PCB可靠性及名词解释
- 格式:doc
- 大小:31.00 KB
- 文档页数:4
PCB的名词解释Printed Circuit Board (PCB),即印刷电路板,是电子设备中的一种重要组成部分。
它采用了印刷技术,将电子元件和导线布局在一个绝缘基板上,提供了电子元件间的连接和支撑。
作为电子产品中的“大脑”,PCB在现代科技发展中起到了不可或缺的作用。
本文将对PCB中的一些关键名词进行解释和讨论。
1. 基板 (Substrate)基板是PCB的主要构成部分,它通常由绝缘材料制成,如玻璃纤维增强环氧树脂(FR-4)。
基板起到支撑电子元件和导线的作用,并且具有良好的电气绝缘性能,以防止元件之间的短路。
2. 导线 (Conductor)导线是PCB上用来传导电流的金属线路,一般采用铜箔制成。
导线的设计和布局直接影响电子设备的性能和稳定性。
通常使用导线间的间距、宽度和线路层数等参数来决定导线的电流承载能力和信号传输性能。
3. 元件 (Component)PCB上的元件是电子设备中的各种电子部件,如集成电路、电容器、电阻器等。
元件通过焊接或插座连接到PCB上,与导线相互连接,形成电路。
元件的选择和布局是PCB设计工程师的关键任务,它不仅影响电路的性能,还直接影响到产品的生产成本和空间利用率。
4. 焊接 (Soldering)焊接是将元件连接到PCB上的重要工艺过程。
通过熔化的焊锡,元件的引脚与PCB上的涂有焊膏的焊盘相连接。
焊接技术包括手工焊接和表面贴装技术(SMT)。
它们有助于保持元件在设备中的稳定性和可靠性。
5. 系统集成 (System Integration)系统集成是指将多个PCB组装在一起,通过元件之间的连接和互联,构成复杂的电子系统。
系统集成是现代电子设备制造的重要环节,它不仅要求PCB间的准确布局和可靠连接,还需要满足信号传输的要求和整体性能的优化。
6. PCB设计 (PCB Design)PCB设计是制定PCB布局、连线和元件安装的过程。
在PCB设计中,设计工程师需要根据电路原理图、电气要求和尺寸限制,合理布局元件和导线。
PCB常用的专业术语介绍在电子工程领域,PCB(Printed Circuit Board)是电子设备中最常见的组件之一。
PCB是一种提供电气连接和机械支持的平板,通过在其表面上铺设导线和电子元件,实现电路连接,实现了电子设备的功能。
本文将介绍PCB常用的专业术语,帮助读者更好地理解和应用PCB技术。
PCBPCB是Printed Circuit Board的缩略词,指的是印刷电路板。
PCB是基于绝缘基板上布置导线和元件,用于连接电子元件的导电路径。
PCB被广泛应用于电子设备中,包括计算机、手机、电视等。
PCB布局PCB布局是指将电子元件和导线合理地布置在PCB上的过程。
良好的布局可以提高电路性能,避免电磁干扰和信号串扰。
在进行PCB布局时,需要考虑电子元件的位置、导线的长度、信号传输的特性等。
PCB尺寸PCB尺寸是指PCB的物理大小。
根据实际应用需求,PCB尺寸可以有不同的要求,例如小型的嵌入式设备可能需要较小的PCB尺寸,而大型电子设备可能需要更大的PCB尺寸。
元件布局元件布局是指在PCB上放置电子元件的过程。
在进行元件布局时,需要考虑元件之间的距离、电路拓扑、信号传输路径等因素。
合理的元件布局可以提高电路性能和可靠性。
PCB中的元件之间可以通过不同的连接方式实现电路连接。
常用的连接方式包括通孔连接和贴片连接。
通孔连接是将元件引脚穿过孔径,并通过焊接或插针连接的方式实现电路连接。
贴片连接是将元件直接粘贴在PCB表面,并使用焊膏和热风或回流焊接技术进行连接。
