数值分析上机实验最小二乘法
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
最小二乘法数值分析实验报告最小二乘法数值分析实验报告篇一:数值分析+最小二乘法实验报告数学与信息工程学院实课程名称:实验室:实验台号:班级:姓名:实验日期:验报告数值分析 201X年 4 月 13日篇二:数值分析上机实验最小二乘法数值分析实验报告五最小二乘法一、题目设有如下数据用三次多项式拟合这组数据,并绘出图形。
二、方法最小二乘法三、程序M文件:sy ms x f; xx=input( 请输入插值节点 as [x1,x2...]\n ff=i nput( 请输入插值节点处对应的函数值 as [f1,f 2...]\n m=input(请输入要求的插值次数m= n=leng th(xx); fr i=1:(m+1) syms faix; fai=x^(i-1); fr j=1:n x=xx(j);H(i,j)=eval(fai); end endA=ff*(H) *inv(H*(H) syms x; f=0; fr i=1:(m+1) f=f+A(i)*x^(i-1); end f plt(xx,ff, * ) hldnezplt(f,[xx(1),xx(n)])四、结果 sav e and run之后:请输入插值节点 as [x1,x2...] [-3 -2-1 0 1 2 3] 请输入插值节点处对应的函数值 as[f1,f2...] [-1.76 0.42 1.21.341.432.254.38]请输入要求的插值次数m=3 f =133/100+121469856021/35184372088832*x-8042142191733/450359 9627370496*x^2+1020815915537309/9007199254740992*x^3五、拓展:最小二乘法计算方法比较简单,是实际中常用的一种方法,但是必须经计算机来实现,如果要保证精度则需要对大量数据进行拟合,计算量很大。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数值分析论文--曲线拟合的最小二乘法曲线拟合的最小二乘法姓名:徐志超学号:2019730059 专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y 的误差。
设 x 和 y 的函数关系由理论公式 y=f(x; c1, c2, cm)1 / 13(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。
对于每组观测数据(xi, yi) i=1, 2,, N。
都对应于 xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m 组测量值代入式(0-0-1),便得到方程组yi=f (x;c1,c2,cm)(0-0-2)式中 i=1,2,, m.求 m 个方程的联立解即得 m 个参数的数值。
显然Nm 时,参数不能确定。
在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。
数值分析上机实验报告摘要:本报告是对数值分析课程上机实验的总结和分析,涵盖了多种算法和数据处理方法,通过对实验结果的分析,探究了数值计算的一般过程和计算的稳定性。
1. 引言数值计算是数学的一个重要分支,广泛应用于物理、金融、工程等领域。
本次实验是对数值分析课程知识的实际应用,通过上机实现算法,探究数值计算的可靠性和误差分析。
2. 实验方法本次实验中,我们实现了多种算法,包括:(1)牛顿迭代法求方程的根;(2)高斯消元法求线性方程组的解;(3)最小二乘法拟合数据点;(4)拉格朗日插值法估计函数值;(5)梯形公式和辛普森公式求积分近似值。
对于每个算法,我们都进行了多组数值和不同参数的实验,并记录了相关数据和误差。
在实验过程中,我们着重考虑了算法的可靠性和计算的稳定性。
3. 实验结果与分析在实验中,我们得到了大量的实验数据和误差分析,通过对数据的展示和分析,我们得到了以下结论:(1)牛顿迭代法求解非线性方程的根能够对算法的初始值和迭代次数进行适当的调整,从而达到更高的稳定性和可靠性。
(2)高斯消元法求解线性方程组的解需要注意到矩阵的奇异性和精度的影响,从而保证计算的准确性。
(3)最小二乘法拟合数据点需要考虑到拟合的函数形式和数据的误差范围,采取适当的数据预处理和拟合函数的选择能够提高计算的准确性。
(4)拉格朗日插值法估计函数值需要考虑到插值点的选择和插值函数的阶数,防止出现龙格现象和插值误差过大的情况。
