∠BDC-∠DBC=60°;四.探究:此类题只需抓住一个三角形,如图(1)所示,在△MNC 中,∠1+∠2+∠C=180°,而∠1=∠A+∠D ,∠2=∠B+∠E ,所以∠A+∠B+∠C+∠D+∠E=180°.如图(2)所示,在△BCM 中,∠C+∠1+∠2=180°,而∠1=∠A+∠D ,∠2=∠DBE+∠E ,故结论成立.如图(3)所示,在△MNE 中,∠1+∠2+∠E=180°,∠1=∠B+∠D ,∠2=∠A+∠C ,•故结论仍成立.5.1 认识三角形(3)1.(1)AD;AD,BD ;(2)BF ,AC ,ACE ,AE ,ADC ,AD ,DEC ,DE;2.5cm;3.40°;4.D;5.A;6.D;7.略 ; 8.略; 四.130度;5.2 图形的全等1.B; 2.D ; 3.D ; 4.C. 提示:按一定顺序找,△AOE ,△EOD ,△AOD ,△ABD ,△ACD ,△AOB;5.a=5,b=18,c=15,∠α=70°,∠β=140°; 6.略 ; 7.C ; 8.D;10.C;11.D ; 12.略5.3 全等三角形1.C ;2.D;3.B; 4.B ;5.相等,相等,相等 ; 6.∠ABC;7.DE;8.BC=DC,•AC=EC , EC, ∠E ,∠ECD;9.A ; 10.A; 11.C; 12 .D; 13.D;14.∵△DEF≌△MNP.∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52=°=80°,DE=MN=12cm.四.不成立,因为它们不是对应边.可找出AB=AC,AE=AD,BE=CD.5.4 探索三角性全等的条件(sss)1.SSS ;2.AD=BC ;3.60°;4.D ;5.C;6.先证△ABC≌△DEF(SSS)•,∴∠BCA=∠EFD,∴BC∥EF7.证△ABC≌△ADC(SSS),可得∠BAC=∠DAC,即AE•平分∠BAD8.∠A=∠D,理由如下:连接BC,在△DBC和△ACB中,∵DB=AC,CD=BA,BC=CB,•∴△DBC≌△ACB(SSS),∴∠A=∠D9.DM=DN.四. 略.5.4 探索直角三角形全等的条件(SAS、ASA、AAS)1.乙; 2.AC=AC等;3.2cm; 4.OA=OC或OB=OD或AB=CD;5.B ; 6.C;7.B; 8.B; 9.B;10.B;11.3;12.先证△ABE≌△DAF得AE=DF,因为由正方形ABCD得AD=DC,所以得ED=FC13.证明:延长AE到G,使EG=AE,连结DG.证△ABE≌△GDE,∴AB=GD,∴∠B=∠BDG.∵∠ADC=∠B+∠BAD.∠ADG=∠ADB+∠BDG,而∠ADB=∠BAD,∠B=∠BDG,∴∠ADC=∠ADG 再证△ADG≌△ADC,∴AG=AC,即AC=2AE.14.已知:DE⊥AB,DF⊥AC,垂足分别为E,F,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90º.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF(AAS),∴BE=CF.15.此图中有三对全等三角形,分别是:△ABF≌△DEC,△ABC≌△DEF,△BCF•≌△EFC.证明:∵AB∥DE,∴∠A=∠D.在△ABF和△DEC中,,,, AB DEA D AF DC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△DEC(SAS).四.证明:(1)① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE ,∵AC=BC,∴△ADC≌△CEB;② ∵△ADC≌△CEB,∴CE=AD,CD=BE ,∴DE=CE+CD=AD+BE,(2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE,又∵AC=BC ,∴△ACD≌△CBE ,∴CE=AD,CD=BE .∴DE=CE-CD=AD -BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE=BE -AD(或AD=BE -DE ,BE=AD+DE 等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE ,∴DE=CD-CE=BE -AD .5.5 ~5.6 作三角形~~利用三角形全等测距离1.C; 2.D ; 3.A ; 4.∠α ,a,b, 所求;5.共6个,如图所示: ....3.55A 2B 22C 1B 1A 136︒53.536.C ;7.略;8.在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得的DE 的长就是AB 的长.9.(1)由△APB ≌△DPC ,所以CD=AB .(2)由△ACB ≌△ECD 得DE=AB .目的是使DE ∥AB ,可行.10.因为△A ′OB ′≌△AOB ,所以AB=A ′B ′.11.解:(1)AE=CF (OE=OF ;DE ∥BF 等等)(2)因为四边形ABCD 是长方形,所以AB=CD ,•AB ∥CD ,∠DCF=∠BAF ,又因为AE=CF ,所以AC-AE=AC-CF ,所以AF=CE ,所以△DEC ≌△BFA .12.提示:连接EM ,FM ,需说明∠EMF=∠BMC=180°即可四.(1)FE=FD;(2)(1)中的结论FE=FD 仍然成立.在AC 上截取AG=AE ,连结FG .证△AEF ≌△AGF 得∠AFE=∠AFG ,FE=FG .由∠B=60°,AD 、CE 分别是∠BAC ,∠BCA 的平分线,得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE及FC为公共边.可证△CFG≌△CFD,所以FG=FD,所以FE=FD.5.7 探索直角三角形全等的条件(HL)1.B; 2.C; 3.D; 4.3; 5.全等 ; 6.(1)AAS或ASA ; (2)AAS ; (3)SAS或HL ; •(4)不全等 ; (5)不全等 ;7.猜想∠ADC=∠ADE.理由是∠ACD=∠AED=90°,∠CAD=•∠EAD,所以∠ADC=∠ADE(直角三角形两锐角互余).8.C 9.△ADE≌△CBF,△DEG≌△BFG,△ADG≌△CBG10.∠A CE 11.•全等 HL 5cm12.有全等直角三角形,有3对,分别是:△ABE≌△ACD,△ADF≌△AEF,•△BDF≌△CEF,根据的方法分别为AAS,HL,HL或SAS或AAS或ASA或SSS.13.解:因为△ABD≌△CBD,所以∠ADB=∠CDB.又因为PM⊥AD,PN⊥CD,所以PM=•PN.14.提示:先说明△ADC≌△BDF,所以∠DBE=∠DAC,所以∠ADB=∠AEF=90°,•所以BE⊥AC.15.△ABF≌△DEA,理由略.16.先证Rt△ACE≌Rt△BDF,再证△ACF≌△BDE;17. 需证Rt△ADC≌Rt△AEC四.(1)由于△ABC与△DEF是一张矩形纸片沿对角线剪开而得到两张三角形,所以△ABC≌△DEF,所以∠A=∠D,在△ANP和△DNC中,因为∠ANP=∠DNC,所以∠APN=∠DCN,又∠DCN=90°,所以∠APN=90°,故AB⊥ED.(2)答案不唯一,如△ABC≌△DBP;△PEM≌△FBM;△ANP≌△DNC等等.以△ABC≌△DBP为例证明如下:在△ABC与△DBP中,因为∠A=∠D,∠B=∠B,PB=BC,所以△ABC≌△DBP.单元综合测试1.一定,一定不;2.50°;3.40°;4.HL;5.略(答案不惟一);6.略(答案不惟一);7.5;8.正确;9.8;10.D;11.C;12.D;13.C;14.D;15.A;16.C;17.C;.18.略;19.略; 20.合理.因为他这样做相当于是利用“SSS”证明了△BED≌△CGF,所以可得∠B=∠C.21.此时轮船没有偏离航线.画图及说理略;22.(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE,事实上,因为△ABC与△DEF都是等边三角形,所以∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD,又因为∠CED+∠AEF=120°,∠CDE+∠CED=120°,所以∠AEF=∠CDE,同理,得∠CDE=∠BFD,所以△AEF≌△BFD≌△CDE(AAS),所以AE=BF=CD,AF=BD=CE ,(2)线段AE,BF,CD它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF,BD,CE它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.23.(1)△EAD ≌△EA D ',其中∠EAD=∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠;(2)118022180-2x y ∠=︒-=︒,∠;(3)规律为:∠1+∠2=2∠A .第六章 变量之间的关系6.1 小车下滑的时间1.R;2.(1)挂重,弹簧长度;(2)13;3.(1)速度,甲乙两地的距离;(2)时间,他距乙地的距离;4.220字/分;5.27;6.x x y 42+=;7.B;8.C;9.D;10.C;11.(1)皮球反弹的高度,下落高度;下落高度是自变量,反弹高度是因变量;(2)40cm;(3)200cm;12.(1)108.6度;(2)3258度;(3)y=54.3x;13.(1)通话时间和通话费用,通话时间是自变量,通话费用是因变量;(2)(3)略14.(1)(2)s=3n+1;不能剪成33个,因为当s=33时,n 不是整数.6.2 变化中的三角形1.9,4;2.3532-x ;3.y=20-2x;4.t=20-6h;5.21;6.y=3000+400x-2002x ;7.231;8.C;9.D;10.C;11.(1)V=331+0.6t ;(2)346;12.(1)y=3x+36;(2(313.(1)28个,45个;(2)y=x+19;(3)当y=52时,x=33,但仅有30排,所以不可能某排的座位数是52个;14.(1)1y =5x+1500;(2)2y =8x ;(3)当x=300时,3000150030051=+⨯=y (元) , 240030082=⨯=y (元),所以12y y <,故选乙公司合算. 6.3 温度的变化1.表格法,图象法,关系式法;2.水平,竖直;3.24,4;4.(1)7,5;(2)0千米/时,从2时到4时萌萌没有行走;(3)40;(4)10千米/时;(5)20;5.B;6.Q=90-8t ,675;7.D;8.D;9.(1)正方形个数,火柴棒根数;火柴棒根数;(2)3x+1;(3)19;10.(1)2510=元;58105.20--=3.5元;(2)因为3.5<5,所以应交水费为3.5×2=7元; 55.31017+-=7吨. 11.(1)由图象我们可以看出农民自带零钱为5元. (2)(元)5.030520=- (3)(千克)。
2009年普通高等学校招生全国统一考试(浙江卷) 数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B = ð( ) A .{|01}x x ≤< B .{|01}x x <≤ C .{|0}x x < D .{|1}x x > 答案:B 【解析】 对于{}1U C B x x =≤,因此U A B = ð{|01}x x <≤. 2.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:C【解析】对于“0a >且0b >”可以推出“0a b +>且0ab >”,反之也是成立的3.设1z i =+(i 是虚数单位),则22z z +=( )A .1i --B .1i -+C .1i -D . 1i + 答案:D【解析】对于2222(1)1211z i i i iz i +=++=-+=++4.在二项式251()x x -的展开式中,含4x 的项的系数是( ) w.w.w.k.s.5.u.c.o.m A .10- B .10 C .5- D .5 答案:B【解析】对于()251031551()()1rr r r r r r T C x C x x --+=-=-,对于1034,2r r -=∴=,则4x 的项的系数是225(1)10C -= 5.在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .90答案:C【解析】取BC 的中点E ,则AE ⊥面11BB C C ,AE DE ∴⊥,因此AD 与平面11BB C C 所成角即为ADE ∠,设AB a =,则AE a =,2a DE =,即有0tan 60ADE ADE ∠=∴∠=.6.某程序框图如图所示,该程序运行后输出的k 的值是 ( ) A .4 B .5 C .6 D .7 答案:A【解析】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出的4k =.7.设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A .3B .4C .5D .6答案:C【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现. 8.已知a 是实数,则函数()1sin f x a ax =+的图象不可能是 ( )答案:D【解析】对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴< ,而D 不符合要求,它的振幅大于1,但周期反而大于了2π.9.过双曲线22221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC= ,则双曲线的离心率是 ( )ABCD答案:C【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,AB BC a b e =∴=∴=10.