1函数图像与实际问题
- 格式:doc
- 大小:703.07 KB
- 文档页数:5
0到1之间的函数摘要:一、函数定义及性质1.函数概念2.函数性质二、0 到1 之间的函数图像1.常见函数图像2.函数图像特点三、0 到1 之间的函数应用1.实际问题中的应用2.数学理论中的应用四、总结正文:一、函数定义及性质函数是数学中的一种基本概念,用于描述两个或多个变量之间的关系。
给定一个数集A,B 以及对应法则,若对于A 中的任意一个元素,都有唯一的元素与之对应,则称f:A→B 为从A 到B 的函数,记作y=f(x),x∈A。
函数具有以下性质:1.单调性:若函数f(x) 在区间I 上单调增加,则对于I 上的任意两个实数a 和b,若a<b,则有f(a)≤f(b)。
2.连续性:若函数f(x) 在区间I 上连续,则对于I 上的任意一个实数a,都有极限lim(x→a)f(x) 存在。
二、0 到1 之间的函数图像0 到1 之间的函数图像包括了多种常见函数,如正弦函数、余弦函数、指数函数、对数函数等。
这些函数在0 到1 之间的取值范围,可以帮助我们更好地理解它们的特点和性质。
1.常见函数图像常见的函数图像有:- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 指数函数:y=a^x (a>0, a≠1)- 对数函数:y=log_a(x) (a>0, a≠1)2.函数图像特点在0 到1 之间的函数图像中,我们可以观察到以下特点:- 正弦函数和余弦函数在0到π/2区间内单调增加,在π/2到π区间内单调减少,周期为2π。
- 指数函数和对数函数在0 到1 之间单调增加,当a>1 时,指数函数增长速度大于对数函数;当0<a<1 时,对数函数增长速度大于指数函数。
三、0 到1 之间的函数应用0 到1 之间的函数在实际问题和数学理论中都有广泛的应用。
1.实际问题中的应用- 周期性现象:正弦函数和余弦函数可以用来描述周期性现象,如简谐振动、波浪等。
- 增长与衰减:指数函数和对数函数可以用来描述增长与衰减现象,如细胞分裂、通货膨胀等。
第18讲 一次函数专题(一)---利用图像解决实际问题一、一次函数与行程问题1.如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图像.(1)根据图像,写出当3 x 时该图像的函数关系式; (2)某人乘坐2.5km ,应付多少钱?(3)某人乘坐13km ,应付多少钱? (4)若某人付车费30.8元,出租车行驶了多少千米?2.甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.如图表示甲、乙二人骑自行车行驶的路程y (千米)随时间x (分)变化的图象(全程),根据图象回答下列问题:(1)乙比甲晚多长时间到达李庄? (2)甲因事耽误了多长时间?(3)x 为何值时,乙行驶的路程比甲行驶的路程多1千米?3.甲、乙两人沿相同的路线同时有A 地B 地匀速前进,他们距离B 地的路程S (千米)与前进的时间x (小时)的函数图像如图所示,则乙追上甲是距离B 地______千米.4.甲、乙两人从A 地出发前往B 地,甲、乙(实线为甲,虚线为乙)两人距离A 地的路程S (百米)与行走时间t (分)的函数关系图像如图所示,则甲与乙相遇的时间为乙出发后第_______分.第3题图 第4题图二、行程中的往返5.甲、乙两车要从A 地沿同一公路到B 地,乙车比甲车先行1小时,设甲车与乙车之间的路程为y (km ),甲车行驶时间为t (h ),y (km )与t (h )之间函数关系的图象如图所示(假设甲、乙两车的速度始终保持不变).则a 的值是____________6.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,若快车从甲地达到乙地所需时间为t 时,则t =__________。
