共点力注力的合成的平行四边形法则
- 格式:ppt
- 大小:2.37 MB
- 文档页数:20
作者:一气贯长空高考物理:《力的合成与分解》知识点及例题!一、共点力的合成1、合成的方法(1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2、运算法则(1)平行四边形定则:求两个互成角度的共点力F1、F2的合力,可以用表示F1、F2的有向线段为邻边作平行四边形,平行四边形的对角线就表示合力的大小和方向,如图1甲所示.(2)三角形定则:求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的线段首尾顺次相接地画出,把F1、F2的另外两端连接起来,则此连线就表示合力的大小和方向,如图乙所示.3、重要结论(1)两个分力一定时,夹角θ越大,合力越小.(2)合力一定,两等大分力的夹角越大,两分力越大.(3)合力可以大于分力,等于分力,也可以小于分力.合力大小的范围(1)两个共点力的合成|F1-F2|≤F合≤F1+F2,即两个力大小不变时,其合力随夹角的增大而减小.当两力反向时,合力最小,为|F1-F2|;当两力同向时,合力最大,为F1+F2.(2)三个共点力的合成①三个力共线且同向时,其合力最大,为F1+F2+F3.②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,则合力的最小值为最大的一个力减去另外两个较小力的和的绝对值.二、力分解的两种常用方法1、力的效果分解法:(1)根据力的实际作用效果确定两个实际分力的方向;(2)再根据两个实际分力的方向画出平行四边形;(3)最后由平行四边形和数学知识求出两分力的大小.2、正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:以少分解力和容易分解力为原则(即尽量多的力在坐标轴上).例题:风洞是进行空气动力学实验的一种重要设备.一次检验飞机性能的风洞实验示意图如图所示,AB代表飞机模型的截面,OL是拉住飞机模型的绳.已知飞机模型重为G,当飞机模型静止在空中时,绳恰好水平,此时飞机模型截面与水平面的夹角为θ,则作用于飞机模型上的风力大小为( )。
第三讲 力的合成与分解知识点一:力的合成合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力 力的合成:求几个已知力的合力叫做力的合成①共点力:几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力 ②平行四边形定则:根据两个分力的大小和方向,用力的图示法,从力的作用点起,按同一标度作出两个分力 F 1、F 2,以F 1、F 2为邻边作平行四边形,它的对角线就表示合力的大小及方向③矢量三角形法则:将两分力F 1、F 2首尾相接(有箭头的叫尾,无箭头的叫首),由F 1的首端指向F 2的尾端 的有向线段即为合力F 的大小及方向二力合成:2121F FF F F +≤≤-合,θ越大,F 合越小 ①当︒=0θ时,即两个力的方向一致,21F F F +=合,为最大②当︒=180θ时,即二力方向相反,21-F F F =合,为最小,且方向与较大的力的方向一致③当︒=90θ时,2221F F F +=合,12tan F F =θ④当︒=120θ,且F 1=F 2时,F 合=F 1=F 2,合力的方向在两分力的夹角平分线上 题型一、概念理解1. 