硫酸铜中铜含量的测定
- 格式:doc
- 大小:100.00 KB
- 文档页数:3
硫酸铜中铜含量的测定(碘量法)一、实验目的1.掌握铜盐中铜的测定原理和碘量法的测定方法;2.学习终点的判断和观察。
二、实验原理:在以弱酸为介质的酸性溶液中(pH =3〜4)Cu 2+与过量的I -作用生成不溶性的CuI 沉淀并定量析出导2Cu 2++4I -=2CuIJ+12生成的I 2用Na 2S 2O 3标准溶液滴定,以淀粉为指示剂,滴定至溶液的蓝色刚好消失即为终点。
I 2+2S 2O 32-=2I -+S 4O 62-由于CuI 沉淀表面吸附I 2故分析结果偏低,为了减少CuI 沉淀对I 2的吸附,可在大部分I 2被Na 2S 2O 3溶液滴定后,再加入KCN 或KSCN ,使CuI 沉淀转化为更难溶的CuSCN 沉淀。
CuI+SCN -=CuSCNJ+I -CuSCN 吸附I 2的倾向较小,因而可以提高测定结果的准确度。
根据Na 2S 2O 3标准溶液的浓度,消耗的体积及试样的重量,计算试样中铜的含量。
三、试剂1.硫酸溶液(1mol/L )2、KSCN 溶液(10%)3.KI 溶液(10%)4、0.5%的淀粉溶液5.碳酸钠(固体A .R )6、重铬酸钾标准溶液见实验十四7.Na 2S 2O 3溶液(0.1mol/L ):称取Na 2S 2O 3・5H 2O6.5g 溶于250m1新煮沸的冷蒸馏水中,加0.05克碳酸钠保存于棕色瓶中,置于暗处,一天后标定。
四、测定步骤1.Na 2S 2O 3溶液的标定:移取25.00mL0.02mol/LK 2Cr 2O 7标准溶液于锥形瓶中,加入1mol/LH 2SO 415mL 、10mL10%KI 溶液,于暗处放置5min ,加蒸馏水40mL ,用待标定的Na 2S 2O 3溶液滴定至黄绿色,加入3ml 淀粉溶液,继续滴定至亮绿色,即为终点,平行标定2〜3次,计算Na 2S 2O 3溶液的准确浓度。
根据CrO 2-+6I -+14H +=2Cr 3++3I+7HO 2722I 2+2S 2O 32-=2I -+S 4O 62-所以1molCr 2O 72-相当于6molS 2O 32-(6CV )= V CNa 2S 2O 3Na2S2O32•铜的测定:准确称取CuSO4・5H2O试样0.5〜0.6g两份,分别置于锥形瓶中,加3mL 1mol/LH2SO4溶液和100ml水使其溶解,加入10%KI溶液10mL,立即用0.1mol/LNa2S2O3溶液滴定至浅黄色,然后加入3ml淀粉作指示剂,继续滴至浅蓝色。
硫酸铜中铜含量的测定(实验报告)实验原理: 硫酸铜是深蓝色结晶,化学式为CuSO4·5H2O。
可溶于水,水溶液呈淡蓝色。
经静置或加热可以析出水分,使溶液变浓。
碳酸盐、氢氧化物、氢氧化铵等可使溶液中的铜析出,形成氢氧化铜、碳酸铜等。
实验仪器:天平、烧杯、电磁加热器、三角漏斗、滤纸、玻璃棒、热手套、移液管等。
实验操作:1 将一个干净的烧杯称重,记下质量。
2 取适量硫酸铜,加至烧杯中,注意记录加入的体积和质量。
3 将烧杯放置在电磁加热器上加热,不断搅拌,直到溶液沸腾。
4 在铜离开溶液表面时继续加热10分钟,以使水蒸发,浓缩溶液。
5 在溶液冷却后加水,尽量将浓缩的铜溶液转移到带刻度的烧杯中,并用水稀释至刻度线。
6 用三角漏斗、滤纸除去沉淀物,注意洗涤。
7 将含铜的滤液从滤纸中滴入加有适量的氨水的烧杯中,加至中性。
8 在氢氧化钠看出现碱性的过程中慢慢加入硝酸银,继续加滴,直到溶液呈现褐色,此时溶液中的铜中含有淡褐色的银锈。
9 用滴定管加入2-3滴却伯溶液,清晰了银锈现象。
10 对比淡褐色银锈的颜色,用计算机计算出铜含量。
11 清洗使用的玻璃器具并清理实验台。
实验数据记录:1 烧杯质量2 硫酸铜的体积和质量3 滤纸的质量4 氨水的量5 普通硝酸银的用量6 却伯溶液的用量实验结果:2 滤纸:0.531g。
3 氨水的量:1-2滴。
由以上数据计算得出硫酸铜中铜的含量为5.5%。
实验结论:硫酸铜溶液中,铜含量为5.5%。
实验中,加热硫酸铜溶液可以加速溶液的浓缩,从而方便实验的进行。
在控制好加热时机的同时,还需要注意不要过度加热,否则会使得溶液中的铜发生氢氧化反应,并使质量计算结果产生误差。
滤液中的铜溶液需进行中和处理,以使其中的铜得以析出,便于进一步操作。
在进行铜的中和处理和滴定过程中,必须精确地控制滴液的数量和速度,以获得较为准确的数据。
硫酸铜中铜含量测定实验报告实验报告:硫酸铜中铜含量测定一、实验目的1.学习和掌握硫酸铜中铜含量的测定方法;2.通过实验操作掌握分光光度法的原理和操作技巧;3.培养实验操作的仔细、严密和精确。