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈ w.w.w.k.s.5.u.c.o.m D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈答案:C【解析】对于212121()()()()x x f x f x x x αα--<-<-,即有2121()()f x f x x x αα--<<-,令2121()()f x f x kx x -=-,有k αα-<<,不妨设1()f x M α∈,2()g x M α∈,即有11,f k αα-<<22g k αα-<<,因此有1212f g k k αααα--<+<+,因此有12()()f x g x M αα++∈.非选择题部分(共100分) 注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2009 年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分) A .﹣2+4i=( )B .﹣2﹣4iC .2+4iD .2﹣4i2.(5 分)设集合 A={x ||x |>3},B={x | A .φB .(3,4)3.(5 分)已知△ABC 中,cotA=﹣ ,则 cosA=( ) <0},则 A ∩B=( )C .(﹣2,1)D .(4,+∞)D .A .B .在点(1,1)处的切线方程为( ) B .x +y ﹣2=0C .x +4y ﹣5=0D .x ﹣4y +3=0C .4.(5 分)函数 A .x ﹣y ﹣2=05.(5 分)已知正四棱柱 ABCD ﹣A B C D 中,AA =2AB ,E 为 AA 中点,则异面 1 1 1 1 1 1 直线 BE 与 CD 所形成角的余弦值为( ) 1 A .B .C .D .6.(5 分)已知向量 =(2,1), =10,| + |= ,则| |=( )D .25A .B .C .57.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a8.(5 分)若将函数 y=tan (ωx + )(ω>0)的图象向右平移个单位长度 后,与函数 y=tan (ωx + )的图象重合,则 ω 的最小值为( )A .B .C .D .9.(5 分)已知直线 y=k (x +2)(k >0)与抛物线 C :y 2=8x 相交于 A 、B 两点, F 为 C 的焦点,若|FA |=2|FB |,则 k=( ) A .B .C .D .10.(5 分)甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A.B.C.D.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为.14.(5 分)设等差数列{a }的前n 项和为S ,若a =5a ,则=.n n 5 315.(5 分)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.119.(12 分)设数列{a }的前n 项和为S ,已知a =1,S =4a +2(n∈N*).n n 1 n+1 n(1)设b =a ﹣2a ,证明数列{b }是等比数列;n n+1 n n(2)求数列{a }的通项公式.n20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.22009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5 分)A.﹣2+4i =()B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=故选:A.,【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5 分)设集合A={x||x|>3},B={x| A.φB.(3,4)<0},则A∩B=()C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A 和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3 或x<﹣3},B={x| <0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5 分)已知△ABC 中,cotA=﹣,则cosA=()A.B.C.D.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA 转化成正弦和余弦,求得sinA 和cosA 的关系式,进而与sin2A+cos2A=1 联立方程求得cosA 的值.【解答】解:∵cotA=∴A 为钝角,cosA<0 排除A 和B,再由cotA=故选:D.= ,和sin2A+cos2A=1 求得cosA= ,【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5 分)函数A.x﹣y﹣2=0在点(1,1)处的切线方程为()B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5 分)已知正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,则异面1 1 1 1 1 1直线BE 与CD 所形成角的余弦值为()1A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA ∥CD ,知∠A BE 是异面直线BE 与CD 所形成角,由此能求出异1 1 1 1面直线BE 与CD 所形成角的余弦值.1【解答】解:∵正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,1 1 1 1 1 1∴BA ∥CD ,∴∠A BE 是异面直线BE 与CD 所形成角,1 1 1 1设AA =2AB=2,1则A E=1,BE= = ,1= ,A B=1∴cos∠A BE=1== .∴异面直线BE 与CD 所形成角的余弦值为.1故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真 审题,注意空间思维能力的培养.6.(5 分)已知向量 =(2,1), A .B .=10,| + |= C .5,则| |=( )D .25【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算.【专题】5A :平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a +b |=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方 程,解方程即可. 【解答】解:∵| + |= ∴( + )2= 2+ 2+2 ,| |= =50,得| |=5 故选:C .【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模 的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注 意对于变量的应用.7.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log x 的单调性进行求解.当a>1 时函数为增函数当0a<a<1 时函数为减函数,如果底a 不相同时可利用1 做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1 做为中介值.8.(5 分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣]=tan(ωx+ω+kπ=)+ )∴﹣∴ω=k+(k∈Z),又∵ω>0∴ωmin= .故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5 分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x 相交于A、B 两点,F 为C 的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B 分别作AM⊥l 于M,BN ⊥l 于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B 为AP 的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B 的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x 的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B 分别作AM⊥l 于M,BN⊥l 于N,由|FA|=2|FB|,则|AM|=2|BN|,点B 为AP 的中点、连接OB,则,∴|OB|=|BF|,点B 的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5 分)甲、乙两人从4 门课程中各选修2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2 门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2 门的种数C 2C 2=36,4 4②两人所选两门都相同的有为C 2=6 种,都不同的种数为C 2=6,4 4故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA :双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为 l ,过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥ AM 于 D ,由直线 AB 的斜率可知直线 AB 的倾斜角,进而推,由双曲线的第二定义|AM |﹣|BN |=|AD |,进而根据【解答】解:设双曲线的右准线为 l , ,求得离心率. 过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥AM 于 D ,由直线 AB 的斜率为, 知直线 AB 的倾斜角为 60°∴∠BAD=60°,由双曲线的第二定义有: =∴,∴故选:A .【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x,y 的指数都为1 求出x3y3 的系数【解答】解:只需求, 展开式中的含 xy 项的系数. 的展开式的通项为 得 r=2∵令 ∴展开式中 x 3y 3 的系数为 C 2=6 4故答案为 6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工 具.14.(5 分)设等差数列{a }的前 n 项和为 S ,若 a =5a ,则 = 9 .n n 5 3 【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知 S =9a ,S =5a ,根据 a =5a ,进 9 5 5 3 5 3 而可得则 的值.【解答】解:∵{a }为等差数列,n S =a +a +…+a =9a ,S =a +a +…+a =5a ,9 1 2 9 5 5 1 2 5 3 ∴故答案为 9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5 分)设 OA 是球 O 的半径,M 是 OA 的中点,过 M 且与 OA 成 45°角的 平面截球 O 的表面得到圆 C .若圆 C 的面积等于8π . ,则球 O 的表面积等于【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C 的半径为r,.因为由.得R2=2故球O 的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD 的对角线AC 和BD 相交于点O,菱形ABCD 各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA ,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ= AB ,得到M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.【解答】已知:如图,菱形ABCD 的对角线AC 和BD 相交于点O.求证:菱形ABCD 各边中点M、N、P、Q 在以O 为圆心的同一个圆上.证明:∵四边形ABCD 是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q 分别是边AB、BC、CD、DA 的中点,∴OM=ON=OP=OQ= AB,∴M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB= (负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB= 及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)= ,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)= ,∴sinAsinC= .又由b2=ac 及正弦定理得sin2B=sinAsinC,故∴,或(舍去),于是B= 或B= .又由b2=ac知b≤a 或b≤c所以B= .【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.1【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B C 与平面BCD 所成的线面角,只需求点B 到面BDC 的距离即可,作AG1 1⊥BD 于G,连GC,∠AGC 为二面角A﹣BD﹣C 的平面角,在三角形AGC 中求出GC 即可.【解答】解:如图(I )连接 BE ,∵ABC ﹣A B C 为直三棱柱,1 1 1 ∴∠B BC=90°, 1∵E 为 B C 的中点,∴BE=EC .1 又 DE ⊥平面 BCC , 1∴BD=DC (射影相等的两条斜线段相等)而 DA ⊥平面 ABC ,∴AB=AC (相等的斜线段的射影相等).