(5)梯形公式和辛普森公式求积分近似值需要考虑到采样密度和拟合函数的选择,从而保证计算的稳定性和收敛速度。
4. 结论通过本次实验的分析和总结,我们得到了深入的认识和理解数值计算的一般过程和算法的稳定性和可靠性,对于以后的数值计算应用也提供了一定的指导和参考。
---------------------------------------------------------------最新资料推荐------------------------------------------------------数值分析上机实验最小二乘法数值分析实验报告五最小二乘法一、数值分析实验报告五最小二乘法一、题目设有如下数据题目设有如下数据 xj -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 ( )jf x -1.76 0.42 1.2 1.34 1.43 2.25 4.38 -1.76 0.42 1.2 1.34 1.43 2.25 4.38 用三次多项式拟合这组数据,并绘出图形。
二、用三次多项式拟合这组数据,并绘出图形。
二、方法最小二t(f,[xx(1),xx(n)]) 四、结果 save and run 之后:请输入插值节点 as [x1,x2...] [-3 -2 -1 0 1 2 3] 请输入插值节点处对应的函数值 as [f1,f2...] [-1.76 0.42 1.2 1.34 1.43 2.25 4.38] 请输入要求的插值次数m =3 f = 133/100+121469856021/35184372088832*x-8042142191733/450359结果 save and run 之后:请输入插值节点 as [x1,x2...] [-3 -2 -1 0 1 2 3] 请输入插值节点处对应的函数值 as [f1,f2...] [-1.76 0.42 1.2 1.34 1.43 2.25 4.38] 请输入要求的插值次数m =3 f = 133/100+121469856021/35184372088832*x-8042142191733/4503599 627370496*x+1020815915537309/9007199254740992*x9627370496*x+1020815915537309/9007199254740992*x五、拓展:1 / 2最小二乘法计算方法比较简单,是实际中常用的一种方法,但是必须经计算机来实现,如果要保证精度则需要对大量数据进行拟合,计算量很大。
工程数值分析实验报告指导老师班级 学号 姓名实验一:最小二乘法拟合曲线实验一、实验名称:最小二乘法拟合曲线实验实验时间: 2015-5-14 实验地点: 主楼机房 实验器材: 计算机matlab二、实验目的:学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。
三、实验要求:(1)根据最小二乘法和加权最小二乘法的基本理论,编写程序构造拟合曲线的法方程,要求可以方便的调整拟合多项式的次数;(2)采用列主元法解(1)中构造的法方程,给出所拟合的多项式表达式; (3)编写程序计算所拟合多项式的均方误差,并作出离散函数 和拟合函数的图形; (4) 用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB 的内部函数plot 作出其图形,并与(1)的结果进行比较。
四、算法描述(实验原理与基础理论)基本原理:从整体上考虑近似函数 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)( (i=0,1,…,m) i i i y x p r -=)( (i=0,1,…,m)绝对值的最大值imi r ≤≤0max ,即误差 向量Tm r r r r ),,(10 = 的∞—范数;二是误差绝对值的和∑=mi ir,即误差向量r 的1—范数;三是误差平方和∑=mi ir2的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir2来 度量误差 i r (i=0,1,…,m)的五、实验内容:共有两组给定数据,把给定的数据拟合成多项式。