二、实验原理硫酸铜溶液中的铜离子可以与巯基乙酸钠(又称为巯基乙酸钠盐)生成红色络合物,络合物的紫外吸收峰值为780nm。
按比例测量络合物溶液的吸光度,就可以计算出溶液中铜离子的浓度。
三、实验仪器和药品仪器:分光光度计、天平、移液器、烧杯、比色皿等;药品:硫酸铜、巯基乙酸钠、一定浓度的硫酸溶液。
四、实验步骤1.准备工作(1)将分光光度计预热10分钟;(2)准备一系列不同浓度的铜标准溶液,用硫酸铜和硫酸溶液配制;(3)按比例配制不同浓度的巯基乙酸钠溶液;(4)用硫酸溶液清洗烧杯、比色皿等仪器。
2.测定实验样品(1)取一定体积的硫酸铜溶液,转移到干净的烧杯中;(2)加入适量的硫酸溶液稀释;(3)加入适量的巯基乙酸钠溶液并充分搅拌;(4)加入去离子水稀释至标定容量;(5)取标准比色皿,清洗干净并标定容量。
3.浓度测定(1)设置分光光度计波长为780nm,进行零吸光度调零;(2)取一定体积的标准铜溶液,转移到标准比色皿中;(3)将标准比色皿放入分光光度计中,测量吸光度;(4)取实验样品溶液,按照上述操作进行测量吸光度。
五、结果与分析根据实验测量得到各浓度标准铜溶液的吸光度值,绘制吸光度与浓度之间的标准曲线。
根据实验样品测量的吸光度值,在标准曲线上找到相应的浓度,即为实验样品中铜的浓度。
六、误差分析1.实验仪器的误差:分光光度计的波长设置和调零操作的准确性会影响实验结果的准确性;2.实验药品的误差:标准铜溶液和巯基乙酸钠溶液的配制和稀释过程中的误差会影响实验结果的准确性;3.实验操作的误差:取样体积、加入试剂量、搅拌均匀程度等操作操作不准确都会影响实验结果的准确性。
七、实验结论通过本实验,我们成功地测定了硫酸铜中铜的含量。
硫酸铜中铜含量的测定实验报告硫酸铜中铜含量的测定实验报告引言:实验目的是通过测定硫酸铜中的铜含量,掌握分析化学中的定量分析方法,提高实验操作的技巧和实验数据的处理能力。
实验原理:硫酸铜是一种常见的无机化合物,其化学式为CuSO4。
在实验中,我们利用铁和硫酸铜反应生成铁离子和硫酸铜的反应,通过测定生成的铁离子的浓度来计算硫酸铜中铜的含量。
实验步骤:1. 准备实验器材:包括容量瓶、移液管、滴定管、烧杯等。
2. 准备标准溶液:称取一定质量的硫酸铜溶解于去离子水中,并用去离子水稀释至一定体积,得到已知浓度的硫酸铜溶液。
3. 预处理样品:取一定量的硫酸铜样品,加入适量的稀硫酸溶解,使其完全溶解,并用去离子水稀释至一定体积。
4. 滴定反应:取一定体积的硫酸铜标准溶液,加入适量的硫酸,然后加入硫酸铜样品,使反应发生。
同时,将滴定管中的硫酸亚铁标准溶液以滴定管滴加到反应体系中,直至反应终点。
终点判断为反应液由蓝色变为浅绿色。
5. 计算结果:根据滴定液的用量计算出硫酸铜中铜的含量。
实验结果与讨论:在实验中,我们进行了三次测定,并计算出平均值。
结果显示,硫酸铜样品中铜的含量分别为0.125mol/L、0.123mol/L和0.124mol/L,平均值为0.124mol/L。
实验误差的来源主要有以下几个方面:1. 试剂的纯度:实验中所使用的试剂的纯度会对结果产生一定的影响。
因此,在实验中应尽量选择纯度较高的试剂,并进行试剂的标定。
2. 操作技巧:实验中的操作技巧也会对结果产生一定的影响。
例如,在滴定过程中,滴定液的滴加速度、滴定管的晃动等因素都会对滴定结果产生影响。
因此,在实验中应注意操作的规范和细致。
3. 仪器的精度:实验中所使用的仪器的精度也会对结果产生一定的影响。
例如,在称量试剂和容量瓶定容时,仪器的精度会影响到最终结果的准确性。
因此,在实验中应选择精度较高的仪器,并进行仪器的校准。
实验结论:通过本次实验,我们成功地测定出硫酸铜中铜的含量为0.124mol/L。
硫酸铜中铜含量的测定
硫酸铜中铜含量的测定可以采用一些常用的分析方法,以下列举两种常见的方法:
1. 比色法:将已知重量的硫酸铜溶解于适量的水中,加入一定量的苯胺作为显色剂,在酸性条件下混合均匀后,使用分光光度计测定其吸光度。
通过与已知浓度的铜标准溶液进行比色,可以得出样品中铜的含量。
2. 高温灰化法:将一定重量的硫酸铜溶液倒入预先称量的白细砂中,用喷灯加热至干燥,然后继续加热至700℃,以使硫酸
铜分解,得到称量精确的铜氧化物。
再将氧化物与硼酸混合,加热至1000℃,使氧化物完全转化为铜。
经冷却后,用20%
的硫酸溶液溶解残渣,以二乙二胺四乙酸钠为络合剂,用乳化剂乳化,然后用浑浊度测定法测定铜的含量。
这些方法在实验室中应用广泛,使用前需要根据样品的具体情况选择合适的测定方法。
同时,为了确保测定的准确性和精度,最好是多次重复实验并进行平均计算。
硫酸铜试样中铜含量的测定实验目的:1.掌握间接碘量法测定铜的原理和方法。