(II )求 B C 与平面 BCD 所成的线面角,1 只需求点 B 到面 BDC 的距离即可.1 作 AG ⊥BD 于 G ,连 GC ,∵AB ⊥AC ,∴GC ⊥BD ,∠AGC 为二面角 A ﹣BD ﹣C 的平面角,∠AGC=60°不妨设 ,则 AG=2,GC=4在 RT △ABD 中,由 AD•AB=BD•AG ,易得设点 B 到面 BDC 的距离为 h ,B C 与平面 BCD 所成的角为 α.1 1 利用可求得 h= 即 B C 与平面 BCD 所成的角为 30°. , ,又可求得 ,∴α=30°.1 【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运 算能力和推理论证能力,属于基础题.19.(12 分)设数列{a }的前 n 项和为 S ,已知 a =1,S =4a +2(n ∈N *).n n 1 n +1 n (1)设 b =a ﹣2a ,证明数列{b }是等比数列;n n +1 n n(2)求数列{a }的通项公式.n【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b =a ﹣2a =3.由S =4a +2 和S =4a n﹣1+2 相减得1 2 1 n+1 n na =4a ﹣4a ,即a ﹣2a =2(a ﹣2a ),所以b =2b ,由此可知{b }n+1 n n﹣1 n+1 n n n﹣1 n n﹣1 n是以b =3 为首项、以2 为公比的等比数列.1(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a }的通项公式.n【解答】解:(1)由a =1,及S =4a +2,1 n+1 n得a +a =4a +2,a =3a +2=5,所以b =a ﹣2a =3.1 2 1 2 1 1 2 1由S =4a +2,①n+1 n则当n≥2 时,有S =4a n﹣1+2,②n①﹣②得a =4a ﹣4a ,所以a ﹣2a =2(a ﹣2a n﹣1),n+1 n n﹣1 n+1 n n又b =a ﹣2a ,所以b =2b (b ≠0),所以{b }是以b =3 为首项、以2 为n n+1 n n n﹣1 n n 1公比的等比数列.(6 分)(2)由(I)可得b =a ﹣2a =3•2n﹣1,等式两边同时除以2n+1,得n n+1 n.所以数列是首项为,公差为的等差数列.所以,即a =(3n﹣1)•2n﹣2(n∈N*).(13 分)n【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2 人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10 名工人,乙组有5 名工人,从甲、乙两组中共抽取3 名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2 名,乙中抽取1 名.(Ⅱ)因为由上问求得;在甲中抽取2 名工人,故从甲组抽取的工人中恰有1 名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ0 1 2 3P故Eξ== .【点评】本题较常规,比08 年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l 的方程为x﹣y﹣c=0,由坐标原点O 到l 的距离求得c,进而根据离心率求得a 和b.(II)由(I)可得椭圆的方程,设A(x ,y )、B(x ,y ),l:x=my+1 代入1 12 2椭圆的方程中整理得方程△>0.由韦达定理可求得y +y 和y y 的表达式,1 2 1 2假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,1 2y +y ),代入椭圆方程;把A,B 两点代入椭圆方程,最后联立方程求得c,1 2进而求得P 点坐标,求出m 的值得出直线l 的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O 到l 的距离为则又,解得c=1 ,∴(II)由(I)知椭圆的方程为设A(x ,y )、B(x ,y )1 12 2由题意知l 的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,y +y ),1 2 1 2点P 在椭圆上,即.整理得2x 2+3y 2+2x 2+3y 2+4x x +6y y =6.1 12 2 1 2 1 2又A、B 在椭圆上,即2x 2+3y 2=6,2x 2+3y 2=6、1 12 2故2x x +3y y +3=0②1 2 1 2将x x =(my +1)(my +1)=m2y y +m(y +y )+1 及①代入②解得1 2 1 2 1 2 1 2∴,x +x = ,即1 2当当;【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.2【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,建立不1 2等关系解之即可,在函数的定义域内解不等式fˊ(x)>0 和fˊ(x)<0,求出单调区间;(2)x 是方程g(x)=0 的根,将a 用x 表示,消去a 得到关于x 的函数,研2 2 2究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,1 2其充要条件为,得(1)当x∈(﹣1,x )时,f'(x)>0,∴f(x)在(﹣1,x )内为增函数;1 1(2)当x∈(x ,x )时,f'(x)<0,∴f(x)在(x ,x )内为减函数;1 2 1 2(3)当x∈(x ,+∞)时,f'(x)>0,∴f(x)在(x ,+∞)内为增函数;2 2(II)由(I)g(0)=a>0,∴,a=﹣(2x2 +2x )2 2∴f(x )=x 2+aln(1+x )=x 2﹣(2x2 +2x )ln(1+x )2 2 2 2 2 2 2设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当故时,h'(x)>0,∴h(x)在单调递增,.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
2009年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•浙江)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}【考点】交、并、补集の混合运算.【专题】集合.【分析】欲求两个集合の交集,先得求集合C U B,再求它与Aの交集即可.【解答】解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.【点评】这是一个集合の常见题,属于基础题之列.2.(5分)(2009•浙江)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”の()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件の判断.【专题】简易逻辑.【分析】考虑“a>0且b>0”与“a+b>0且ab>0”の互推性.【解答】解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”の充分必要条件,故选C【点评】本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.3.(5分)(2009•浙江)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式の混合运算.【专题】数系の扩充和复数.【分析】把复数z代入表达式化简整理即可.【解答】解:对于,故选D.【点评】本小题主要考查了复数の运算和复数の概念,以复数の运算为载体,直接考查了对于复数概念和性质の理解程度.4.(5分)(2009•浙江)在二项式の展开式中,含x4の项の系数是()A.﹣10 B.10 C.﹣5 D.5【考点】二项式定理.【专题】二项式定理.【分析】利用二项展开式の通项公式求出第r+1项,令xの指数为4求得.【解答】解:对于,对于10﹣3r=4,∴r=2,则x4の项の系数是C52(﹣1)2=10故选项为B【点评】二项展开式の通项是解决二项展开式の特定项问题の工具.5.(5分)(2009•浙江)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB1C1Cの中心,则AD与平面BB1C1C所成角の大小是()A.30°B.45°C.60°D.90°【考点】空间中直线与平面之间の位置关系.【专题】空间位置关系与距离.【分析】本题考查の知识点是线面夹角,由已知中侧棱垂直于底面,我们过D点做BCの垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成の角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C【点评】求直线和平面所成の角时,应注意の问题是:(1)先判断直线和平面の位置关系.(2)当直线和平面斜交时,常用以下步骤:①构造﹣﹣作出或找到斜线与射影所成の角;②设定﹣﹣论证所作或找到の角为所求の角;③计算﹣﹣常用解三角形の方法求角;④结论﹣﹣点明斜线和平面所成の角の值.6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出のkの值是()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据流程图所示の顺序,逐框分析程序中各变量、各语句の作用可知:该程序の作用是计算满足S=≥100の最小项数【解答】解:根据流程图所示の顺序,程序の运行过程中各变量值变化如下表:是否继续循环S K循环前/0 0第一圈是 1 1第二圈是 3 2第三圈是11 3第四圈是2059 4第五圈否∴最终输出结果k=4故答案为A【点评】根据流程图(或伪代码)写程序の运行结果,是算法这一模块最重要の题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算の类型,又要分析出参与计算の数据(如果参与运算の数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析の结果,选择恰当の数学模型③解模.7.(5分)(2009•浙江)设向量,满足:||=3,||=4,•=0.以,,﹣の模为边长构成三角形,则它の边与半径为1の圆の公共点个数最多为()A.3 B.4 C.5 D.6【考点】直线与圆相交の性质;向量の模;平面向量数量积の运算.【专题】平面向量及应用.【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆の半径,进而看半径为1の圆内切于三角形时有三个公共点,对于圆の位置稍一右移或其他の变化,能实现4个交点の情况,进而可得出答案.【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1の圆有一个位置是正好是三角形の内切圆,此时只有三个交点,对于圆の位置稍一右移或其他の变化,能实现4个交点の情况,但5个以上の交点不能实现.故选B【点评】本题主要考查了直线与圆の位置关系.可采用数形结合结合の方法较为直观.8.(5分)(2009•浙江)已知a是实数,则函数f(x)=1+asinaxの图象不可能是()A.B.C.D.【考点】正弦函数の图象.【专题】三角函数の图像与性质.【分析】函数f(x)=1+asinaxの图象是一个正弦曲线型の图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数の周期为:,∵|a|>1,∴T<2π,而D不符合要求,它の振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象の对应关系,故选D.【点评】由于函数の解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题の关键.9.(5分)(2009•浙江)过双曲线﹣=1(a>0,b>0)の右顶点A作斜率为﹣1の直线,该直线与双曲线の两条渐近线の交点分别为B、C.若=,则双曲线の离心率是()A.B.C.D.【考点】直线与圆锥曲线の综合问题;双曲线の简单性质.【专题】圆锥曲线の定义、性质与方程.【分析】分别表示出直线l和两个渐近线の交点,进而表示出和,进而根据=求得a和bの关系,进而根据c2﹣a2=b2,求得a和cの关系,则离心率可得.【解答】解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.【点评】本题主要考查了直线与圆锥曲线の综合问题.要求学生有较高地转化数学思想の运用能力,能将已知条件转化到基本知识の运用.10.(5分)(2009•浙江)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q﹣P=()A.P B.{5} C.{1,3,4} D.Q【考点】集合の包含关系判断及应用.【专题】集合.【分析】理解新の运算,根据新定义A﹣B知道,新の集合A﹣B是由所有属于A但不属于Bの元素组成.【解答】解:Q﹣P是由所有属于Q但不属于Pの元素组成,所以Q﹣P={5}.故选B.【点评】本题主要考查了集合の运算,是一道创新题,具有一定の新意.要求学生对新定义のA﹣B有充分の理解才能正确答.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2009•浙江)设等比数列{a n}の公比,前n项和为S n,则=15.【考点】等比数列の性质.【专题】等差数列与等比数列.【分析】先通过等比数列の求和公式,表示出S4,得知a4=a1q3,进而把a1和q代入约分化简可得到答案.【解答】解:对于,∴【点评】本题主要考查了等比数列中通项公式和求和公式の应用.属基础题.12.(4分)(2009•浙江)若某个几何体の三视图(单位:cm)如图所示,则该几何体の体积是18cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由图可知,图形由两个体积相同の长方体组成,求出其中一个体积即可.【解答】解:由图可知,底下の长方体底面长为3,宽为1,底面积为3×1=3,高为3,因此体积为3×3=9;上面の长方体底面是个正方形,边长为3,高为1,易知与下面の长方体体积相等,因此易得该几何体の体积为9×2=18.【点评】本题考查学生の空间想象能力,是基础题.13.