第一组给定数据点如表1所示如下:表1 数据表表2 数据表六、程序流程图七、实验结果ans =27-May-2015ans =7.3611e+05ans =1.0e+03 *2.0150 0.0050 0.0270 0.0140 0.0010 0.0213 >>八、实验结果分析实验程序 quxiannihe.m clear alldate,now,clockx0=[0.0 0.5 0.6 0.7 0.8 0.9 1.0]; y0=[1 1.75 1.96 2.19 2.44 2.71 3.00]; w=ones(size(x0)); x=0:0.01:1; %进行五次曲线拟合 N=5;for i=1:Na1=LSF(x0,y0,w,i) ; y=polyval(a1,x); figure(i)plot(x0,y0,'ok',x,y,'r') title('最小二乘法'); legend('y0','y'); xlabel('x'); ylabel('y'); end实验二:4阶经典龙格库塔法解常微分方程一、实验名称: 4阶经典龙格库塔法解常微分方程实验时间: 2015-5-14 实验地点: 主楼机房 实验器材: 计算机matlab二、实验目的:学习掌握4阶经典R-K 方法,体会参数和步长对问题的影响。
数学与信息工程学院
实验报告
课程名称:数值分析
实验室:
实验台号:
班级:
姓名:
实验日期:2012 年 4 月13 日
实验名称最小二乘法求多项式拟合
实验目的和要求(1)了解最小二乘法求多项式拟合原理和方法;
(2)通过实例掌握用MATLAB求拟合函数及拟合图像;(3)编程实现用最小二乘法求多项式拟合。
实验内容和步骤:
实验内容:
根据matlab编写算法,用最小二乘法求多项式拟合。
实验步骤:
(1)开启软件平台——MATLAB,编程;
在command window 编写程序,求出拟合函数
x=[-2,-1,0,1,2];
y=[-0.1,0.1,0.4,0.9,1.6];
>> p=polyfit(x,y,3);
>> pa=poly2str(p,'x')
pa =
0.0083333 x^3 + 0.085714 x^2 + 0.39167 x + 0.40857(2)根据数值解法步骤编写M文件;
x=[-2 -1 0 1 2];
y=[-0.1 0.1 0.4 0.9 1.6];
p1=polyfit(x,y,3)
x1=-3:0.01:3;
y1=polyval(p1,x1);
plot(x,y,'b^',x1,y1,'r-')
(3)观察运行结果。
实验数据记录:
实验结果分析:
1.画图中点与函数要用不同的表现法,否则图片就是五点的连接。
2.3次拟合比2次拟合更准确。
3.在写M文件时,注意数据点乘的运用。
成绩评定
签字:年月日。
数值分析曲线拟合的最小二乘法实验报告数值分析曲线拟合的最小二乘法实验报告篇一:数值分析设计曲线拟合的最小二乘法曲线拟合的最小二乘法一、目的和意义在科学实验的统计方法研究中,往往要从一组实验数据?xi,yi??i?0,1,2,?,m?中,寻找自变量x与因变量y之间的函数关系y?F?x?。
由于观测数据往往不准确,因此不要求y?F?x?经过所有点?xi,yi?,而只要求在给定点xi上误差而只要求所在所有给定点xi上的误差?i?F(xi)?yi ?i?0,1,2,?,m?按某种标准最小。
若记????0,?1,?2,?,?m?,就是要求向量?的范数如果用最大范数,计算上困难较大,通常采用欧式范数?最小。
2T 作为误差度量的标准。
F?x?的函数类型往往与实验的物理背景以及数据的实际分布有关,它一般含有某些待定参数。
如果F?x?是所有待定参数的线性函数,那么相应的问题称为线性最小二乘问题,否则称为非线性最小二乘问题。
最小二乘法还是实验数据参数估计的重要工具。
这是因为这种方法比其他方法更容易理解,即使在其他方法失效的情况下,用最小二乘法还能提供解答,而且从统计学的观点分析,用该方法求得各项估计具有最优统计特征,因此这一方法也是系统识别的重要基础。
线性最小二乘问题可以借助多元微分学知识通过求解法方程组得到解答。
用最小二乘法求拟合曲线时,首先要确定S?x?的形式。
这不单纯是数学问题,还与所研究问题的运动规律以及所得观测数据?xi,yi?有关;通常要从问题的运动规律以及给定数据描图,确定S?x?的形式,并通过实际计算选出较好的结果。
为了使问题的提法更有一般性,通常把最小二乘法中的? 22 都考虑为加权平方和22 ? ????xi???S?xi??f?xi??? i?0 m 2 这里??xi??0是?a,b?上的加权函数,它表示不同点?xi,f?xi?处的数据比重不同。
?二、计算方法在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y与时间t的拟合曲线。