一次函数的图象题1.已知一次函数的图象如图,求这个一次函数的解析式2.如图,一次函数图象经过点A,且与y=-x的图象交于点B,求一次函数解析式并求两个函数与x轴构成的三角形面积3.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)卸货时间是多少?(3)求返程中y与x之间的函数表达式;(4)求这辆汽车从甲地出发4h时与甲地的距离.4.如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为 803千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法是哪几个?5.某市出租车单程收费价格与行驶路程之间的函数关系如图所示,请根据图象回答下列问题:(1)出租车的起步价是多少元?在多少千米之内只收起步价费;(2)由图象求出起步里程走完之后每行驶1千米增加的钱数;(3)小芳想用42元坐出租车浏览本市,试求出她能走多少千米6.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了 h.开挖6h时甲队比乙队多挖了 m;(2)请求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式;(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?7.若正方形ABCD的边长为2,点P从D出发,沿着D→C→B→A运动,最后回到点D,设DP=x,试求出△APD的面积y与x的函数关系式8.(1)如图,函数y1=︱x︱,y2=(x+4)/3.当y1>y2时,x的范围是_____________;(2)如图,点Q在直线y=-x上运动,点A的坐标为(1,0),当线段AQ最短时,点Q的坐标为__________9.甲、乙两车分别从A地将一批物品运往B地,再返回A地,如图表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从A地返回的速度多大时,才能比乙车先回到A地?10.周末小亮与爷爷进行登山锻炼,如图所示,表示小亮与爷爷沿相同的登山路线同时从山脚出发的登山锻炼过程,各自行进的路程随时间变化的图象,请你根据图中所提供的信息,解答下列问题:(1)请你分别写出小亮和爷爷登山过程中路程S1(千米)、S2(千米)、与时间t (小时)之间的函数关系(不必写出自变量t的取值范围),S1=______,S2=______;(2)当小亮到达山顶时,爷爷行进到山路上某点A处,则A点到达山顶的路程为______千米;(3)已知小亮在山顶休息1小时,沿原路下山,在B处与爷爷相遇,此时B点到山顶的路程为1.5千米,相遇后,他们各自沿原来的路线下山和上山,问当爷爷到达山顶时,小亮离山脚下的出发点还有多远?小亮的整个登山过程用了几小时?11.(1)越野赛跑,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程S(米)与时间t(秒)的关系如图,结合图象解答下列问题:(1)根据图中信息,直接写出EF与GD的比值: ;(2)求图中s1和s0的值(2)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.下图是学生注意力指标数y随时间x(分钟)变化的函数的近似图象.(y越大表示学生注意力越集中,且图象中的三部分都是线段).①注意力最集中那段时间持续了几分钟?②当0≤x≤10时,求注意力指标数y与时间x之间的函数关系式;③一道数学竞赛题,需要讲解23分钟,问老师能否经过适当安排使学生在听这道题时注意力的指标数都在34以上?12.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是。
高一数学函数图像试题答案及解析1.一电子广告,背景是由固定的一系列顶点相接的正三角形组成,这一列正三角形的底边在同一直线上,正三角形的内切圆由第一个正三角形底边中点点沿三角形列的底边匀速向前滚动(如图),设滚动中的圆与系列正三角形的重叠部分(如图中的阴影)的面积关于时间的函数为,则下列图中与函数图像最近似的是()【答案】B【解析】滚动中的圆与系列正三角形的重叠部分(如图中的阴影)的面积S关于时间t的关系呈周期性变化,且两者之间是非线性变化,故排除答案D;圆滚动到两三角形的连接点时,阴影部分的面积取最小值,但仍不为0,故排除答案C又由当t=0时,阴影部分的面积取最大值,可排除答案A,故选B.考点:函数图像2.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)(如f(2)=3是指开始买卖后两个小时的即时价格为3元g(2)=3表示2个小时内的平均价格为3元),下图给出四个图象:其中可能正确的图象序号是 .A.