(4分)(2009•浙江)若实数x,y满足不等式组,则2x+3yの最小值是4.【考点】简单线性规划.【专题】不等式の解法及应用.【分析】先由约束条件画出可行域,再求出可行域各个角点の坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足不等式组の可行域,由图易得:当x=2,y=0时,2x+3y=4;当x=1,y=1时,2x+3y=5;当x=4,y=4时,2x+3y=20,因此,当x=2,y=0时,2x+3y有最小值4.故答案为4【点评】在解决线性规划の小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点の坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14.(4分)(2009•浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区の电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下の部分0.568 50及以下の部分0.288超过50至200の部分0.598 超过50至200の部分0.318超过200の部分0.668 超过200の部分0.388若某家庭5月份の高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付の电费为148.4元(用数字作答)【考点】分段函数の解析式求法及其图象の作法.【专题】函数の性质及应用.【分析】先计算出高峰时间段用电の电费,和低谷时间段用电の电费,然后把这两个电费相加.【解答】解:高峰时间段用电の电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电の电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月の总电费为118.1+30.3=148.4 (元),故答案为:148.4.【点评】本题考查分段函数の函数值の求法,体现了分类讨论の数学思想,属于中档题.15.(4分)(2009•浙江)观察下列等式:观察下列等式:C+C=23﹣2,C+C+C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=24n﹣1+(﹣1)n22n﹣1.【考点】二项式定理の应用.【专题】二项式定理.【分析】通过观察类比推理方法结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1【解答】解:结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1,因此对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=24n﹣1+(﹣1)n22n﹣1.故答案为24n﹣1+(﹣1)n22n﹣1【点评】本题考查观察、类比、归纳の能力.16.(4分)(2009•浙江)甲、乙、丙3人站到共有7级の台阶上,若每级台阶最多站2人,同一级台阶上の人不区分站の位置,则不同の站法总数是336.【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同の站法种数是A73+C31A72=336种.故答案为:336.【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.17.(4分)(2009•浙江)如图,在长方形ABCD中,AB=2,BC=1,E为DCの中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则tの取值范围是(,1).【考点】平面与平面垂直の性质;棱锥の结构特征.【专题】空间位置关系与距离;空间角;立体几何.【分析】此题の破解可采用二个极端位置法,即对于F位于DCの中点时与随着F点到C 点时,分别求出此两个位置のt值即可得到所求の答案【解答】解:此题の破解可采用二个极端位置法,即对于F位于DCの中点时,可得t=1,随着F点到C点时,当C与F无限接近,不妨令二者重合,此时有CD=2因CB⊥AB,CB⊥DK,∴CB⊥平面ADB,即有CB⊥BD,对于CD=2,BC=1,在直角三角形CBD中,得BD=,又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,因此tの取值の范围是(,1)故答案为(,1)【点评】考查空间图形の想象能力,及根据相关の定理对图形中の位置关系进行精准判断の能力.三、解答题(共5小题,满分72分)18.(14分)(2009•浙江)在△ABC中,角A、B、C所对应の边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABCの面积;(Ⅱ)若b+c=6,求aの值.【考点】二倍角の余弦;平面向量数量积の运算;余弦定理.【专题】解三角形.(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA,进而根据【分析】求得bcの值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+cの值求得b和c,进而根据余弦定理求得aの值.【解答】解:(Ⅰ)因为,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴【点评】本题主要考查了解三角形の问题.涉及了三角函数中の倍角公式、余弦定理和三角形面积公式等,综合性很强.19.(14分)(2009•浙江)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数の概率;(Ⅱ)记ξ为这三个数中两数相邻の组数,(例如:若取出の数1、2、3,则有两组相邻の数1、2和2、3,此时ξの值是2).求随机变量ξの分布列及其数学期望Eξ.【考点】等可能事件の概率;离散型随机变量及其分布列;离散型随机变量の期望与方差;组合及组合数公式.【专题】概率与统计.【分析】(I)由题意知本题是一个古典概型,试验发生包含の所有事件是从9个数字中选3个,而满足条件の事件是3个数恰有一个是偶数,即有一个偶数和两个奇数.根据概率公式得到结果.(2)随机变量ξ为这三个数中两数相邻の组数,则ξの取值为0,1,2,当变量为0时表示不包含相邻の数,结合变量对应の事件写出概率和分布列,算出期望.【解答】解:(I)由题意知本题是一个古典概型,试验发生包含の所有事件是C93,而满足条件の事件是3个数恰有一个是偶数共有C41C52记“这3个数恰有一个是偶数”为事件A,∴;(II)随机变量ξ为这三个数中两数相邻の组数,则ξの取值为0,1,2,当变量为0时表示不包含相邻の数P(ξ=0)=,P(ξ=1)=,P(ξ=2)=∴ξの分布列为ξ0 1 2p∴ξの数学期望为.【点评】本题考查离散型随机变量の分布列,求离散型随机变量の分布列和期望是近年来理科高考必出の一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.20.(14分)(2009•浙江)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边の等腰直角三角形,E,F,O分别为PA,PB,ACの中点,AC=16,PA=PC=10.(Ⅰ)设G是OCの中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OBの距离.【考点】直线与平面平行の判定;点、线、面间の距离计算.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】由于PAC⊥平面ABC,△ABC是以AC为斜边の等腰直角三角形,O为ACの中点,AC=16,PA=PC=10,所以PO、OB、OC是两两垂直の三条直线,因此可以考虑用空间向量解决:连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,对于(I),只需证明向量FG与平面BOEの一个法向量垂直即可,而根据坐标,平面の一个法向量可求,从而得证;对于(II),在第一问の基础上,课设点Mの坐标,利用FM⊥平面BOE求出Mの坐标,而其道OA、OBの距离就是点M 横纵坐标の绝对值.【解答】证明:(I)如图,连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x 轴,y轴,z轴,建立空间直角坐标系O﹣xyz,则O(0,0,0),A(0,﹣8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,﹣4,3),F(4,0,3),(3分)由题意得,G(0,4,0),因,因此平面BOEの法向量为,)得,又直线FG不在平面BOE内,因此有FG∥平面BOE.(6分)(II)设点Mの坐标为(x0,y0,0),则,因为FM⊥平面BOE,所以有,因此有,即点Mの坐标为(8分)在平面直角坐标系xoy中,△AOBの内部区域满足不等式组,经检验,点Mの坐标满足上述不等式组,所以在△ABO内存在一点M,使FM⊥平面BOE,由点Mの坐标得点M到OA,OBの距离为.(12分)【点评】本题考查直线与平面の平行の判定以及距离问题,建立了空间坐标系,所有问题就转化为向量の运算,使得问题简单,解决此类问题时要注意空间向量の使用.21.(15分)(2009•浙江)已知椭圆C1:(a>b>0)の右顶点A(1,0),过C1の焦点且垂直长轴の弦长为1.(Ⅰ)求椭圆C1の方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处の切线与C1交于点M,N.当线段APの中点与MNの中点の横坐标相等时,求hの最小值.【考点】圆锥曲线の综合;椭圆の标准方程.【专题】圆锥曲线の定义、性质与方程;圆锥曲线中の最值与范围问题.【分析】(I)根据题意,求出a,bの值,然后得出椭圆の方程.(II)设出M,N,Pの坐标,将直线代入椭圆,联立方程组,根据△判断最值即可.【解答】解:(I)由题意得,∴,所求の椭圆方程为,(II)不妨设M(x1,y1),N(x2,y2),P(t,t2+h),则抛物线C2在点P处の切线斜率为y'|x=t=2t,直线MNの方程为y=2tx﹣t2+h,将上式代入椭圆C1の方程中,得4x2+(2tx﹣t2+h)2﹣4=0,即4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,因为直线MN与椭圆C1有两个不同の交点,所以有△1=16[﹣t4+2(h+2)t2﹣h2+4]>0,设线段MNの中点の横坐标是x3,则,设线段PAの中点の横坐标是x4,则,由题意得x3=x4,即有t2+(1+h)t+1=0,其中の△2=(1+h)2﹣4≥0,∴h≥1或h≤﹣3;当h≤﹣3时有h+2<0,4﹣h2<0,因此不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0不成立;因此h≥1,当h=1时代入方程t2+(1+h)t+1=0得t=﹣1,将h=1,t=﹣1代入不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0成立,因此hの最小值为1.【点评】本题考查圆锥图象の综合利用,椭圆方程の应用,通过构造一元二次方程,利用根の判别式计算,属于中档题.22.(15分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求kの取值范围;(Ⅱ)设函数是否存在k,对任意给定の非零实数x1,存在惟一の非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求kの值;若不存在,请说明理由.【考点】利用导数研究函数の单调性;函数の单调性与导数の关系.【专题】导数の综合应用.【分析】(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数の方法得出,最后再利用导数求出此函数の值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0の情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.【解答】解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等の实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0の情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2の值是唯一の;同理,∀x1<0,即存在唯一の非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.【点评】本题主要考查导函数の正负与原函数の单调性之间の关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题の综合能力,属于中档题.。
中国广告业是一个朝阳产业,未来的发展空间十分巨大。
1991年至2000年十年间,中国广告经营收入以平均每年增长百分之三十九点七三的速度发展,保持了持续快速增长势头。
至去年底,中国共有广告经营单位七万户,从业人员六十四万人,营业收入七百一十二亿元,分别比前年增长百分之九、百分之九点一三和百分之十四点五七,高于国民经济增长水平。
随着中国经济的快速发展和市场化程序的提高,中国广告产业必将以更快的速度发展。
而广告产业的迅猛发展,对中国国民经济的发展将起到催化作用。
2000年中国广告经营收入仅占国内生产总值百分之零点八,而美国1998年的广告经营收入已占其国内生产总值的百分之二点二,可以预见,未来中国广告产业仍大有可为,存在巨大的发展空间。
广告公司各部门职责概述客户执行总监(AD)◆直接上级:客户总监(副总经理兼)◆直接下级:AM、AE◆主要职责:配合副总经理进行业务执行的管理组织及新业务开发◆直接责任:对业务执行的流程、质量与结果负责◆直接权力:1. 对AM、AE工作的分派、调整权2. 对AM、AE加班及补休的决定权(4小时以内的加班与2小时以内的补休)注:超过以上时间需以文字方式提前申报由副总经理批准。
3. 对AM、AE工作质量的考评与奖惩的动议权4. 对业务执行、策划与创意、设计制作管理的建议与协调权5. 对公司管理问题的监督(批评)与建议权。