数值分析中的最小二乘法与曲线拟合数值分析是现代理论与实践密切结合的一门交叉学科,其中最小二乘法和曲线拟合是其中两个非常重要的概念。
最小二乘法是一种数学运算方法,用于求解一组方程组的未知参数,使得每个方程的误差平方和最小。
在实际应用中,最小二乘法广泛应用于数据拟合、信号处理、回归分析等领域。
在数据拟合中,最小二乘法是一种常见的方法,它可以用于拟合曲线和函数。
它通过延伸曲线以获得局部数据之间的交点,并通过在它们上进行平均化的方法来尝试匹配数据。
最小二乘法的概念为我们提供了一个理论基础,以便在一定程度上预测新的数据中对象的行为或趋势。
但是,即使在相对简单的问题中,最小二乘法可能并不是最佳选择。
曲线拟合是对一系列数据进行插值的过程,以便获得与原始数据点更准确相匹配的曲线或函数。
曲线拟合可以通过在相邻数据点之间进行插值来完成。
在曲线拟合中,只有在数据有很好的统计关系或在相邻数据点
有很好的相关性时,才会产生准确的结果。
否则,结果可能并不
准确,因为这些结果取决于数据点的数量和分布。
需要注意的是,曲线拟合和最小二乘法并不是一个可以代替另
一个的工具。
它们的适用范围不同。
曲线拟合适用于对离散数据
点进行联合分析,而最小二乘法适用于求解连续数据的线性模型。
总之,数值分析中的最小二乘法和曲线拟合是非常实用的概念,可以应用于各种领域。
它们作为现代数据分析的主要工具之一,
不断吸引着越来越多的学者和工程师投入到其中,将继续发挥重
要作用。
最小二乘法数值分析实验报告数学与信息工程学院实课程名称:实验室:实验台号:班级:姓名:实验日期:验报告数值分析2012 年 4 月 13 日数值分析实验报告五最小二乘法一、题目设有如下数据用三次多项式拟合这组数据,并绘出图形二、方法最小二乘法三、程序M文件: syms x f;xx=input(‘请输入插值节点as [x1,x2...]\n’);ff=input(‘请输入插值_ __________________ ___________________ ___________________ ___________________实验一MATLAB在数值分析中的应用插值与拟合是来源于实际、又广泛应用于实际的两种重要方法随着计算机的不断发展及计算水平的不断提高,它们已在国民生产和科学研究等方面扮演着越来越重要的角色下面对插值中分段线性插值、拟合中的最为重要的最小二乘法拟合加以介绍分段线性插值所谓分段线性插值就是通过插值点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理实现分段线性插值不需编制函数程序,MATLAB自身提供了内部函数interp1其主要用法如下:interp1(x,y,xi) 一维插值◆yi=interp1(x,y,xi)对一组点(x,y) 进行插值,计算插值点xi的函数值x为节点向量值,y为对应的节点函数值如果y为矩阵,则插值对y 的每一列进行,若y 的维数超出x 或xi 的维数,则返回NaN ◆ yi=interp1(y,xi)此格式默认x=1:n ,n为向量y的元素个数值,或等于矩阵y的size(y,1) ◆ yi=interp1(x,y,xi,’method’)method用来指定插值的算法默认为线性算法其值常用的可以是如下的字符串nearest 线性最近项插值linear线性插值spline 三次样条插值贵州师范大学数学与计算机科学学院学生实验报告1. 对函数f(x)?,哪一种曲线拟合较好?为什么?能找出更好的拟合曲线吗?七、总结1、从图像可以看出用lagrange插值函数拟合数据中间拟合的很好,但两边与原函数图象相比波动太大,逼近效果很差,出现所谓的Runge现象2、从图像可以看出用最小二乘法去拟合较少的数据点,曲线拟合比直线拟合得好,高次的会比低次的拟合得好3.一般情形高次插值比低次插值精度高,但是插值次数太高也不一定能提高精度.八、附录1、M文件:function cy=Lagrange(x,y,n,cx)m=length(cx);cy=zeros(1,m);for k=1:n+1t=ones(1,m);for j=1:n+1if j~=kt=t.*(cx-x(j))./(x(k)-x(j));endendcy=cy+y(k).