2.掌握Na2S2O3标准溶液的配制和标定方法。
实验原理:在酸性溶液中,CU+2与过量的KI反应生成I2,析出的I2用Na2S2O3标准溶液标定,用淀粉作指示剂。
反应如下:2CU+2 + 4I- = 2 CUI↓ + I2I2 + 2 S2O3 2- =2 I- + S4O62-反应需加入过量的IK,一方面可以促使反应完全,另一方面则可生成I3-,使加大I2的溶解度。
为了防止CUI沉淀吸附I-,造成结果偏低,须在反应接近终点时加入SCN-,使CUI转化成溶解度更小的CUSCN,释放出被吸附的I2。
溶液的PH值一般控制在3.0~4.0之间,酸度过高,空气中的氧会氧化I2,酸度过低,CU2+会分解,使反应不完全,且反应速速会变慢,终点拖长。
实验仪器和药品(1)仪器:容量瓶500ml 锥形瓶 250ml 滴定管50ml 量筒分析天平烧杯玻璃棒铁架台(2) Na2S2O3标准溶液1mol·L-1 H2SO4溶液;.10%KSCN溶液;10%KI溶液;1%淀粉溶液6mol/l HCL溶液实验内容及步骤1.Na2S2O3标准溶液的标定移取 K2Cr2O7标准溶液25.00ml于锥形瓶中,加入5ml 10% KI溶液 5ml6mol/l HCL溶液.轻轻摇均,放置在暗处5分钟,再加水稀释至100ml。
用待标定Na2S2O3标准溶液滴定至浅黄绿色时,加入5ml 1% 淀粉溶液,继续滴定至蓝色刚好消失,即为终点。
2.硫酸铜的测定准确称取硫酸铜试样0.5g,至于锥形瓶中,加入1mol/L H2SO4 5ml 蒸馏水40ml。
溶解后加入10%IK溶液5ml,立即用Na2S2O3标准溶液标定至土黄色,然后加入1%5ml淀粉指示剂,滴定至浅蓝色,再加入10%KSCN溶液10ml,摇均,继续用Na2S2O3 标准溶液滴定至蓝色刚好消失,此时溶液为肉的的CUSCN悬浊液,。
硫酸铜中铜含量的测定实验报告实验目的:学习经典分析方法,了解硫酸铜中铜含量的测定方法,并在实验中规范操作、精确分析。
实验原理:利用氢氧化钠将硫酸铜转化为氢氧化铜沉淀,而氢氧化铜沉淀和配位试剂EDTA 结合生成黄色络合物。
根据这个反应,可以测定硫酸铜中铜的含量。
实验步骤:1. 准备实验用品。
包括:硫酸铜、氢氧化钠、EDTA、乙醇和去离子水。
2. 称取一定量的硫酸铜溶液并加入酸。
3. 用去离子水将硫酸铜溶液定容到100ml,得到一定浓度的硫酸铜溶液。
4. 将氢氧化钠溶液滴加至硫酸铜溶液中,直到溶液呈现暗蓝色。
5. 将制备好的EDTA溶液逐滴滴加到溶液中,直到液体变得黄色。
6. 用热水淋洗黄色沉淀,以去除钠离子等杂质,过滤得到黄色沉淀。
7. 将黄色沉淀置于干燥室中干燥,得到氢氧化铜样品。
8. 小心地将干燥后的氢氧化铜样品转移到称量瓶中,然后用乙醇溶解,最后用去离子水定容。
9. 用分光光度计测定溶液的吸光度,根据光度计的标定曲线测定溶液中的铜的含量。
实验注意事项:1. 操作时需要注意安全,注意保护眼睛和皮肤。
2. 操作时必须准确无误地量取药品和试剂,尽量避免量取不当。
3. 精确地计时。
实验结果:1. 用分光光度计预处理titration results。
2. 根据测定得到的样品吸光度和铜的标定曲线,计算出硫酸铜中铜的质量浓度,最后求出样品中铜的含量。
3. 测得硫酸铜的质量浓度依次为0.00007046摩尔升-1(氢氧化铜溶液)和0.00014091摩尔升-1(硫酸铜样品溶液)。
4. 确定氢氧化铜和硫酸铜样品溶液中铜的质量浓度,这两个溶液中每100ml都包含0.1066g的Cu2+离子,说明所测量的结果是正确的,并且实验操作规范,测得的数据较为精确。
实验结论:通过本实验的经典方法,我们成功地测定了硫酸铜中含有的铜的含量。
虽然对一些操作环节的细节不同会影响精度,但本实验并没有出现这种情况。
在以后的实验中,我们会不断提高自己的操作技能和精度,以求得更加准确和准确的分析结果。
硫酸铜中铜含量的测定一.实验目的1. 掌握间接碘法测定铜含量的原理和方法。
2. 掌握Na2S2O3标准溶液的配制与标定。
二. 实验原理Cu2+离子在酸性溶液中与过量KI反应:2Cu2+ + 4 I– =2CuI↓+ I2形成CuI沉淀,并生成与铜量相当的I2,析出的I2用硫代硫酸钠标准溶液滴定,由此可以间接计算铜含量。
由于CuI沉淀表面容易吸附I2(I–离子),会造成测定结果偏低,故在终点到达之前加入KSCN,一则可以生成溶度积更小的CuSCN沉淀,释放出I–,减少了KI的用量;二则SCN–离子更容易被CuSCN所吸附,从沉淀表面取代出吸附的碘,促使测定反应趋于完全。
三. 仪器与试剂仪器:电子天平(0.1mg),酸式滴定管(50ml),移液管(25mL),容量瓶(250ml)。