注:以上3.4.5.条均以文字方式交到行政部由总经理处理◆直接工作:1. 负责审核每项业务的执行计划,包括:(1)负责AM、AE的工作分派(2)负责审核业务执行的[时间推进计划](3)负责业务执行重点的提示与要求及跟踪督导2. 负责业务的报价与合同3. 负责签发业务执行的策划、创意设计[工作传单]并协调具体执行工作4. 负责业务执行中的收付款审核与督导5. 负责督导、收缴业务流程文件及小组[工作周志]与[月工作报告]6. 负责在每月2日前完成上月业务[月工作报告]上交副总经理7. 参与内部各项业务重要的策划、创意会8. 协助副总经理对AM 、AE及相关策划与创作人员进行业务知识培训9. 协助副总经理组织在每一季度初5日前评选出上季度的“dc之星”交到行政部由总经理审批。
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n=4a n+2,①+1则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
2009 年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分) A .﹣2+4i=( )B .﹣2﹣4iC .2+4iD .2﹣4i2.(5 分)设集合 A={x ||x |>3},B={x | A .φB .(3,4)3.(5 分)已知△ABC 中,cotA=﹣ ,则 cosA=( ) <0},则 A ∩B=( )C .(﹣2,1)D .(4,+∞)D .A .B .在点(1,1)处的切线方程为( ) B .x +y ﹣2=0C .x +4y ﹣5=0D .x ﹣4y +3=0C .4.(5 分)函数 A .x ﹣y ﹣2=05.(5 分)已知正四棱柱 ABCD ﹣A B C D 中,AA =2AB ,E 为 AA 中点,则异面 1 1 1 1 1 1 直线 BE 与 CD 所形成角的余弦值为( ) 1 A .B .C .D .6.(5 分)已知向量 =(2,1), =10,| + |= ,则| |=( )D .25A .B .C .57.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a8.(5 分)若将函数 y=tan (ωx + )(ω>0)的图象向右平移个单位长度 后,与函数 y=tan (ωx + )的图象重合,则 ω 的最小值为( )A .B .C .D .9.(5 分)已知直线 y=k (x +2)(k >0)与抛物线 C :y 2=8x 相交于 A 、B 两点, F 为 C 的焦点,若|FA |=2|FB |,则 k=( ) A .B .C .D .10.(5 分)甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A.B.C.D.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为.14.(5 分)设等差数列{a }的前n 项和为S ,若a =5a ,则=.n n 5 315.(5 分)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.119.(12 分)设数列{a }的前n 项和为S ,已知a =1,S =4a +2(n∈N*).n n 1 n+1 n(1)设b =a ﹣2a ,证明数列{b }是等比数列;n n+1 n n(2)求数列{a }的通项公式.n20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.22009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5 分)A.﹣2+4i =()B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=故选:A.,【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5 分)设集合A={x||x|>3},B={x| A.φB.(3,4)<0},则A∩B=()C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A 和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3 或x<﹣3},B={x| <0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5 分)已知△ABC 中,cotA=﹣,则cosA=()A.B.C.D.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA 转化成正弦和余弦,求得sinA 和cosA 的关系式,进而与sin2A+cos2A=1 联立方程求得cosA 的值.【解答】解:∵cotA=∴A 为钝角,cosA<0 排除A 和B,再由cotA=故选:D.= ,和sin2A+cos2A=1 求得cosA= ,【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5 分)函数A.x﹣y﹣2=0在点(1,1)处的切线方程为()B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5 分)已知正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,则异面1 1 1 1 1 1直线BE 与CD 所形成角的余弦值为()1A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA ∥CD ,知∠A BE 是异面直线BE 与CD 所形成角,由此能求出异1 1 1 1面直线BE 与CD 所形成角的余弦值.1【解答】解:∵正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,1 1 1 1 1 1∴BA ∥CD ,∴∠A BE 是异面直线BE 与CD 所形成角,1 1 1 1设AA =2AB=2,1则A E=1,BE= = ,1= ,A B=1∴cos∠A BE=1== .∴异面直线BE 与CD 所形成角的余弦值为.1故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真 审题,注意空间思维能力的培养.6.(5 分)已知向量 =(2,1), A .B .=10,| + |= C .5,则| |=( )D .25【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算.【专题】5A :平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a +b |=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方 程,解方程即可. 【解答】解:∵| + |= ∴( + )2= 2+ 2+2 ,| |= =50,得| |=5 故选:C .【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模 的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注 意对于变量的应用.7.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log x 的单调性进行求解.当a>1 时函数为增函数当0a<a<1 时函数为减函数,如果底a 不相同时可利用1 做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1 做为中介值.8.(5 分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣]=tan(ωx+ω+kπ=)+ )∴﹣∴ω=k+(k∈Z),又∵ω>0∴ωmin= .故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5 分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x 相交于A、B 两点,F 为C 的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B 分别作AM⊥l 于M,BN ⊥l 于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B 为AP 的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B 的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x 的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B 分别作AM⊥l 于M,BN⊥l 于N,由|FA|=2|FB|,则|AM|=2|BN|,点B 为AP 的中点、连接OB,则,∴|OB|=|BF|,点B 的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5 分)甲、乙两人从4 门课程中各选修2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2 门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2 门的种数C 2C 2=36,4 4②两人所选两门都相同的有为C 2=6 种,都不同的种数为C 2=6,4 4故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA :双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为 l ,过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥ AM 于 D ,由直线 AB 的斜率可知直线 AB 的倾斜角,进而推,由双曲线的第二定义|AM |﹣|BN |=|AD |,进而根据【解答】解:设双曲线的右准线为 l , ,求得离心率. 过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥AM 于 D ,由直线 AB 的斜率为, 知直线 AB 的倾斜角为 60°∴∠BAD=60°,由双曲线的第二定义有: =∴,∴故选:A .【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x,y 的指数都为1 求出x3y3 的系数【解答】解:只需求, 展开式中的含 xy 项的系数. 的展开式的通项为 得 r=2∵令 ∴展开式中 x 3y 3 的系数为 C 2=6 4故答案为 6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工 具.14.(5 分)设等差数列{a }的前 n 项和为 S ,若 a =5a ,则 = 9 .n n 5 3 【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知 S =9a ,S =5a ,根据 a =5a ,进 9 5 5 3 5 3 而可得则 的值.【解答】解:∵{a }为等差数列,n S =a +a +…+a =9a ,S =a +a +…+a =5a ,9 1 2 9 5 5 1 2 5 3 ∴故答案为 9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5 分)设 OA 是球 O 的半径,M 是 OA 的中点,过 M 且与 OA 成 45°角的 平面截球 O 的表面得到圆 C .若圆 C 的面积等于8π . ,则球 O 的表面积等于【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C 的半径为r,.因为由.得R2=2故球O 的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD 的对角线AC 和BD 相交于点O,菱形ABCD 各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA ,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ= AB ,得到M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.【解答】已知:如图,菱形ABCD 的对角线AC 和BD 相交于点O.求证:菱形ABCD 各边中点M、N、P、Q 在以O 为圆心的同一个圆上.证明:∵四边形ABCD 是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q 分别是边AB、BC、CD、DA 的中点,∴OM=ON=OP=OQ= AB,∴M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB= (负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB= 及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)= ,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)= ,∴sinAsinC= .又由b2=ac 及正弦定理得sin2B=sinAsinC,故∴,或(舍去),于是B= 或B= .又由b2=ac知b≤a 或b≤c所以B= .【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.1【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B C 与平面BCD 所成的线面角,只需求点B 到面BDC 的距离即可,作AG1 1⊥BD 于G,连GC,∠AGC 为二面角A﹣BD﹣C 的平面角,在三角形AGC 中求出GC 即可.