关于两个大小不变的共点力与其合力的关系,下列说法正确的是( )A 合力大小随两力夹角增大而增大B 合力的大小一定大于分力中最大者C 两个分力夹角小于180°时,合力大小随夹角减小而增大D 合力的大小不能小于分力中最小者 2、 关于共点力,下列说法中不正确的是( )A 作用在一个物体上的两个力,如果大小相等,方向相反,这两个力是共点力B 作用在一个物体上的两个力,如果是一对平衡力,则这两个力是共点力C 作用在一个物体上的几个力,如果它们的作用点在同一点上,则这几个力是共点力D 作用在一个物体上的几个力,如果它们力的作用线汇交于同一点,则这几个力是共点力 3、 关于两个分力F 1、F 2与它们的合力F ,下列说法中正确的是( )A 合力F 的作用效果一定与F 1 , F 2共同作用产生的效果相同B F 1、 F 2一定是同种性质的力C F 1、 F 2 不一定是同一个物体受的力D F 1、F 2与F 是物体同时受到的三个力 4、 关于合力与其两个分力的关系,下列说法正确的是( )A 合力的大小一定大于小的分力,小于大的分力B 合力的大小随分力夹角的增大而增大C 合力的大小一定大于任何一个分力D 合力的大小可能大于大的分力,也可能小于小的分力题型二、力的合成1. 如下图所示,F 1、F 2、F 3恰好构成封闭的直角三角形,这三个力的合力最大的是( )2. 作图求下图所示各种情况下三个力的合力大小( )3. 如图所示,重为100N 的物体在水平向左的力F =20N 作用下,以初速度v 0沿水平面向右滑行。
两个共点力的合力公式(实用版)目录1.引言2.共点力公式的定义3.共点力公式的推导过程4.共点力公式的应用实例5.结论正文【引言】在物理学中,力的合成是一个重要的研究领域。
当一个物体受到多个力的作用时,我们需要求出这些力的合力,以便更好地分析物体的运动状态。
共点力公式是一种求解多个力合力的数学工具,本文将对其进行详细的介绍。
【共点力公式的定义】共点力公式,又称为矢量和公式,是指当两个力作用在同一点时,它们的合力可以用一个平行四边形的对角线来表示。
用数学符号表示,即 F = √(F1 + F2 + 2F1F2cosθ)。
其中,F1 和 F2 分别为两个力的大小,θ为两个力之间的夹角,F 为它们的合力大小。
【共点力公式的推导过程】为了更好地理解共点力公式,我们可以通过平行四边形法则来进行推导。
假设有一个物体受到两个力 F1 和 F2 的作用,它们在同一点 O 作用,如图所示。
我们可以将这两个力按照平行四边形法则进行合成,得到一个平行四边形 OABC。
其中,OA 和 OB 分别为力 F1 和 F2,OC 为合力 F。
根据平行四边形的性质,我们知道 OA 和 OB 的平方和等于 OC 的平方,即F1 + F2 = F。
此外,根据余弦定理,我们还可以得到 2F1F2cosθ = F。
将这两个等式联立,我们可以得到共点力公式:F = √(F1 + F2 + 2F1F2cosθ)。
【共点力公式的应用实例】共点力公式在实际问题中有广泛的应用。
例如,我们可以通过该公式计算一个物体在受到两个力的作用下,其合力的大小和方向。
这有助于我们更好地分析物体的运动状态,从而解决实际问题。
【结论】共点力公式是一种求解多个力合力的数学工具,它可以帮助我们更好地分析物体在受到多个力作用时的运动状态。
高中物理:共点力的合成
1.平行四边形定则
两个共点力合成时,以表示这两个力F1和F2的线段为邻边作平行四边形,其合力F的大小和方向就可以用这两个邻边之间的对角线来表示.
2.三个或更多的外力的合成方法
先求出其中两个力的合力,再求出这个合力与第三个力的合力,直到把所有外力都合成为止,最后得到这些力的合力.
3.同一直线上两个力的合成法则
(1)F1与F2同向时:合力F=F1+F2,其方向为F1或F2的方向.
(2)F1与F2反向时:合力F=|F1-F2|,其方向为F1、F2中较大力的方向.
4.互成直角的两个力的合成
F1与F2垂直时,合力的大小F=F21+F22.
5.矢量
在物理学中,既有大小,又有方向,且在合成时遵循平行四边形定则的物理量.
[思考]
如图,在做引体向上运动时,双臂平行时省力还是双臂张开较大角度时省力?
提示:双臂平行时省力,根据平行四边形定则可知,合力一定时(等于人的重力),两臂分力的大小随双臂间夹角的增大而增大,当双臂平行时,夹角最小,两臂用力最小.