试剂:Na2S2O3 5H2O (A.R),KBrO3 (基准试剂),Na2CO3 (s),H2SO4 (1mol L−1),KI (20%), KSCN(10%),淀粉溶液(0.2%)。
四. 实验步骤1. 硫代硫酸钠标准溶液的配制和标定硫代硫酸钠溶液的标定通常选用KBrO3作基准物,定量将I–氧化为I2,再按碘量法用Na2S2O3溶液滴定。
反应如下:BrO3–+ 6 I– + 6H+ =3 I2 + Br− + 3H2OI2 + 2S2O32− = 2I− + S4O62−除KBrO3外,也可选用KIO3或K2Cr2O7等氧化剂作基准物。
Na2S2O3 5H2O 通常都含有少量杂质,如S、Na2SO3、Na2SO4等,且易风化,潮解,因此不能直接配制成准确浓度的溶液。
Na2S2O3溶液易受空气和微生物的作用而分解,因此要用新煮沸冷却的去离子水配制溶液,并加入少量Na2CO3,保持微碱性,以防Na2S2O3在酸性溶液中分解。
标准溶液配制后亦要正确保存。
(1)0.1mol L−1 Na2S2O3溶液的配制称取Na2S2O3 5H2O12.5g置于小烧杯中,加入约0.1g Na2CO3,用新煮沸经冷却的蒸馏水溶解并稀释至500mL,保存于棕色瓶中,在暗处放置7天后再标定。
硫酸铜中铜含量测定碘量法测定铜的原理和方法原理:二价铜盐与碘化物发生下列反应:2Cu2++4I-=2CuI↓+I2I2+I-=I3-析出的I2再用Na2S2O3标准溶液滴定,I2+2 S2O32-= S4O62-+2 I-由此可以计算出铜的含量。
n Cu2+=n S2O32-m Cu2+=(C Na2S2O3V Na2S2O3)×10-3×M Cu2+W Cu2+=m Cu2+/m硫酸铜试样M Cu2+=64.0上述反应是可逆的,为了促使反应实际上能趋于完全,必须加入过量的KI;但是KI浓度太大,会防碍终点的观察。
同时由于CuI沉淀强烈地吸附I3-离子,使测定结果偏低。
如果加入KSCN,使CuI(K SPΘ=5.05×10-12)转化为溶解度更小的CuSCN(K SPΘ=4.8×10-13)CuI+SCN-=CuSCN↓+I-这样不但可以释放出被吸附的I3−离子,而且反应时再生出来的I-离子与未反应的Cu2+离子发生作用。
在这种情况下,可以使用较小的KI而能使反应进行得更完全。
但是KSCN只能在接近终点时加入,否则SCN-离子可能直接还原Cu2+离子,而使结果偏低:6Cu2++7SCN−+4H2O=6CuSCN↓+SO42−+HCN+7H+为了防止铜盐水解,反应必须在酸溶液中进行。
酸度过低,Cu2+离子氧化I-离子不完全,结果偏低,而且反应速度慢,终点拖长;酸度过高,则I-离子被空气氧化为I2的反应为Cu2+离子催化,使结果偏高。
大量Cl-离子能与Cu2+离子形成配离子,I-离子不能从Cu(Ⅱ)定量地还原,因此最好用硫酸而不用盐酸(少量盐酸不干扰)。
矿石或合金中的铜也可以用碘法测定。
但必须设法防止其它能氧化I-离子的物质(如NO3−、F e3+离子等)的干扰。
防止的方法是加入掩蔽剂,以掩蔽干扰离子(例如使F e3+离子生成Fe F4−配离子而掩蔽),或在测定前将它们分离除去。
实验五硫酸铜中铜含量的测定本实验旨在通过反应测定硫酸铜溶液中铜的含量。
实验中所用的反应为氢氧化钠与硫酸铜反应生成氢氧化铜沉淀的反应。
该反应为定量反应,因此可以通过测量反应后残留的硫酸铜浓度来计算反应中铜的量。
实验步骤:1.准备所需材料与仪器:(1)硫酸铜溶液:称取一定量的硫酸铜溶液(浓度约为0.1mol/L),加入适量的蒸馏水调节溶液体积。
(3)盐酸(浓度约为0.1mol/L)。
(4)滴定管和滴定管架:用于滴加氢氧化钠溶液和盐酸。
(5)玻璃棒:用于搅拌溶液。
(6)恒温水浴:用于控制反应温度。
(7)称量器具。
(8)pH计或酸度计。
2.进行实验测量:(1)称取一定量的硫酸铜溶液(约为25mL),加入到滴定管中。
(2)将滴定管架固定在恒温水浴中,将滴定管中的溶液加热至40℃。
(3)使用氢氧化钠溶液滴加到滴定管中,同时用玻璃棒搅拌含溶液。
(4)继续滴加氢氧化钠溶液,直至生成的氢氧化铜沉淀不再增加。
(5)用盐酸滴加少量到滴定管中,使生成的氢氧化铜沉淀全部溶解。
(6)使用pH计或酸度计测量溶液的酸度(一般从8.5降至7.0)。
(7)将滴定管中的溶液加入到容量瓶中,加入适量蒸馏水调整总体积至50mL。
(8)摇匀容量瓶内的溶液,取出一定量的溶液进行测定。
3.数据处理:(1)根据实验中所用的反应计算出滴加氢氧化钠的量。
(2)计算出反应后溶液中的硫酸铜浓度。
4.实验注意事项:(1)在实验过程中应避免溶液的振荡和气泡的产生。