【解答】解:如图(I )连接 BE ,∵ABC ﹣A B C 为直三棱柱,1 1 1 ∴∠B BC=90°, 1∵E 为 B C 的中点,∴BE=EC .1 又 DE ⊥平面 BCC , 1∴BD=DC (射影相等的两条斜线段相等)而 DA ⊥平面 ABC ,∴AB=AC (相等的斜线段的射影相等).(II )求 B C 与平面 BCD 所成的线面角,1 只需求点 B 到面 BDC 的距离即可.1 作 AG ⊥BD 于 G ,连 GC ,∵AB ⊥AC ,∴GC ⊥BD ,∠AGC 为二面角 A ﹣BD ﹣C 的平面角,∠AGC=60°不妨设 ,则 AG=2,GC=4在 RT △ABD 中,由 AD•AB=BD•AG ,易得设点 B 到面 BDC 的距离为 h ,B C 与平面 BCD 所成的角为 α.1 1 利用可求得 h= 即 B C 与平面 BCD 所成的角为 30°. , ,又可求得 ,∴α=30°.1 【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运 算能力和推理论证能力,属于基础题.19.(12 分)设数列{a }的前 n 项和为 S ,已知 a =1,S =4a +2(n ∈N *).n n 1 n +1 n (1)设 b =a ﹣2a ,证明数列{b }是等比数列;n n +1 n n(2)求数列{a }的通项公式.n【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b =a ﹣2a =3.由S =4a +2 和S =4a n﹣1+2 相减得1 2 1 n+1 n na =4a ﹣4a ,即a ﹣2a =2(a ﹣2a ),所以b =2b ,由此可知{b }n+1 n n﹣1 n+1 n n n﹣1 n n﹣1 n是以b =3 为首项、以2 为公比的等比数列.1(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a }的通项公式.n【解答】解:(1)由a =1,及S =4a +2,1 n+1 n得a +a =4a +2,a =3a +2=5,所以b =a ﹣2a =3.1 2 1 2 1 1 2 1由S =4a +2,①n+1 n则当n≥2 时,有S =4a n﹣1+2,②n①﹣②得a =4a ﹣4a ,所以a ﹣2a =2(a ﹣2a n﹣1),n+1 n n﹣1 n+1 n n又b =a ﹣2a ,所以b =2b (b ≠0),所以{b }是以b =3 为首项、以2 为n n+1 n n n﹣1 n n 1公比的等比数列.(6 分)(2)由(I)可得b =a ﹣2a =3•2n﹣1,等式两边同时除以2n+1,得n n+1 n.所以数列是首项为,公差为的等差数列.所以,即a =(3n﹣1)•2n﹣2(n∈N*).(13 分)n【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2 人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10 名工人,乙组有5 名工人,从甲、乙两组中共抽取3 名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2 名,乙中抽取1 名.(Ⅱ)因为由上问求得;在甲中抽取2 名工人,故从甲组抽取的工人中恰有1 名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ0 1 2 3P故Eξ== .【点评】本题较常规,比08 年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l 的方程为x﹣y﹣c=0,由坐标原点O 到l 的距离求得c,进而根据离心率求得a 和b.(II)由(I)可得椭圆的方程,设A(x ,y )、B(x ,y ),l:x=my+1 代入1 12 2椭圆的方程中整理得方程△>0.由韦达定理可求得y +y 和y y 的表达式,1 2 1 2假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,1 2y +y ),代入椭圆方程;把A,B 两点代入椭圆方程,最后联立方程求得c,1 2进而求得P 点坐标,求出m 的值得出直线l 的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O 到l 的距离为则又,解得c=1 ,∴(II)由(I)知椭圆的方程为设A(x ,y )、B(x ,y )1 12 2由题意知l 的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,y +y ),1 2 1 2点P 在椭圆上,即.整理得2x 2+3y 2+2x 2+3y 2+4x x +6y y =6.1 12 2 1 2 1 2又A、B 在椭圆上,即2x 2+3y 2=6,2x 2+3y 2=6、1 12 2故2x x +3y y +3=0②1 2 1 2将x x =(my +1)(my +1)=m2y y +m(y +y )+1 及①代入②解得1 2 1 2 1 2 1 2∴,x +x = ,即1 2当当;【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.2【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,建立不1 2等关系解之即可,在函数的定义域内解不等式fˊ(x)>0 和fˊ(x)<0,求出单调区间;(2)x 是方程g(x)=0 的根,将a 用x 表示,消去a 得到关于x 的函数,研2 2 2究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,1 2其充要条件为,得(1)当x∈(﹣1,x )时,f'(x)>0,∴f(x)在(﹣1,x )内为增函数;1 1(2)当x∈(x ,x )时,f'(x)<0,∴f(x)在(x ,x )内为减函数;1 2 1 2(3)当x∈(x ,+∞)时,f'(x)>0,∴f(x)在(x ,+∞)内为增函数;2 2(II)由(I)g(0)=a>0,∴,a=﹣(2x2 +2x )2 2∴f(x )=x 2+aln(1+x )=x 2﹣(2x2 +2x )ln(1+x )2 2 2 2 2 2 2设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当故时,h'(x)>0,∴h(x)在单调递增,.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
医院财务管理制度第一章总则第一条为适应社会主义市场经济的需要,规范医院财务行为,加强医院财务管理,提高资金使用效益,促进事业发展,根据《事业单位财务规则》和国家有关法规,结合医院特点制定本制度。
第二条本制度适用于中华人民共和国境内各级各类独立核算的公立医疗机构(以下简称医院)。
包括综合医院、专科医院、门诊部(所)、疗养院、卫生院等。
第三条医院是承担一定福利职能的社会公益事业单位,不以营利为目的。
第四条医院财务管理的基本原则是:执行国家有关法律、法规和财务规章制度;坚持厉行节约、勤俭办事业、制止奢侈浪费的方针,在以社会效益为主的原则下讲求经济效益。
第五条医院财务管理的主要任务是:合理编制医院预算,如实反映财务状况;依法组织收入,努力节约支出;建立健全内部财务管理制度,加强经济核算,提高资金使用效益;加强国有资产管理,防止国有资产流失;对医院经济活动进行财务控制和监督。
第六条医院实行“统一领导、集中管理”的财务管理体制。
符合条件的医院应建立总会计师制度。
医院的财务活动在主管院长或总会计师领导下,由医院财务部门统一管理。
第七条医院医疗收支和药品收支分开管理,分别核算。
第二章单位预算管理第八条医院预算是指医院根据事业发展计划和任务编制的年度财务收支计划。
医院预算由收入预算和支出预算组成。
第九条国家对医院实行“核定收支、定额或定项补助、超支不补、结余留用”的预算管理办法。
定额或定项补助的具体内容和标准,可根据各级各类医院的不同的特点和业务收支状况以及财力可能进行确定。
大中型医院一般以定项补助为主,小型医院一般以定额补助为主。
第十条医院预算参考以前年度预算执行情况,根据预算年度收入的增减因素和措施,测算编制收入预算;根据事业发展需要、业务活动需要和财力可能,编制支出预算。
编制收支预算必须坚持以收定支、收支平衡、统筹兼顾,保证重点的原则。
不得编制赤字预算。
医院要逐步采用零基预算方法编制预算。
医院所有收支应全部纳入预算管理。
特别聚焦:2009年浙江高考数学(理科卷)作者:吴文尧来源:《数学金刊·高中版》2009年第11期2009年高考是浙江省实施新课程改革后的第一次高考. 数学试卷的设置符合《考试说明》的要求,克服了前两年命题中“刁钻、偏难”的缺点. 试卷在难度上有大幅下降,全面深入考查基础知识、基本技能、基本思想方法,考查内容全面,重点突出.下面笔者就试卷中涉及的重点、热点问题的考查情况,答题中的失分原因及应试对策作逐一分析.第10题对于正实数α,记Mα为满足下述条件的函数f(x)构成的集合:?坌x1,x2∈R且x2>x1,有-α(x2-x1)< f(x2)-f(x1)A. 若f(x)∈M ,g(x)∈M ,则f(x)•g(x)∈MB. 若f(x)∈M ,g(x)∈M ,且g(x)≠0,则∈MC. 若f(x)∈M ,g(x)∈M ,则f(x)+ g(x)∈MD. 若f(x)∈M ,g(x)∈M ,且α1>α2,则f(x)-g(x)∈M失分原因:由于本题对数学语言的运用的要求较高,许多同学没有弄清楚集合Mα的真实意义,只能“乱点鸳鸯谱”了.应对策略:高考数学试题中的所谓难题,主要有两类. 第一类是对数学能力要求确实很高的“真难题”;第二类是由于命题者对试题进行了过度的“包装”,使同学们感到非常陌生的“伪难题”. 本题属于后者,对于这类试题的应试对策通常是先“去包装”,看到问题的本质所在,将“陌生问题熟悉化”. 其实集合Mα中的函数f(x)所具备的主要特征是函数图象上的任意两点连线的斜率的绝对值小于α,然后再进行验证即可作出正确的选择;也可借助导函数的几何意义联想到此函数在任意一点的导数的绝对值小于α,在此基础上验证两个满足条件的函数的和、差、积、商形成的函数是否也有这种性质.试题答案:C.第22题已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x). 若p(x)在区间(0,3)上不单调,求k的取值范围.(Ⅱ)设函数q(x)=g(x),x≥0,f(x),x失分原因:本题满分为14分,平均得分为3.22分.对于第(Ⅰ)问,虽然试题的背景是我们比较熟悉的,即利用导函数在某一区间内的函数值的符号确定原函数的单调性,但由于设问的方式是“逆向”的,有的同学不是很习惯;对于第(Ⅱ)问,多数同学不能看清问题的本质,缺乏运用等价转化、数形结合等数学思想去分析、解决问题的能力.应对策略:对于第(Ⅰ)问,可以用以下几种解题对策,请同学们不妨试一试!对策之一(正难则反法). 我们对形如“p(x)在区间(0,3)上是单调函数,试求k的取值范围”的问题比较熟悉,所以可先求出当使p(x)在区间(0,3)上是单调函数的k的取值范围,然后再取其补集即可.对策之二(实根分布法). “p(x)在区间(0,3)上不单调”等价于“p(x)的导数p′(x)在区间(0,3)上的值有正值也有负值”,即关于x的一元二次方程p′(x)=0在区间(0,3)有解且无重根. 从而把问题化归为我们熟悉的二次函数在某一区间上的零点的分布情况问题.对策之三(分离变量法). 在使用对策二时,分类讨论不可避免,在具体操作中若能从中分离出参数k,再转化为函数的值域问题,则可简化运算过程.对于第(Ⅱ)问,其问题的实质是确定函数y=q′(x)(x≠0)的映射恰是“二对一”的映射,即?坌m∈R,直线y=m与函数y=q′(x)的图象有两个不同的公共点或没有公共点. 由q′(x)=2k2x+k,x>0,3x2-2(k2-k+1)x+5,x试题答案:(Ⅰ)k∈(-5,-2);(Ⅱ)k=5.第18题在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos = , • =3.(Ⅰ)求△ABC的面积;?摇(Ⅱ)若b+c=6,求a的值.试题答案:(Ⅰ)2;(Ⅱ)2 .第17题如图1,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点. 现将△AFD沿AF折起,使平面ABD⊥平面ABC. 在平面ABD内过点D作DK⊥AB,K为垂足. 设AK=t,则t的取值范围是_________.图1失分原因:面对“平面图形折叠问题”缺乏应有的解题对策;对于解决立体几何的参数取值范围问题的常用思想方法不甚了解;不会使用解答填空题的一些合法的“不择手段的手段”.应对策略:对于平面图形的折叠问题,要注意平面图形与立体图形的前后对照,搞清楚在折叠前后哪些发生了变化,哪些没有发生变化;充分注意发挥平面图形的作用,能在平面图形中进行的计算尽量在平面图形中进行. 对于本题可考虑以下解题对策.对策之一(边界验证法). 由于t的取值范围显然是一个连续的区间,所以只须求其边界值即可. 由于AK随点F的变化而变化,所以可以猜想,当点F取边界值时,t也取边界值. 当动点F与点E重合时,可求得t=AK=AD=1;当动点F与点C重合时,可求得t=AK= AD= . 所以可猜想t的取值范围是对策之二(目标函数法). 函数思想是分析解决立体几何参数取值范围问题最常用的思想方法. 对于本题,若能合理地选择一个变量,把t表示成这个变量的“目标函数”,再求出这个“目标函数”的值域即可. 在具体操作中,如何选择合理的变量显得比较重要,由于变量的选择方法的不同,解法也不尽相同,例如本题以DF=x为参变量、∠FAB=θ为参变量都是不错的选择.对策之三(动手实验法). 准备一张长和宽的比为2∶1的纸,按照题目意思进行简易的动手操作,通过直观感知,再确认边界也能得到结果.试题答案:第20题如图2,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.图2(Ⅰ)设G是OC的中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.失分原因:本题满分为15分,平均得分为9.00分.在第(Ⅰ)问的论证过程中,书写不规范,出现逻辑性错误.在第(Ⅱ)问中审题不仔细,推理不严密,如漏证点M在△ABO内,运算错误的也较多.应对策略:(1)目前解决立体几何问题,通常有“空间向量法”和“立体几何传统方法”这两种方法可供选择,它们各有千秋. 