*t ;end>> x=-5::5;>> y=1./(x. +1);>> plot(x,y)>> n=10;>> x0=-5:10/n:5;>> y0=1./(1+x0. );>> cx=-5::5;>> cy=Lagrange(x0,y0,n,cx);>> hold on>> plot(cx,cy)e1 =xxxx大学数值分析实验报告题目:学院:专业:年级:学生姓名:学号:日期:曲线拟合的最小二乘法xxxx学院xxxxxxx xxxx级xxx xxx 2014年12月24日课题八曲线拟合的最小二乘法一、问题的提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘拟合求得拟合曲线在某冶炼过程中,根据统计数据的含碳量与时间关系,试求出含碳量y与时间t的拟合曲线0 5 10 15 20 25 30 35 40 45 50 55t(分)y(x10?4)0 二、要求1、用最小二乘法进行曲线的拟合;2、近似表达式为:?(t)?a0?a1t?a2t2?a3t3;?(t),3、打印出拟合函数:并打印出?(tj)与y(tj)的误差,其中j?1,2,3,?,12;4、另外选取一个近似表达式,尝试拟合效果的比较;5、*绘制出拟合曲线图;三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线性方程组;3、探索拟合函数的选择与拟合进精度间的关系;四、MATLAB2011a简介及算法介绍MATLAB2011a本实验是基于MATLAB2011a软件平台进行程序设计MATLAB2011a是一款将数据结构、程序特性以及图形用户界面完美地结合在一起的一款强大的软件MATLAB的核心是矩阵和数组,在MATLAB2011a中,所有的数据都是以矩阵或数组的形式来表示和存储的MATLAB2011a提供了常用的矩阵代数运算功能,同时还提供了非常广泛的、灵活的数组运算功能,用于数据集的处理MATLAB的编程特性与其他高级语言类似,同时它还可以与其他语言(如Fortran和C语言)混合编程,进一步扩展了自身的功能这次作业课题,主要采用了MATLAB语言进行程序的编写,误差计算,拟合函数的输出,以及拟合曲线(1)和拟合曲线(2)与原离散数据点在一个图形界面中的现实的显示最小二乘拟合法在函数的最佳平方逼近中f(x)?C[a,b],如果f(x)只在一组离散的点集?xi,i?0,1,2,3,?,m?上给出,这就是科学实验中经常见到的实验数据?(xi,yi),i?0,1,2,3,?m?的曲线拟合,这里yi?f(xi)(i?0,1,2,3,?,m),要求一个函数y?S*(x)与所给数据?(xi,yi),i?0,1,2,3,?m?拟合若记误差?i?S(xi)?yi(i?0,1,2,3,?,m),??(?0,?1,?2,?3,??m)T,设?0(x),?1(x),?,?n(x)是*?C[a,b]上线性无关的函数族,在??span??0(x),?1(x),?,?n(x)?中找一个函数S*(x)使误差平方和??这里22[S(xi)?yi]?min?[S*(xi)?yi]2, ()2i*2i?0i?0s(x)??i?0mmmS(x)?a0?0(x)?a1?1(x)?a2?2(x )?a3?3(x)??an?n(x) (n?m). () 这就是一般的最小二乘逼近,用几何语言说,就称为曲线拟合的最小二乘法. 用最小二乘法拟合曲线时,首先要确定S(x)的形式,这不是单纯的数学问题,还与所研究问题的运动规律及所得到的观测数据(xi,yi)有关;通常要从问题的运动规律或给定的数据描图,确定S(x)的形式,并通过实际计算选出最好的结果——这点将从下面的例题得到说明. S(x)的一般表达式为()式表示的线性形式.若?k(x)是k次多项式,S(x)就是n次多项式为了使问题的提法更有一般性,通常在最小二乘法中都考虑加权平方和2?2??22(xi)[S*(xi)?yi]2. ()i?0m 这里?(x)?0 (i?0,1,2,3,?m)是[a,b]上的权函数它表示不同的点(xi,yi)处的数据比重不同,列如:?(xi)可以表示点(xi,yi)处的重复观测次数用最小二乘法拟合曲线的问题,就是在形如()式的S(x)中求一函数y?S(x),使()式取得最小值它转化为求取多元函数*I(a0,a1,?an)(xi)[?aj?(xi)?f(xi)]2i?0j?0mn***的极小点(a0,a1,?,an)的问题这与多元函数求极值的必要条件的问题一样,则有:mn?I?2??(xi)[?aj?(xi)?f(xi)]?k(xi)?0k?0,1,2,?,n. ?aki?0j?0若记(?j,?k)(xi)?j(xi)?k(xi),()i?0mm(f,?k)(xi)f(xi)?k(xi)?dk,k?0,1,2,3?,n, ()i?0上式可以改写为:?(?j?0mk,?j)aj?dk, k?0,1,2,3?,n, ()线性方程组()称为法方程,可以将其写成:Ga?d其中??Ta?(a0,a1,?a2),d?