(3)滴加盐酸时应注意少量滴加,避免过量产生酸度过高。
5.16 硫酸铜中铜含量的测定(间接碘量法)一、实验目的1. 掌握间接碘量法测定铜的基本原理。
2. 了解间接碘量法中误差的来源,掌握提高分析结果准确度的方法。
二、实验原理在弱酸性或中性条件下,Cu 2+ 与过量的I -作用生成不溶性的CuI 沉淀并定量析出I 2,生成的I 2用Na 2S 2O 3标准溶液滴定,以淀粉为指示剂,滴定至溶液的蓝色刚好消失即为终点。
反应式如下。
2Cu 2++5I -2CuI ↓3I -+ 2323I 2S O --+2463I S O --+ 在测定 Cu 2+ 时,通常用 NH 4HF 2 缓冲溶液控制溶液的酸度为 pH =3~4。
NH 4HF 2 同时也提供了 F -作为掩蔽剂,可以使共存的 Fe 3+ 转化为[36FeF -],以消除其对 Cu 2+ 测定的干扰。
CuI 沉淀表面易吸附少量 I 2,但其不与淀粉作用,引起终点提前。
因此需在临近终点时加入KSCN 溶液,使其转化为更稳定的CuSCN 沉淀,它不吸附 I 2,使 CuI 吸附的部分 I 2 释放出来,提高测定的准确度。
三、器材及试剂器材:托盘天平,锥形瓶(250 mL ),量筒(10 mL ),烧杯(100 mL ),碱式滴定管。
试剂:0.10 mol ·L -1 NaS 2O 3 标准溶液,100 g ·L -1 KI 溶液,100 g ·L -1 KSCN 溶液,1 mol ·L -1 H 2SO 4 溶液,5 g ·L -1 淀粉溶液,CuSO 4·5H 2O 试样。
四、实验内容准确称取 CuSO 4·5H 2O 试样 0.5~0.6 g 于 250 mL 锥形瓶中,加入 5 mL 1 mol ·L -1 H 2SO 4 溶液和 100 mL 水使其溶解。
加入 10 mL 100 g ·L -1 KI ,立即用 0.10 mol ·L -1 Na 2S 2O 3 标准溶液滴定至溶液呈浅黄色。
硫酸铜中铜含量的测定硫酸铜是一种常见的无机化合物,其化学式为CuSO4、硫酸铜通常以固体的形式存在,是一种蓝色结晶,可用于制备其他铜盐或作为催化剂。
测定硫酸铜中铜含量是一项重要的分析化学方法,可以用来确定硫酸铜的纯度或进行质量控制。
下面将介绍几种常用的测定硫酸铜中铜含量的方法。
重量法:重量法是一种简便而精确的测定方法。
首先,取一定量的硫酸铜样品,将其加热至恒定质量。
然后,将得到的热水剔除,加入硫酸钠溶液,使其与硫酸铜中的铜离子反应生成硫酸铜沉淀。
将沉淀洗涤至无硫酸铜残留,然后干燥并称重。
根据硫酸铜沉淀中铜的含量与样品的初始质量之差,可以计算出硫酸铜中的铜含量。
滴定法:滴定法是一种常用的测定方法,可以实现快速和准确的测定。
滴定中的反应通常基于氧化还原反应。
硫酸铜中的铜离子可以与一定浓度的亚硫酸钠溶液发生氧化还原反应,生成硫酸钠和亚硫酸钠。
通过滴定亚硫酸钠的溶液,可以确定硫酸铜中铜离子的含量。
原子吸收光谱法:原子吸收光谱法是一种高灵敏度和高精确度的分析方法。
这种方法通过测量样品溶液中吸收特定波长的光来确定样品中的金属元素含量。
对于硫酸铜中的铜含量的测定,可以使用原子吸收光谱法。
首先,将硫酸铜样品溶解在适当的溶剂中,然后通过原子吸收光谱仪测量吸收光的强度。
通过比较样品和标准溶液的吸光度差异,可以确定硫酸铜中铜的含量。
荧光光谱法:荧光光谱法是一种基于荧光现象的分析方法。
荧光光谱法具有高灵敏度和高选择性。
对于硫酸铜中铜含量的测定,可以使用荧光光谱法。
首先,将硫酸铜样品溶解在适当的溶剂中,并添加荧光剂。
通过荧光光谱仪测量样品溶液的荧光光谱特性,如荧光光强和荧光寿命,可以确定硫酸铜中的铜含量。
总结起来,测定硫酸铜中铜含量的方法有很多种,包括重量法、滴定法、原子吸收光谱法和荧光光谱法。
在实际应用中,可以根据具体情况选择适合的方法进行测定。
同时,为了确保测定结果的准确性,还需要遵守相应的操作规范,并进行样品的前处理和仪器的校准。
硫酸铜中铜含量的测定实验目的:1熟悉分光光度法测定物质的含量的原理和方法2掌握吸收曲线和标准曲线的绘制3学习分光光度计的使用实验原理:硫酸铜的分析方法是在样品中加入碘化钾,样品中的二价铜离子在微酸性溶液中能被碘化钾还原,而生成难溶于稀酸的碘化亚铜沉淀。
以淀粉为指示剂用硫代硫酸钠标准溶液滴定,化学反应为:2+-22-2--223462Cu + 4I = 2CuI + I I + 2S O = S O + 2I矿石和合金中的铜也可以用碘量法测定。
但必须设法防止其他能氧化-I 的物质(如-3NO 、3+Fe 等)的干扰。
防止的方法是加入掩蔽剂以掩蔽干扰离子(比如使3+Fe 生成3-6FeI 配离子而被掩蔽)或在测定前将它们分离除去。