笔者认为平时复习时,两种方法均应掌握,并有所侧重. 在具体应试中,选择何种方法解决,则要根据自己的特长及具体问题的情景而定. 对于本题,注意到OC,OB,OP是两两垂直的,问题给出的图形完全确定,所以建立空间坐标系的“环境”已经非常好了,且对于第(Ⅱ)问,要求出点M到OA,OB的距离只须求出点M的坐标即可,所以选择空间向量方法是合理的.(2)若大家习惯于用传统方法解决,其思路也是非常自然的.众所周知,用传统方法解决问题的关键是如何合理地画出相关的辅助线,其中“中点再中点,利用中位线”“面面垂直时,由交线画垂线”是重要的画图原则. 由于条件中已经给出了较多的中点,因此可用“中点再中点”的原则,如图3,取PE的中点T,连结TF,TG,易证明平面TFG与平面BOE平行,由此可得FG∥平面BOE;再分别取OB,BA的中点S,H,连结FS,FH,SH,其中FH交BE于N,可得平面FHS和平面OEB垂直且交线为SN,过点F作FM⊥SN交SH于M,则点M即为满足条件的点.图3试题答案:(Ⅰ)略;(Ⅱ)点M到OA,OB的距离分别为4, .第9题过双曲线 - =1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C. 若 =,则双曲线的离心率是()A. B.C. D.失分原因:不清楚圆锥曲线及平面向量的概念;求解时没有“目标意识”;运算错误.应对策略:有名言曰“退一步海阔天空”,在数学解题中又何曾不是如此!在本题中,要求双曲线的离心率e的值,可退一步,只须得到一个关于e的方程;又可再退一步,只须得到一个关于a,b,c的方程. 所以我们要做的事是如何把条件=“翻译”成关于a,b,c的方程.试题答案:C.第21题已知椭圆C1: + =1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.图4(Ⅰ)求椭圆C1的方程.(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N. 当线段AP 的中点与MN的中点的横坐标相等时,求h的最小值.失分原因:本题满分为15分,平均得分为6.45分.对于第(Ⅰ)问,失分的主要原因是不重视细节问题——椭圆的焦点在y轴上.对于第(Ⅱ)问,未掌握求参数取值范围的解题策略,对如何建立关于h的目标不等式的解题方向不清.应对策略:(1)待定系数法是求圆锥曲线标准方程的常用方法,在操作过程中要特别注意曲线的焦点在何处,并注意运算的准确性.(2)最值问题是高中数学永恒的话题,求其及参数取值范围问题的方法有几何意义法、目标函数法、目标不等式法(目标不等式法与目标函数法本质相同,当两变量之间的关系只能用隐函数表示时,在最后求解时用建立目标不等式的方法解之)等. 对于本题,由于题设和结论没有直接涉及曲线的焦点和准线,显然很难用几何意义法解;用目标函数或目标不等式法是非常自然的选择,注意到点P在抛物线y=x2+h(h∈R)上,所以可设点P(t,t2+h),即选择t为目标函数的变量. 因此解决本题的关键是如何得到关于h,t的一个方程,其程序为求切线的斜率?圯切线的方程?圯切线方程代入椭圆方程?圯应用韦达定理?圯由两线段的中点的横坐标相等得到关于h,t的一个方程?圯Δ≥0得到关于h的目标不等式?圯否定h≤-3?圯结论.试题答案:(Ⅰ) +x2=1;(Ⅱ)1.第15题观察下列等式:C+C=23-2,C+C+C=27+23,C+C+C+C=211-25,C+C+C+C+C=215+27,…由以上等式推测到一个一般的结论:对于n∈N*,C+C+C+… +C=_______.失分原因:(1)本题显然是一道“伪难题”,许多同学被其“气势”所吓退. (2)缺少类比推理的能力.应对策略:结论由两项构成,第二项前有(-1)n,可分前后两项分别解决.试题答案:24n-1+(-1)n22n-1.第16题甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).失分原因:(1)对题意的领会有偏差,对条件“同一级台阶上的人不区分站的位置”视而不见. (2)求解排列组合应用题的常用思想方法(如分类讨论、等价转化等)运用不熟练.应对策略:可先把陌生问题熟悉化. 事实上原题等价于“把三个不同的球放入7个不同的抽屉中,其中每一个抽屉最多放两个球,共有多少种不同的放法?”然后把复杂问题简单化. 本问题可分解为两个小问题,第一类,每一个抽屉至多放一个小球,第二类,其中恰有一个抽屉放两个小球,再用加法原理不难得到结果.试题答案:CA+A=336.第19题在1,2,3,…,9这9个自然数中,任取3个数.(Ⅰ)求这3个数中恰有1个是偶数的概率.(Ⅱ)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2). 求随机变量ξ的分布列及其数学期望Eξ.试题答案:(Ⅰ)P(A)= = .(Ⅱ)按以下程序操作,确定ξ的取值范围?圯分别求出概率P(ξ=k)(k=0,1,2)的值?圯写出ξ的分布列?圯计算Eξ.Eξ= .注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
重庆市龙业装饰设计工程有限公司章程第一章总则第一条为维护公司、股东的合法权益,规范公司的组织和行为,根据《中华人民共和国公司法》(以下简称《公司法》)和其他有关法律、行政法规的规定,制订本章程。
第二条公司名称:重庆市龙业装饰设计有限公司(以下简称公司)第三条公司住所:重庆市南岸区南坪西路3号13-24第四条公司营业期限:永久存续第五条公司为自然人独资的有限责任公司。
第六条执行董事为公司的法定代表人第七条公司是企业法人,有独立的法人财产,享有法人财产权。
股东以其认缴的出资额为限对公司承担责任。
公司以全部财产对公司的债务承担责任。
第八条本章程自生效之日起,即对公司、股东、执行董事、监事、高级管理人员具有约束力。
第二章经营范围第九条公司的经营范围:(以上经营范围以公司登记机关核定为准)。
第十条公司根据实际情况,可以改变经营范围,但须经公司登记机关核准登记。
第三章公司注册资本第十一条注册资本为人民币10万元,由股东一次性足额缴纳。
第十二条公司可以增加或减少注册资本,公司增加或减少注册资本,按照《公司法》以及其他有关法律、行政法规的规定和公司章程规定的程序办理。
第四章股东第十三条股东享有如下权利:(一)在公司弥补亏损和提取公积金后所余的税后利润中分取红利;(二)对公司的经营行为进行监督,提出建议或者质询;(三)查阅公司会计帐簿,查阅、复制公司章程、有关决议或者决定、财务会计报告;(四)公司终止后,依法分得公司的剩余财产;(五)国家法律、行政法规或公司章程规定的其他权利。
第十四条股东承担如下义务:(一)遵守法律、行政法规和公司章程;(二)足额缴纳出资;(三)保证公司资本的独立、真实、充足;(四)国家法律、行政法规和公司章程规定的其他义务。
第十五条股东行使下列职权:(一)决定公司的经营方针和投资计划;(二)委派或者更换执行董事、非由职工代表担任的监事,决定有关执行董事、监事的报酬事项;(三)聘任或者解聘公司经理,决定其报酬事项;(四)审议批准执行董事的报告;(五)审议批准监事的报告;(六)审议批准公司年度财务预算方案、决算方案;(七)审议批准公司年度利润分配方案和弥补亏损方案;(八)对公司增加或者减少注册资本作出决议;(九)对发行公司债券作出决议;(十)对公司的合并、分立、解散、清算或者变更公司形式作出决议;(十一)修改公司章程;(十二)对公司向其他企业投资或者为他人提供担保作出决议;(十三)决定聘用或解聘承办公司审计业务的会计师事务所;(十四)法律、行政法规和本章程规定的其他职权。
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合?U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则?的最小值为()A.﹣2B.﹣2C.﹣1D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.﹣1D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8= .15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴z=1﹣3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合?U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴?U(A∩B)={3,5,8}故选A.也可用摩根律:?U(A∩B)=(?U A)∪(?U B)故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51?C31?C62=225种选法;(2)乙组中选出一名女生有C52?C61?C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!6.(5分)设、、是单位向量,且,则?的最小值为()A.﹣2B.﹣2C.﹣1D.1﹣【考点】9O:平面向量数量积的性质及其运算.【专题】16:压轴题.【分析】由题意可得=,故要求的式子即﹣()?+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴?=﹣()?+=0﹣()?+1=1﹣cos=1﹣cos≥.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.﹣1D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选:B.【点评】本题考查导数的几何意义,常利用它求曲线的切线10.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.11.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数【考点】3I:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法.12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240 .【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++Cn n a0b n,各项的通项公式为:Tr+1=C nr a n﹣r b r.然后根据题目已知求解即可.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8= 27 .【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是27【点评】本题考查前n项和公式和等差数列的性质.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【考点】LR:球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.(5分)若,则函数y=tan2xtan3x的最大值为﹣8 .【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题.另外,还要注意表述,这也是考生较薄弱的环节.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;15:综合题.【分析】(1)由已知得=+,即b n+1=b n+,由此能够推导出所求的通项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n+1=b n+,从而b2=b1+,b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.【点评】本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=?(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.。
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0} 4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2 C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选A2.(5分)(2009•全国卷Ⅰ)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴故选B3.(5分)(2009•全国卷Ⅰ)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选D4.(5分)(2009•全国卷Ⅰ)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选择C.5.(5分)(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选D6.(5分)(2009•全国卷Ⅰ)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴•=﹣()•+=0﹣()•+1=1﹣cos=1﹣cos≥.故选项为D7.(5分)(2009•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选D.8.(5分)(2009•全国卷Ⅰ)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A9.(5分)(2009•全国卷Ⅰ)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣2【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选项为B10.(5分)(2009•全国卷Ⅰ)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.4【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,∴AC=PD=2又∵当且仅当AP=0,即点A与点P重合时取最小值.故答案选C.11.(5分)(2009•全国卷Ⅰ)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选D12.