①②③④B.①③④C.①③D.③【答案】D【解析】①错,因为即时价格是下降的,所以从开始后,平均价格应在即时价格的上面,不会有交点;②错,因为,如果平均价格不变,那么即时价格也应不变;③正确,因为开始即时价格是上升的,所以一段时间的平均价格应该在他的下面,后即时价格下降了,那么经过一段时间,会出现平均价格在即时价格的上面;④错,即时价格为折线,平均价格应为曲线.故选D.【考点】函数的图像3.已知函数若函数有三个零点,则实数的取值范围是 .【答案】【解析】有3个零点,即有三个实根,即与有三个不同交点,画出的图像,当有三个交点时,先确定了,解得:.【考点】1.函数零点;2.函数图像.4.函数的图象大致是()【答案】C【解析】,即,所以不是偶函数,图像不关于y轴对称,故D不正确;时,所以,所以,所以,故B不正确。
当时,所以,所以,故A不正确。
期末复习专题5:一次函数的图像与性质(一)1. 在学习一次函数时,我们经历了“确定函数的表达式--利用函数图象研究其性质--应用函数解决问题”的学习过程,在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|2x+b|+kx (k≠0)中,当x=0时,y=1;当x=-1时,y=3. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数y=21x-1的图象如图所示,结合你所画的函数图形,直接写出不等式|2x+b|+kx≤21x-1的解集.【解答】(1)将x=0,y=1;x=-1,y=3分别代入函数y=|2x+b|+kx (k≠0)得:⎪⎩⎪⎨⎧=-+-=321k b b ,解得:⎩⎨⎧-==21k b 或()舍⎩⎨⎧=-=01k b ,∴y=|2x+1|-2x . (2)当2x+1≥0,即x≥-21时,y=1;当2x+1<0,即x <-21时,y=-1-4x ;∵y=1为平行于x 轴的直线,y=-1-4x 为过(-1,3)、(-23,5)的射线故可作图如下:这个函数的一条性质为:函数图象不过原点.(3)由(2)中图象可知不等式|2x+b|+kx≤21x-1的解集为x≥4.2.已知函数y=|x﹣4|(1)在平面直角坐标系中画出函数图象;(2)函数图象与x轴交于点A,与y轴交于点B.已知P(x,y)是图象上一个动点,若△OP A的面积为6,求P点坐标;(3)已知直线y=kx+1(k≠0)与该函数图象有两个交点,求k的取值范围.【解答】(1)当x≥4时,y=x﹣4,当x<4时,y=4﹣x,按照一次函数画出函数如下图象.(2)如上图所示,点P只可能在点A右侧的图象上,设点P(m,m﹣4),m≥4,△OP A的面积=AO×y P=6,则y P=3=m﹣4,解得:m=7,故点P(7,3)或(1,3);(3)设直线y=kx+1(k≠0)与y轴交于点C(0,1),当直线在m、n之间时,直线y=kx+1(k≠0)与该函数图象有两个交点,①直线m过点C、A,将点A的坐标代入直线方程得:0=4k+1,解得:k=﹣;②直线n与直线AP平行,在k=1,故﹣<k<1且k≠0.3.如图在平面直角坐标系中直线AB:y=kx+b经过A(,﹣1),分别交x轴、直线y=x、y轴于点B、P、C,已知B(2,0)(1)求直线AB的解析式;(2)直线y=m分别交直线AB于点E、交直线y=x于点F,若点F在点E的右边,说明m满足的条件.【解答】(1)∵直线AB:y=kx+b经过A(,﹣1),B(2,0),∴,解得,∴直线AB的解析式为y=﹣2x+4;(2)如图,设点E(x E,m),点F(x F,m),则m=﹣2x E+4,m=x F,∴x E=﹣m+2,x F=m.∵点F在点E的右边,∴m>﹣m+2,解得m>,即m满足的条件是m>.4.已知直线l1:y=kx+2k与函数y=|x﹣a|+a(1)直线l1经过定点P,直接写出点P的坐标;(2)当a=1时,直线与函数y=|x﹣a|+a的图象存在唯一的公共点,在图1中画出y=|x﹣a|+a的函数图象并直接写出k满足的条件;(3)如图2,在平面直角坐标系中存在正方形ABCD,已知A(2,2)、C(﹣2,﹣2).请认真思考函数y=|x﹣a|+a的图象的特征,解决下列问题:①当a=﹣1时,请直接写出函数y=|x﹣a|+a的图象与正方形ABCD的边的交点坐标;②设正方形ABCD在函数y=|x﹣a|+a的图象上方的部分的面积为S,求出S与a的函数关系式.