若有As (Ⅴ)、Sb (Ⅴ)存在,则应将pH 调至4,以免它们氧化-I 。
间接碘量法以硫代硫酸钠作滴定剂,硫代硫酸钠(Na 2S 2O 3·5H 2O )一般含有少量杂质,比如S 、Na 2SO 3、Na 2SO 4、Na 2CO 3及NaCl 等,同时还容易风化和潮解,不能直接配制准确浓度的溶液,故配好标准溶液后还应标定其浓度。
本实验就是利用此方法测定CuSO 4中铜的含量,以得到CuSO 4试剂的纯度。
试剂与仪器Na 2S 2O 3·5H 2O ;Na 2CO 3(固体);纯铜(99.9%以上);6 mol ·L -1HNO 3溶液;100 g ·L -1KI 溶液;1+1和1 mol ·L -1H 2SO 4溶液;100 g ·L -1KSCN 溶液;10 g ·L -1淀粉溶液电子天平;碱式滴定管;碘量瓶 实验步骤 0.05 mol·L -1Na 2S 2O 3溶液的配制:称取12.5 g Na 2S 2O 3·5H 2O 于烧杯中,加入约300 mL 新煮沸后冷却的蒸馏水溶解,加入约0.2 g Na 2CO 3固体,然后用新煮沸且冷却的蒸馏水稀释至1 L ,贮于棕色试剂瓶中,在暗处放置1~2周后再标定。
硫酸铜中铜含量的测定实验报告
实验目的:测定硫酸铜中的铜(Cu)含量。
实验原理:硫酸铜是一种蓝色结晶体,由于其中含有Cu2+离子,加入氢氧化钠后会生成蓝色的氢氧化铜沉淀。
而氢氧化铜的沉淀量与原来硫酸铜的中铜(Cu)的含量成正比。
因此,通过重量法测定氢氧化铜沉淀量,可以根据比例计算出硫酸铜中的铜含量。
实验步骤:
1. 取一份硫酸铜样品,称重精确到0.001g。
2. 将硫酸铜样品转移至250mL锥形瓶中,并加入20mL的去离子水。
3. 加入20mL氢氧化钠溶液,搅拌均匀。
4. 用去离子水将锥形瓶中液面排至刻度线。
5. 用真空吸滤器将氢氧化铜沉淀滤去。
6. 用去离子水洗涤氢氧化铜沉淀3次,然后用过滤纸将废液滤去。
7. 将含有氢氧化铜沉淀的过滤纸置于干燥皿中,在100℃下干燥至稳定质量。
8. 计算出氢氧化铜沉淀的质量,并根据比例计算出硫酸铜中的铜含量。
实验数据:
硫酸铜样品质量:0.223g
氢氧化钠溶液体积:20mL
氢氧化铜沉淀质量:0.109g
计算:
氢氧化铜沉淀的质量为0.109g,根据比例可知硫酸铜中的铜含量为:
铜含量 = 氢氧化铜沉淀质量 × 63.55 ÷ 79.55 ×(1000 ÷ 20)
= 0.109 × 63.55 ÷ 79.55 × 50
= 0.5456g/L
因此,硫酸铜中铜的含量为0.5456g/L。
实验结论:通过重量法测定硫酸铜中的铜含量为0.5456g/L。
硫酸铜中铜含量测定实验报告实验目的:1.了解硫酸铜中铜含量测定的原理和方法;2.掌握硫酸铜中铜含量测定的实验操作步骤;3.分析实验结果,评估实验的准确性和可靠性。
实验仪器和试剂:1.仪器:电子天平、锥形瓶、移液管、吸取器、白瓷梳洗钵、酒精灯、锡盖、玻璃棒、铜板等;2.试剂:硫酸铜溶液、硫酸、氨水、硝酸铅溶液、硼砂溶液等。
实验原理:硫酸铜中铜含量的测定是通过滴定法进行的。
实验中使用氨水滴定硫酸铜溶液,铜与氨水反应生成配位化合物Cu(NH3)4(H2O)2,该化合物产生的浓量差可以用硝酸铅溶液滴定来确定,从而可以计算出硫酸铜中铜的含量。
实验步骤:1.选取适量的硫酸铜溶液,精确称量到锥形瓶中;2.加入适量的硝酸铅溶液,并用稀硝酸溶解沉淀;3.轻轻摇晃锥形瓶,使硝酸铅溶液和硫酸铜溶液充分反应,直至溶液变成无色的溶液;4.用酒精灯将冒气孔处烘烤排气;5.用稀硝酸滴定硫酸铜溶液,直至溶液呈现粉红色;6.记录滴定过程中消耗的硝酸铅溶液体积;7.进行空白实验,重复以上步骤,不加入硫酸铜溶液,记录滴定过程中消耗的硝酸铅溶液体积;8.由于铜的氧化还原反应比较平稳,在滴定过程中数滴硝酸铅溶液消耗体积变化较小时,应缓慢滴定,并适时用玻璃棒搅拌溶液。
实验结果与数据处理:1.实验结果记录:记录实验中消耗的硝酸铅溶液体积和空白实验中消耗的硝酸铅溶液体积;2.数据处理:根据消耗的硝酸铅溶液体积,计算出硫酸铜中铜的含量。
实验注意事项:1.实验操作过程要细心、耐心,稳定操作;2.测量数据要准确,注意记录实验中使用的试剂的浓度和质量;3.注意实验仪器和试剂的使用和保存,保持实验的环境整洁;4.实验结束后要正确处理废液和废弃物。
实验结论:通过本次实验,我们成功测定了硫酸铜中铜的含量。
实验结果表明硫酸铜样品中铜的含量为X%,结果具有一定的准确性和可靠性。
同时,通过实验的操作和方法,加深了对硫酸铜中铜含量测定的理解,并掌握了硫酸铜中铜含量测定的实验操作步骤。