(5分)(2009•全国卷Ⅰ)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2 C.D.3【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•全国卷Ⅰ)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)(2009•全国卷Ⅰ)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=27.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是2715.(5分)(2009•全国卷Ⅰ)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π16.(5分)(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为﹣8.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.三、解答题(共6小题,满分70分)17.(10分)(2009•全国卷Ⅰ)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.18.(12分)(2009•全国卷Ⅰ)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.19.(12分)(2009•全国卷Ⅰ)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.20.(12分)(2009•全国卷Ⅰ)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【分析】(1)由已知得=+,即b n=b n+,由此能够推导出所求的通+1项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n=b n+,从而b2=b1+,+1b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.21.(12分)(2009•全国卷Ⅰ)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.22.(12分)(2009•全国卷Ⅰ)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.。
2009年高考数学浙江理科试卷含详细解答一、选择题(本大题共10小题,共0分)1.(2009浙江理1)设U=R ,{|0}A x x =>,{|1}B x x =>,则U A C B ⋂=( )A.{|01}x x ≤<B.{|01}x x <≤C.{|0}x x <D.{|1}x x >2.(2009浙江理2)已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件3.(2009浙江理3)设1z i =+(i 是虚数单位),则22z z +=( )A.1i --B.1i -+C.1i -D.1i +4.(2009浙江理4)在二项式251()x x -的展开式中,含4x 的项的系数是( ). A.10- B.10 C.5- D.55.(2009浙江理5)在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C的中心,则AD 与平面11BB C C所成角的大小是( )A.30B.45C.60D.906.(2009浙江理6)某程序框图如图所示,该程序运行后输出的k 的值是( )A.4B.5C.6D.77.(2009浙江理7)设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( ). A.3 B.4 C.5 D.68.(2009浙江理8)已知a 是实数,则函数()1sin f x a ax =+的图象不可能是( )A. B.C. D.9.(2009浙江理9)过双曲线22221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是( )A.2B.3C.5D.1010.(2009浙江理10)对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是( ) A.若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B.若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C.若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈D.若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈二、填空题(本大题共7小题,共0分)11.(2009浙江理11)设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .12.(2009浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是3cm .13.(2009浙江理13)若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是14.(2009浙江理14)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为 元(用数字作答).15.(2009浙江理15)观察下列等式:1535522C C +=-, 1597399922C C C ++=+,159131151313131322C C C C +++=-,1591317157171717171722C C C C C ++++=+,………由以上等式推测到一个一般的结论:对于*n N ∈,1594141414141n n n n n C C C C +++++++++=.16.(2009浙江理16)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).17.(2009浙江理17)如图,在长方形ABCD 中,2AB =,1BC=,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD内过点D 作DKAB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .三、解答题(本大题共5小题,共0分)18.(2009浙江理18)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =,3AB AC ⋅=.(I )求ABC ∆的面积;(II )若6b c +=,求a 的值。
19.(2009浙江理19)在1,2,3,,9这9个自然数中,任取3个数.(I )求这3个数中恰有1个是偶数的概率;(II )设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望E ξ.20.(2009浙江理20)如图,平面PAC ⊥平面ABC ,ABC ∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ; (II )证明:在ABO ∆内存在一点M ,使FM⊥平面BOE ,并求点M 到OA ,OB 的距离.21.(2009浙江理21)已知椭圆1C :22221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C的焦点且垂直长轴的弦长为1。
(I )求椭圆1C 的方程;(II )设点P 在抛物线2C :2()y x h h =+∈R 上,2C 在点P 处的切线与1C 交于点,M N 当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值。
22.(2009浙江理22)已知函数322()(1)52f x x k k x x =--++-,22()1g x k x kx =++,其中k ∈R .(I )设函数()()()p x f x g x =+.若()p x 在区间(0,3)上不单调,求k 的取值范围;(II )设函数(),0,()(),0.g x x q x f x x ≥⎧=⎨<⎩ 是否存在k ,对任意给定的非零实数1x ,存在惟一 的非零实数2x (21x x ≠),使得21()()q x q x ''=成立?若存在,求k 的值;若不存在,请说明理由.1【答案】B2【答案】C【解题关键点】对于“0a >且0b >”可以推出“0a b +>且0ab >”,反之也是成立的 3【答案】D【解题关键点】对于2222(1)1211z i i i iz i +=++=-+=++4【答案】B【解题关键点】对于()251031551()()1rr r r r rr T C x C x x --+=-=-,对于1034,2r r -=∴=,则4x 的项的系数是225(1)10C -=5【答案】C【解题关键点】取BC 的中点E ,则AE ⊥面11BB C C,AE DE ∴⊥,因此AD 与平面11BB C C所成角即为ADE ∠,设AB a =,则AE =,2aDE =,即有0tan 60ADE ADE ∠==.6【答案】A【解题关键点】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出的4k =.7【答案】B【解题关键点】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个及5个以上的交点不能实现. 8【答案】D【解题关键点】对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π.9【答案】C 【解题关键点】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b abab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,5AB BC a b e =∴=∴=. 10【答案】C【解题关键点】对于212121()()()()x x f x f x x x αα--<-<-,即有2121()()f x f x x x αα--<<-,令2121()()f x f x kx x -=-,有k αα-<<,不妨设1()f x M α∈,2()g x M α∈,即有11,f k αα-<<22g k αα-<<,因此有1212f g k k αααα--<+<+,因此有12()()f x g x M αα++∈.11【答案】15【解题关键点】对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--12【答案】18【解题关键点】该几何体是由二个长方体组成,下面体积为1339⨯⨯=,上面的长方体体积为3319⨯⨯=,因此其几何体的体积为1813【答案】4【解题关键点】通过画出其线性规划,可知直线23y x Z =-+过点()2,0时,()min 234x y += 14【答案】148.4【解题关键点】对于应付的电费应分二部分构成,高峰部分为500.5681500.598⨯+⨯;对于低峰部分为500.288500.318⨯+⨯,二部分之和为148.4 15【答案】()4121212nn n --+-【解题关键点】这是一种需类比推理方法破解的问题,结论由二项构成,第二项前有()1n-,二项指数分别为41212,2n n --,因此对于*n N ∈,1594141414141n n n n n C C C C +++++++++=()4121212nn n --+-16【答案】336【解题关键点】对于7个台阶上每一个只站一人,则有37A 种;若有一个台阶有2人,另一个是1人,则共有1237C A 种,因此共有不同的站法种数是336种.17【答案】1,12⎛⎫ ⎪⎝⎭【解题关键点】此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,1t =,随着F 点到C 点时,因,,CB AB CB DK CB ⊥⊥∴⊥平面ADB ,即有CB BD ⊥,对于2,1,3CD BC BD ==∴=,又1,2AD AB ==,因此有AD BD ⊥,则有12t =,因此t 的取值范围是1,12⎛⎫ ⎪⎝⎭18【答案】解析:(I )因为25cos25A =,234cos 2cos 1,sin 255A A A ∴=-==,又由3AB AC ⋅=,得cos 3,bc A =5bc ∴=,1sin 22ABC S bc A ∆∴==(II )对于5bc =,又6b c +=,5,1b c ∴==或1,5b c ==,由余弦定理得2222cos 20a b c bc A =+-=,25a ∴=19【答案】(I )记“这3个数恰有一个是偶数”为事件A ,则12453910()21C C P A C ==;(II )随机变量ξ的取值为0,1,2,ξ的分布列为ξ0 1 2P512 12 112所以ξ的数学期望为5112012122123E ξ=⨯+⨯+⨯=20【答案】证明:(I )如图,连结OP ,以O 为坐标原点,分别以OB 、OC 、OP 所在直线为x 轴,y 轴,z轴,建立空间直角坐标系Oxyz-,则()0,0,0,(0,8,0),(8,0,0),(0,8,0),O A B C -(0,0,6),(0,4,3),P E -()4,0,3F ,由题意得,()0,4,0,G 因(8,0,0),(0,4,3)OB OE ==-,因此平面BOE 的法向量为(0,3,4)n =,(4,4,3FG =--得0n FG ⋅=,又直线FG 不在平面BOE 内,因此有//FG 平面BOE(II )xyz设点M 的坐标为()00,,0x y ,则00(4,,3)FM x y =--,因为FM ⊥平面BOE ,所以有//FM n ,因此有0094,4x y ==-,即点M 的坐标为94,,04⎛⎫-⎪⎝⎭,在平面直角坐标系xoy 中,AOB ∆的内部区域满足不等式组08x y x y >⎧⎪<⎨⎪-<⎩,经检验,点M 的坐标满足上述不等式组,所以在ABO ∆内存在一点M ,使FM⊥平面BOE ,由点M 的坐标得点M 到OA ,OB 的距离为94,4。