(d0,d1,?dn)T,(0,0)(0,1)(,)(,)11G10(n,0)(n, 1)(0,n)(n,1)() (?n,?n)?五、课题分析拟合近似表达式:?(t)?a0?a1t?a2t2?a3t3的最高次数为三次,我们知道当拟合多项式的最高次数n?3时,与连续的情形一样,在求解法方程Ga?d的过程中,会出现系数矩阵(格拉姆矩阵)G为病态的问题但是如果?0(x),?1(x),?2(x),?,?n(x)是关于点集?xi?(i?0,1,2,?,m)带权?(xi)(i?0,1,2,?,m)正交的函数族,即:0,jk,()(?j,?k)(xi)?j(xi)?k(xi)??i?0?Ak?0,j?k,m则法方程的解为:(f,?k)?(?k,?k)*ak(x)f(x)?iii?0mk(xi),k?0,1,2,?,n ()??(x)?ii?0m2k(xi)这样就能避免求解格拉姆矩阵,也不会在求解线性方程组是就不会出现病态问题现在我们需要根据给定的节点x0,x1,?xm及权函数?(xi)?0,造出带权?(xi)正交的多项式?Pn(x)?.注意n?m,用递推公式表示Pk(x),即:?P0(x)?1,?() ?P1(x)?(x??1)P0(x),?P(x)?(x??)P(x) P(x),k?1,2,3,?,n?1.k?1kkk?1?k?1这里Pk(x)是首项系数为1的k次多项式,根据Pk(x)的正交性,得:m??(xi)xiPk2(xi)??(xPk(x),Pk(x))??k?1?i?0?m?(Pk(x),Pk(x))2?(x)P(x)?iki?i?0??(xPk,Pk),k?0,1,2,3,?,n?1, () ??(P,P)kk?m??(xi)Pk2(xi)??(Pk,Pk)i?0?,k?1,2,3 ,?,n??k(Pk?1,Pk?1)?(xi)Pk2?1(xi)??i?0?用正交多项式?Pk(x)?的线性组合做最小二乘曲线拟合,只要根据公式()和()逐步求Pk(x)得同时,相应计算出系数(f,Pk)*ak??(Pk,Pk)??(x)f(x)P(x)iikii?0m??(x)Pii?0m, k?0,1,2,?,n,()2k(xi)*并逐步把ak,Pk(x)累加到S(x)中去,最后就会得到所求的拟合曲线。
工程数值分析实验报告指导老师班级学号姓名实验一:最小二乘法拟合曲线实验一、实验名称:最小二乘法拟合曲线实验实验时间: 2015-5-14实验地点:主楼机房实验器材:计算机matlab二、实验目的:学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。
三、实验要求:(1)根据最小二乘法和加权最小二乘法的基本理论,编写程序构造拟合曲线的法方程,要求可以方便的调整拟合多项式的次数;(2)采用列主元法解(1)中构造的法方程,给出所拟合的多项式表达式;(3)编写程序计算所拟合多项式的均方误差,并作出离散函数和拟合函数的图形;(4) 用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB 的内部函数plot 作出其图形,并与(1)的结果进行比较。
四、算法描述(实验原理与基础理论)基本原理:从整体上考虑近似函数 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)( (i=0,1,…,m)的大小,常用的方法有以下三种:一是误差i i i y x p r -=)( (i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量T m r r r r ),,(10 = 的∞—范数;二是误差绝对值的和∑=m i i r 0,即误差向量r 的1—范数;三是误差平方和∑=m i i r02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差 i r (i=0,1,…,m)的整体大小。
五、实验内容:共有两组给定数据,把给定的数据拟合成多项式。
第一组给定数据点如表1所示如下:表1 数据表0.5 0.6 0.7 0.8 0.9 1.01 1.75 1.96 2.19 2.44 2.71 3.00表2 数据表六、程序流程图七、实验结果>> zuixiaoerchenfa ans =27-May-2015ans =+05ans =+03 *>>八、实验结果分析实验程序clear alldate,now,clockx0=[ ];y0=[1 ];w=ones(size(x0));x=0::1;%进行五次曲线拟合N=5;for i=1:Na1=LSF(x0,y0,w,i) ;y=polyval(a1,x);figure(i)plot(x0,y0,'ok',x,y,'r') title('最小二乘法'); legend('y0','y');xlabel('x');ylabel('y');end实验二:4阶经典龙格库塔法解常微分方程一、实验名称: 4阶经典龙格库塔法解常微分方程实验时间: 2015-5-14实验地点:主楼机房实验器材:计算机matlab二、实验目的:学习掌握4阶经典R-K方法,体会参数和步长对问题的影响。