第1 页共1 页。
力的合成与分解知识要点归纳一、力的合成1.合力与分力:如果几个力共同作用产生的效果与某一个力单独作用时的效果相同,则这一个力为那几个力的,那几个力为这一个力的.2.共点力:几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫做共点力.3.力的合成:求几个力的的过程.4.平行四边形定则:两个力合成时,以表示这两个力的线段为作平行四边形,这两个邻边之间的就表示合力的大小和方向.二、力的分解1.力的分解:求一个力的的过程,力的分解与力的合成互为.2.矢量运算法则:(1)平行四边形定则(2)三角形定则:把两个矢量的首尾顺次连结起来,第一个矢量的首到第二个矢量的尾的为合矢量.3.力的分解的两种方法1)力的效果分解法①根据力的实际作用效果确定两个实际分力的方向;②再根据两个实际分力方向画出平行四边形;③最后由平行四边形和数学知识(如正弦定理、余弦定理、三角形相似等)求出两分力的大小.2)正交分解法①正交分解方法:把一个力分解为互相垂直的两个分力,特别是物体受多个力作用时,把物体受到的各力都分解到互相垂直的两个方向上去,然后分别求出每个方向上力的代数和.②利用正交分解法解题的步骤首先:正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标系的选择应使尽量多的力在坐标轴上.其次:正交分解各力,即分别将各力投影在坐标轴上,然后求各力在x轴和y 轴上的分力的合力F x 和F y :F x =F 1x +F 2x +F 3x +…,F y =F 1y +F 2y+F 3y +…再次:求合力的大小F =错误! ,确定合力的方向与x 轴夹角为θ=arctan F y F x. 4.将一个力分解的几种情况:①已知合力和一个分力的大小与方向:有唯一解②已知合力和两个分力的方向:有唯一解③已知合力和两个分力的大小(两分力不平行):当F1+F2<F 时无解;当F1+F2>F 时有两组解④已知一个分力F 1的方向和另一个分力F 2的大小,对力F 进行分解,如图4所示则有三种可能:(F 1与F 的夹角为θ) 当F 2〈F sin θ时无解;当F 2=F sin θ或F 2≥F 时有一组解;当F sin θ〈F 2<F 时有两组解.5.注意:(1)合力可能大于分力,可能等于分力,也可能小于分力的大小。
高一物理面授讲义(10.04) 教师:李永惠
力的合成: 1.平行四边形法则: (1)两个共点力F1、F2大小一定时
0
|F1-F2|≤F合≤F1+F2 F合随F1、F2夹角的增大而减小
(2)当F1=F2且θ=120 时,F合 =F1=F2 例 1.两个共点力,F1=8N,F2=12N ①F1F2的合力的大小范围 ②三个共点力F1=8N,F2=12N,F3=5N,F分max=?F合min=?
例 2.四个共点力的大小分别为 4N,7N,10N,16N,求这四个力合力大小的范围?
例 3.若四个力分别为 2N,15N,10N,31N,那么这四个力的合力大小范围是多少?
1
(3)用三角形法求合力: 例 4.ABCDEF为一个正六边形,现以A为顶点向其它各顶点作矢量线段,并用它们依 次表示F1F2…F5等各力, 若其中F1的大小恰为 1N, 那么这五个力的合力的大小和方向如何?
例 5.四个共点力大小均为 F,方向如图所示,求它们的合力的大小和方向
将一个力分解为两个力时解的讨论: 例 1.将一个力F分解为两个力,如果已知F1的大小和F2的方向(F2与F的夹角为θ) , 则以下说法中正确的是( ) A.当F1>Fsinθ时,有两组解 B.当F>F1>Fsinθ时,有两组解 C.当F1=Fsinθ时,有唯一一组解 D.当F1<Fsinθ时,无解 例 2.如图:物体静止于光滑水平面M上,力F1作用于物体O点, 现要使物体沿着OO’方向运动,那么,必须同时再加一个力F2,这 个力最小值是_________
2
。