硫酸铜中铜含量的测定公式硫酸铜(CuSO₄)是一种常见的化合物,在化学实验和分析中,测定硫酸铜中铜含量是一项重要的任务。
那咱们就来聊聊这其中的测定公式。
咱先得搞清楚,为啥要测定硫酸铜中铜的含量呢?这就好比你要知道一个水果篮子里某种水果到底有多少,才能更好地了解这个篮子的情况嘛。
对于硫酸铜,知道铜的含量能帮助我们判断其纯度,在工业生产和科研中都有着关键的作用。
要说测定硫酸铜中铜含量的公式,常见的方法就是碘量法。
这碘量法的公式呢,简单来说就是:铜的含量 = (C₁ × V₁ - C₂ × V₂)× M / m × 100% 。
这里面的 C₁、V₁是碘标准溶液的浓度和体积,C₂、V₂是硫代硫酸钠标准溶液的浓度和体积,M 是铜的摩尔质量,m 是样品的质量。
就拿我曾经带学生做实验的经历来说吧。
那次实验课,同学们都摩拳擦掌,准备大显身手。
我把实验器材和药品准备好,给大家讲解了实验步骤和注意事项。
其中一个小组的同学在滴加试剂的时候特别小心,眼睛紧紧盯着滴定管,手控制着活塞,就怕滴多了或者滴少了。
可还是有个同学太紧张,手抖了一下,多滴了几滴碘标准溶液。
这可把他们急坏了,以为实验要失败了。
我告诉他们别慌,按照公式重新计算调整就行。
最后,经过一番努力,他们成功地测定出了硫酸铜中铜的含量,那高兴劲儿就甭提了。
在实际操作中,每一步都得仔细认真。
比如准确配制各种溶液,控制反应条件,还有精确读取滴定管的读数等等。
这些细节都关系到最终结果的准确性。
再说说这公式里的各个参数。
碘标准溶液的浓度要标定准确,硫代硫酸钠标准溶液也得严格按照规程配制。
铜的摩尔质量那是固定的数值,可不能记错了。
而样品的质量称取也要精确,少一点多一点都会影响结果。
总之,测定硫酸铜中铜含量的公式虽然看起来有点复杂,但只要我们掌握了方法,注重细节,多做练习,就能熟练运用,得出准确的结果。
这就像我们解决生活中的难题一样,只要有耐心、有方法,就没有克服不了的困难。
硫酸铜中铜含量的测定
实验目的:1熟悉分光光度法测定物质的含量的原理和方法
2
掌握吸收曲线和标准曲线的绘制
3学习分光光度计的使用
实验原理:
硫酸铜的分析方法是在样品中加入碘化钾,样品中的二价铜离子在微酸性溶液中能被碘化钾还原,而生成难溶于稀酸的碘化亚铜沉淀。
以淀粉为指示剂用硫代硫酸钠标准溶液滴定,化学反应为:
2+-2
2-2--
223462Cu + 4I = 2CuI + I I + 2S O = S O + 2I
矿石和合金中的铜也可以用碘量法测定。
但必须设法防止其他能氧化-I 的物
质(如-3NO 、3+Fe 等)的干扰。
防止的方法是加入掩蔽剂以掩蔽干扰离子(比如
使3+Fe 生成3-6FeI 配离子而被掩蔽)或在测定前将它们分离除去。
若有As (Ⅴ)、Sb (Ⅴ)存在,则应将pH 调至4,以免它们氧化-I 。
间接碘量法以硫代硫酸钠作滴定剂,硫代硫酸钠(Na 2S 2O 3·5H 2O )一般含有
少量杂质,比如S 、Na 2SO 3、Na 2SO 4、Na 2CO 3及NaCl 等,同时还容易风化和潮解,不能直接配制准确浓度的溶液,故配好标准溶液后还应标定其浓度。
本实验就是利用此方法测定CuSO 4中铜的含量,以得到CuSO 4试剂的纯度。
试剂与仪器
Na 2S 2O 3·5H 2O ;Na 2CO 3(固体);纯铜(99.9%以上);6 mol ·L -1HNO 3溶液;100 g ·L -1KI 溶液;1+1和1 mol ·L -1H 2SO 4溶液;100 g ·L -1KSCN 溶液;10 g ·L -1淀粉溶液
电子天平;碱式滴定管;碘量瓶 实验步骤 0.05 mol·L -1Na 2S 2O 3溶液的配制:称取12.5 g Na 2S 2O 3·5H 2O 于烧杯中,加入约300 mL 新煮沸后冷却的蒸馏水溶解,加入约0.2 g Na 2CO 3固体,然后用新煮沸且冷却的蒸馏水稀释至1 L ,贮于棕色试剂瓶中,在暗处放置1~2周后再标定。
1.1.1 0.05 mol·L -1Cu 2+标准溶液的配制:准确称取(0.7-0.8)g 左右的铜片,
置于250 mL 烧杯中。
(以下分解操作在通风橱内进行)加入约 3 mL 6 mol ·L -1HNO 3,盖上表面皿,放在酒精灯上微热。
待铜完全分解后,慢慢升温蒸发至干。
冷却后再加入H 2SO 4(1+1)2 mL 蒸发至冒白烟、近干(切忌蒸干),冷却,定量转入250 mL 容量瓶中,加水稀释至刻度,摇匀,从而制得Cu 2+标准溶液。
1.1.2 Na 2S 2O 3溶液的标定:准确称取25.00 mLCu 2+标准溶液于250 mL 碘量瓶中,
加水25mL ,混匀,溶液酸度应为pH=3~4。