最小二乘法实验报告1. 引言最小二乘法是一种常用的参数估计方法,用于求解线性回归问题。
本实验旨在通过使用最小二乘法,从一组给定的数据点中拟合出一条最优的直线。
本报告将详细介绍实验的步骤和思路。
2. 实验步骤2.1 数据收集首先,我们需要收集一组数据点作为实验的输入。
可以通过实地调查、采集历史数据或利用模拟工具生成数据集。
为了简化实验过程,我们假设已经收集到了一组包含 x 和 y 坐标的数据点,分别表示自变量和因变量。
2.2 数据可视化在进行最小二乘法拟合之前,我们先对数据进行可视化分析。
使用数据可视化工具(如Matplotlib),绘制出数据点的散点图。
这有助于我们直观地观察数据的分布特征,并初步判断是否适用线性回归模型。
2.3 参数计算最小二乘法的目标是找到一条直线,使得所有数据点到该直线的距离之和最小。
为了实现这个目标,我们需要计算直线的参数。
设直线的方程为 y = ax + b,其中 a 和 b 是待求的参数。
为了求解这两个参数,我们需要利用数据集中的 x 和 y 坐标。
首先,我们计算x 的均值(记作 x_mean)和 y 的均值(记作 y_mean)。
然后,计算 x 与 x_mean的差值(记作 dx)和 y 与 y_mean 的差值(记作 dy)。
接下来,我们计算直线的斜率 a,使用以下公式:a = sum(dx * dy) / sum(dx^2)最后,计算直线的截距 b,使用以下公式:b = y_mean - a * x_mean2.4 拟合直线通过上述步骤,我们得到了直线的斜率 a 和截距 b 的值。
现在,我们将利用这些参数将直线绘制在散点图上,以观察拟合效果。
使用绘图工具,绘制出散点图和拟合的直线。
直线应当通过散点的中心,并尽可能贴近这些点。
通过观察可视化结果,我们可以初步评估拟合的效果。
2.5 评估拟合效果为了定量评估拟合的效果,我们需要引入误差指标。
最常用的误差指标是均方误差(Mean Squared Error,简称MSE),定义如下:MSE = sum((y - (ax + b))^2) / n其中,y 是实际的因变量值,(ax + b) 是拟合直线给出的因变量值,n 是数据点的数量。
一实验名称:实验五最小二乘拟合法二.实验题目:在某化学反应中,测得某物质的浓度y(单位:%)随时间t(单位:min)的变化数据如表。
理论上已知y和t的关系为Y=ae b/t,其中a>0和b<0为待定系数,上式两端取对数lny=lna+b/t.做变量替换z=lny,x=1/t,并记A=lna,B=b,则有z=A+Bx.根据所测数据,利用最小二乘直线拟合法确定A和B,进而给出y和t的关系。
三.实验目的:(1)要求我们掌握逐次最小二乘拟合法的原理和运用方法。
(2)培养编程和上机调试能力。
四.基础理论:要求会熟练运用C语言中的基本数学函数和逐次超松弛迭代法的具体操作思路。
五.实验环境:必须要有一台PC机,并且装有winXP,win7及以上版本的操作系统,还必须有Visual C++6.0或其他编程软件。
六实验过程:理解题意,然后试着在草稿纸上写出伪代码,接着再用C语言编译,接着要在编程环境中调试。
在实验过程中,经常遇到一些棘手的问题,需要通过百度才能够解决,最后还是很艰难的把代码都做好,最后写成实验报告。
七.实验完整代码:#include<stdio.h>#include<math.h>void main(){int i,n;doubletx,ty,x[16],y[16],sum_x=0,sum_y=0,sum_x2=0,sum_xy=0,D,a,b, A,B;for(i=0;i<16;i++){scanf("f%f",&tx,&ty);x[i]=1/tx,y[i]=log(ty);}for(i=0;i<15;i++){sum_x=sum_x+x[i];sum_x2=sum_x2+x[i]*x[i];sum_y=sum_y+y[i];sum_xy=sum_xy+x[i]*y[i];}D=sum_x2*15-sum_x*sum_x;a=(n*sum_xy-sum_x*sum_y)/D;b=(sum_x2*sum_y-sum_x*sum_xy)/D;A=log(a);B=b;printf("A=%.6f B= %.6f\n");}八实验结果:y=11.343e-1.057/t.。