【解答】(1)y=kx+2k=k(x+2),∴直线经过定点(﹣2,0),∴P(﹣2,0);(2)当a=1时,y=|x﹣1|+1,函数图象如下:直线与函数y=|x﹣a|+a的图象存在唯一的公共点,有以下三种情况:①当直线过点A(1,1)时,将点A的坐标代入y=kx+2k得:1=3k,解得:k=;②k=1直线和函数恰好有一个交点,且直线与图象右侧直线平行,故当k≥1时,直线和函数恰好有一个交点;③k=﹣1直线与图象左侧直线平行,直线和函数恰好没有交点,且故当k<﹣1时,直线和函数恰好没有交点;综上,k=或k≥1或k<﹣1;(3)如下图,图象的顶点为H(a,a),函数与正方形的交点为点T、点A,①当图象与函数无交点时,S=0,a>2;②当点T在AD上时,如图2(左),此时0<a≤2,过点H作HM⊥AD于点M,则S=×MH×AD=(2﹣a)×2×(2﹣a)=a2﹣4a+4;③当点T在边CD上时,此时﹣2<a≤0,连接HC,S=S△ACD﹣S△THC=8﹣×(2﹣a)(2﹣a)=﹣a2﹣4a+4;④当点T与点C重合时,S=8;综上,S=.5.如图,一次函数y=kx+b的图象经过点A (-2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;(2)若点D在y轴负半轴,且满足S△COD=31S△BOC,求点D的坐标.【解答】(1)当x=1时,y=3x=3,∴C(1,3),将A (-2,6),C(1,3)代入y=kx+b,得⎩⎨⎧3=b+k6=b+2k-,解得⎩⎨⎧=-=41bk∴直线AB的解析式是y=-x+4;(2)y=-x+4中,令y=0,则x=4,∴B(4,0),设D(0,m)(m<0),S△BOC=21×OB×|y C|=21×4×3=6,S△COD=21×OD×|x C|=21|m|×1=-21m,∵S△COD=31S△BOC,∴-21m=31×6,解得m=-4,∴D(0,-4).6.如图,已知点A(6,0)、点B(0,2).(1)求直线AB所对应的函数表达式;(2)若C为直线AB上一动点,当△OBC的面积为3时,试求点C的坐标.【解答】(1)设直线AB所对应的函数表达式为y=kx+b(k≠0).由题意得:⎩⎨⎧==+26bbk,解得,⎪⎩⎪⎨⎧=-=231bk,∴直线AB所对应的函数表达式为y=−31x+2.(2)由题意得OB=2.又∵△OBC的面积为3,∴△OBC中OB边上的高为3.当x=-3时,y=−31x+2=3;当x=3时,y=−31x+2=1.∴点C的坐标为(-3,3)或(3,1).。
一、图象信息
1.甲、乙两车在连通A 、B 、C 三地的公路上行驶,甲车从A 地出发匀速向C 地行驶,同时乙车从C 地出发匀速向B 地行驶,到达B 地并在B 地停留1小时后,按原路原速返回到C 地.在两车行驶的过程中,甲、乙两车距B 地的路程y (千米)与行驶时间x (小时)之间的函数图象如图所示,请结合图象回答下列问题:
(1)求甲、乙两车的速度,并在图中( )内填上正确的数; (2)求乙车从B 地返回到C 地的过程中,y 与x 之间的函数关系式;
(3)当甲、乙两车行驶到距B 地的路程相等时,甲、乙两车距B 地的路程是多少?
2.有一批物资,先用火车从M 地运往距M 地180千米的火车站,再由汽车运往N 地.甲车在驶往N 地的途中发生故障,司机马上通知N 地,并立即检查和维修.N 地在接到通知后第12分钟时,立即派乙车前往接应.经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇.为了确保物资能准时运到N 地,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达N 地.下图是甲、乙两车离N 地的距离y (千米)与时间x (小时)之间的函数图象。
请结合图象信息解答下列问题:
(1)请直接在坐标系中的( )内填上数据;
(2)求直线CD 的函数解析式,并写出自变量的取值范围; (3)求乙车的行驶速度.
3.如图1,某容器由A 、B 、C 三个长方体组成,其中A 、B 、C 的底面积分别为25cm 2、10cm 2、5cm 2,C 的容积是容器容积的 1
4
(容器各面的厚度忽略不计).现以速度v (单位:cm 3/s )
均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.