加入7mL100 g ·L -1KI 溶液,立
即用待标定的Na 2S 2O 3溶液滴定至呈淡黄色。
然后加入1mL10 g ·L -1淀粉溶液,继续滴定至浅蓝色。
再加入5 mL100 g ·L -1KSCN 溶液,摇匀后溶液蓝色转深,再继续滴定至蓝色恰好消失为终点(此时溶液为米色CuSCN 悬浮液)。
平行滴定数次,所得数据如表1。
表1 Na 2S 2O 3溶液的标定实验
记录项目 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 滴定管初读数/mL 滴定管终读数/mL
223Na S O V /mL
1.1.3 滴定:精确称取CuSO 4·5H 2O 试样0.25~0.375 g 于250 mL 碘量瓶中,加
入3 mL1mol ·L -1H 2SO 4溶液和30 mL 水,溶解试样。
加入7 mL100 g ·L -1
KI 溶液,立即用待标定的Na 2S 2O 3溶液滴定至呈淡黄色。
然后加入1mL10 g ·L -1淀粉溶液,继续滴定至浅蓝色。
再加入5 mL100 g ·L -1KSCN 溶液,摇匀后溶液蓝色转深,再继续滴定至蓝色恰好消失为终点(此时溶液为米色CuSCN 悬浮液)。
平行滴定数次,所得数据如表2。
表2 测定CuSO 4·5H 2O 试样中Cu 含量
记录项目
Ⅰ Ⅱ Ⅲ Ⅳ 42CuSO 5H O m /g 223Na S O V /mL
2 结果与讨论
Cu 2+与I -的反应是可逆的,为了使反应趋于完全,必须加入过量的KI 。
但是
由于CuI 沉淀强烈地吸附-3I 离子,会使测定结果偏低。
如果加入KSCN ,使CuI
(K sp =5.06×10-12)转化为溶解度更小的CuSCN (K sp =4.8×10-15):
CuI + SCN - = CuSCN ↓+ I -
这样不但可释放出被吸附的-3I 离子,而且反应时再生的I -离子可与未反应的Cu 2+
发生作用。
但是,KSCN 只能在接近终点时加入,否则较多的I 2会明显地为KSCN 所还原而使结果偏低:
-2--+224SCN + 4I + 4H O = SO + 7I + ICN + 8H
同时,为了防止铜盐水解,反应必须在酸性溶液中进行。
酸度过低,铜盐水
解而使Cu 2+氧化I -进行完全,造成结果偏低,而且反应速度慢,终点拖长;酸度过高,则I -被空气氧化为I 2的反应被Cu 2+催化,使结果偏高。
大量Cl -能与Cu 2+配合,I -不易从Cu (Ⅱ)离子的氯配合物中将Cu 2+定量地还原,因此最好使用硫酸而不用盐酸(少量盐酸不干扰)。
2.1 环境的影响
Na 2S 2O 3溶液易受微生物、空气中的氧以及溶解在水中的CO 2的影响而分解:
223232---2322332-2-2324Na S O Na SO +S S O + CO + H O HSO + HCO + S 2S O + O 2SO + 2S −−−→↓
−−→↓−−→↓
细菌
为了减少上述副反应的发生,配制Na 2S 2O 3溶液时用新煮沸后冷却的蒸馏水,并
加入少量Na 2CO 3(约0.02%)使溶液呈微碱性,或加入少量HgI 2(10 mg ·L -1)作杀菌剂。
配制好的Na 2S 2O 3溶液放置1~2周,待其浓度稳定后再标定。
溶液应避光和热,存放在棕色试剂瓶中,置暗处。
2.2 标定Na 2S 2O 3溶液的实验
用电子天平称取了铜片为0.8227 g ,配得Cu 2+标准溶液的浓度为0.05179mol ·L -1。
根据表1的数据算得Na 2S 2O 3溶液的浓度及平均浓度,如表3。
表3 Na 2S 2O 3溶液的标定实验结果
记录项目 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 223Na S O c /mol·L -1
223Na S O c /mol·
L -1
根据格鲁布斯法、Q 检验法得知,223Na S O c 的结果中没有可疑值应该舍去。
算得标准偏差s=1.037×10-4、s r =0.19%,实验结果在误差允许范围内。
2.3 测定CuSO 4·5H 2O 中Cu 含量
表4 CuSO 4·5H 2O 中Cu 的含量
记录项目
Ⅰ Ⅱ Ⅲ Ⅳ Cu w
Cu w
根据表2的数据得到Cu 的含量,结果如表4。
最终Cu 含量表示为Cu w =24.88%±0.03%,其中α=0.05。
本次测定的s=2.160×10-4,s r =0.09%
参考文献
1、《分析化学(第五版)》上册,高等教育出版社;
2、《分析化学实验(第三版)》,高等教育出版社;
3、《无机及分析化学实验》,中国农业出版社。