昆明理工数值分析大作业最小二乘法最小二乘法(Least Squares Method)是数值分析中的一种重要方法,用于处理数据拟合问题。
在大作业中,我们将通过使用最小二乘法来拟合给定的数据,并解释其原理和应用。
最小二乘法是一种用于找到使得拟合曲线与数据点之间的误差最小化的方法。
使用最小二乘法进行数据拟合的基本思想是,找到一个函数,可以描述数据点的分布,并通过优化算法调整函数的参数,使得函数的拟合曲线与数据点的残差最小。
首先,我们需要确定拟合函数的形式。
在拟合直线的情况下,我们选择一条直线的方程 y = mx + b,其中 m 和 b 是需要衡量和优化的参数。
在更复杂的情况下,比如多项式拟合,拟合函数可以是二次函数、三次函数等。
最小二乘法的关键是定义误差函数或损失函数。
通常,最小二乘法使用残差平方和来作为误差函数。
残差是指拟合曲线与实际数据点之间的垂直距离。
对于一条直线来说,残差可以通过计算每个数据点在垂直方向上的距离来得到。
如果我们有n个数据点,那么残差平方和可以通过以下公式计算:S = Σ(yᵢ - (mxᵢ + b))²其中,(xᵢ,yᵢ)表示第i个数据点的坐标。
我们的目标是找到最佳的参数m和b,使得S最小化。
为了找到最小化残差平方和的解,可以使用最优化算法,如梯度下降法、牛顿法等。
这些算法根据误差函数的梯度(导数)来更新参数的值,直到达到最小化误差的目标。
最小二乘法在实际应用中有广泛的用途。
例如,在回归分析中,可以使用最小二乘法进行线性回归,以确定自变量和因变量之间的关系。
此外,最小二乘法还可以用于曲线拟合、信号处理、图像处理等领域。
在大作业中,你可以选择一个合适的数据集,并使用最小二乘法进行拟合。
你可以尝试不同的拟合函数和最优化算法,比较它们的性能和误差。
此外,你还可以进一步探索最小二乘法的应用领域,并说明其优缺点。
总之,最小二乘法是一种重要的数值分析方法,用于拟合数据并优化参数。
---------------------------------------------------------------最新资料推荐------------------------------------------------------
数值分析上机实验最小二乘法
数值分析实验报告五最小二乘法一、数值分析实验报告五最
小二乘法一、题目设有如下数据题目设有如下数据 xj -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 ( )jf x -1.76 0.42 1.2 1.34 1.43 2.25 4.38 -1.76 0.42 1.2 1.34 1.43 2.25 4.38 用三次多项式拟
合这组数据,并绘出图形。
二、用三次多项式拟合这组数据,并绘出图形。
二、方法最小二t(f,[xx(1),xx(n)]) 四、结果 save and run 之后:
请输入插值节点 as [x1,x2...] [-3 -2 -1 0 1 2 3] 请输入插
值节点处对应的函数值 as [f1,f2...] [-1.76 0.42 1.2 1.34 1.43 2.25 4.38] 请输入要求的插值次数m =3 f = 133/100+121469856021/35184372088832*x-8042142191733/450359
结果 save and run 之后:
请输入插值节点 as [x1,x2...] [-3 -2 -1 0 1 2 3] 请输入插
值节点处对应的函数值 as [f1,f2...] [-1.76 0.42 1.2 1.34 1.43 2.25 4.38] 请输入要求的插值次数m =3 f = 133/100+121469856021/35184372088832*x-8042142191733/4503599 627370496*x+1020815915537309/9007199254740992*x
9627370496*x+1020815915537309/9007199254740992*x五、拓展:
1 / 2
最小二乘法计算方法比较简单,是实际中常用的一种方法,但是必须经计算机来实现,如果要保证精度则需要对大量数据进行拟合,计算量很大。
五、拓展:
最小二乘法计算方法比较简单,是实际中常用的一种方法,但是必须经计算机来实现,如果要保证精度则需要对大量数据进行拟合,计算量很大。