(1)求A 的高度h A 及注水的速度v ; (2)求注满容器所需时间及容器的高度.
)
(
图1
图2
10.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽.水槽内水面的高度y (cm )与注水时间x (s )之间的函数图象如图②所示. (1
)正方体的棱长为 cm ;
(2)求线段AB 对应的函数解析式,并写出自变量x 的取值范围;
(3)如果将正方体铁块取出,又经过t (s )恰好将此水槽注满,直接写出t 的值.
10.【答案】(1)10;(2)y =错误!未找到引用源。
x +错误!未找到引用源。
(12≤x ≤28);(3)4 s.
4.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:
(1)图2中折线ABC 表示_______槽中水的深度与注水时间之间的关系,线段DE 表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是__________________________; (2)注水多长时间时,甲、乙两个水槽中水的深度相同? (3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积; (4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).
甲槽 乙槽 图1 图2
y (厘米)
19 14
12 2 O A D
B
C
E
x (分钟) 4 6
5.小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m /min 的速度从邮局沿同一条道路步行回家,小明在邮局停留2 min 后沿原路以原速返回.设他们出发后经过t min 时,小明与家之间的距离为s 1 m ,小明爸爸与家之间的距离为s 2 m ,图中折线OABD 、线段EF 分别表示s 1、s 2与t 之间函数关系的图象。
(1)求s 2与t 之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
6.因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h ,乙水库停止供水.甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m 3)与时间t (h )之间的函数关系. 求:(1)线段BC 的函数表达式; (2)乙水库供水速度和甲水库一个排灌闸的灌溉速度; (3)乙水库停止供水后,经过多长时间甲水库蓄水量又
降到了正常水位的最低值?
7.小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2 :
00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP (图2)的夹角记为y 1,时针与OP 的夹角记为y 2度(夹角是指不大于平角的角),旋转时间记为t 分钟.观察结束后,利用获得的数据绘制成图象(图3),并求出y 1与t 的函数关系式:
y 1=⎩
⎪⎨⎪⎧6t (0≤t ≤30)-6t +360(30<t ≤60)
请你完成:
(1)求出图3中y 2与t 的函数关系式;
(2)直接写出A 、B 两点的坐标,并解释这两点的实际意义; (3)若小华继续观察一个小时,请你在图3中补全图象.
)
Q (
图1
图2
图3
)
8.周六上午8∶00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/小时的平均速度步行返回,同时他的爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇,接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米)与x (小时)之间的函数图象如图所示.
(1)小明去基地乘车的平均速度是______千米/小时,爸爸开车的平均速度是______千米/小时;
(2)求线段CD 所表示的函数关系式;
(3)小明能否在12∶00前回到家?若能,请说明理由;若不能,请算出12∶00时他离家的路程.
10.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽.水槽内水面的高度y (cm )与注水时间x (s )之间的函数图象如图②所示. (1
)正方体的棱长为 cm ;
(2)求线段AB 对应的函数解析式,并写出自变量x 的取值范围;
(3)如果将正方体铁块取出,又经过t (s )恰好将此水槽注满,直接写出t 的值.
10.【答案】(1)10;(2)y =错误!未找到引用源。
x +错误!未找到引用源。
(12≤x ≤28);(3)4 s.
16.长江沿岸的甲乙两港相距300千米,甲港在乙港的上游,满载货物的货轮从乙港出发,
A D
B x (小时)
C O y (千米) 10 20
30 1 28
到达甲港卸货后,再空载返回乙港,货轮离开乙港的路程s(千米)随时间t(小时)的变化关系如图所示.已知货轮空载时在静水中的速度比满载时在静水中的速度快5千米/小时.(1)求长江水流速度及货轮空载时在静水中的速度;
(2)若货轮在距甲港90千米时接到警报,将有台风影响航道安全,预报再过4小时此段航道将有暴风雨,为了安全,货船必须在4小时之内进入甲港避风.现决定从甲港派出一艘大马力的动力拖轮,遇到货轮后,将其快速拖到甲港.动力拖轮拖着货轮在静水中的速度,是它们分别在静水中速度的平均值.动力拖轮在静水中速度是40千米/小时.问:能否在规定时间内将货轮拖到甲港?请说明理由.
)。