PCB制造PCB制造是指将电路设计转化为实际的PCB板的过程。
PCB制造通常包括以下几个步骤:电路设计、图纸制作、材料采购、化验、板材加工、压印、钻孔、防护、测试、组装等。
印刷技术PCB的制造过程中常用的印刷技术包括丝网印刷和喷墨印刷。
丝网印刷是将焊膏或者导电浆料通过丝网印刷在PCB板上,形成导线或电子元件。
喷墨印刷是使用喷墨打印机将导线和元件直接打印在PCB板上。
PCB可靠度项目报告
一、简介
PCB可靠性是一种考虑产品的整体性能的指标,它反映了电路板的耐
久性,耐力和可靠性。
PCB的可靠性是影响制造系统性能的重要因素。
由
于PCB和接口的复杂性和材料的不稳定性,它会受到外界环境和变化的影响,这对可靠性的影响是相当大的。
因此,企业在生产过程中,要保证PCB的可靠性,首先要找到可能影响PCB可靠性的因素,以便采取正确的
措施。
本文就扩展电路板可靠性(PCB)研究报告来说明。
二、PCB可靠性的因素
(1)PCB材料:环境下的热拉伸、阻焊、电流冲击等考虑到板材的
保护能力。
在选择材料时应考虑材料的物理性能和电学性能,以确保电路
板的可靠性。
(2)PCB安装:安装过程中应注意板和部件的安装质量,确保板和
部件的安装密度以及安装过程中的热拉伸能力,以防止板的电气形态变化。
(3)PCB电气性能:考虑高频信号的传输,布线的高密度和平整度,信号完整性,共模抑制能力,磁场泄露的抑制能力等,以及防止电气性能
变化的一些措施,例如电性材料的选择,监控和控制环境温度和湿度,确
保屏蔽布置的完整性,等等。
(4)PCB结构:考虑电路板的结构和分层,包括选择层和厚度,以
及分层是否合理,是否影。
线路板可靠性与微切片中英名词解释(一)1、Abrasion Resistance耐磨性在电路板工程中,常指防焊绿漆的耐磨性。
其试验方法是以 1 k g 重的软性砂轮,在完成绿漆的IP-B-25样板上旋转磨擦 50 次,其梳型电路区不许磨破见铜(详见电路板信息杂志第 54 期P.70),即为绿漆的耐磨性。
某些规范也对金手指的耐磨性有所要求。
又,Abrasive是指磨料而言,如浮石粉即是。
Accelerrated Test(Aging)加速试验,加速老化也就是加速老化试验(Aging)。
如板子表面的熔锡、喷锡或滚锡制程,其对板子焊锡性到底能维持多久,可用高温高湿的加速试验,仿真当板子老化后,其焊锡性劣化的情形如何,以决定其品质的允收与否。
此种人工加速老化之试验,又称为环境试验,目的在看看完工的电路板(已有绿漆)其耐候性的表现如何。
新式的"电路板焊锡性规范"中(ANSI/J- STD-003,本刊 57 期有全文翻译)已有新的要求,即高可靠度级CLASS 3的电路板在焊锡性(Solderability)试验之前,还须先进行 8 小时的"蒸气老化"(Steam Aging),亦属此类试验。
2、Accuracy 准确度指所制作的成绩与既定目标之间的差距。
例如所钻成之孔位,有多少把握能达到其"真位"(True Position)的能力。
3、Adhesion 附着力指表层对主体的附着强弱而言,如绿漆在铜面,或铜皮在基材表面,或镀层与底材间之附着力皆是。
4、Aging 老化指经由物理或化学制程而得到的产物,会随着时间的经历而逐渐失去原有的品质,这种趋向成熟或劣化的过程即称之"Aging"。
不过在别的学术领域中亦曾译为"经时反应"。
5、Arc Resistance 耐电弧性指在高电压低电流下所产生的电弧,当此电弧在绝缘物料表面经过时,物料本身对电弧抗拒力或忍耐力谓之"耐电弧性"。
PCB可靠性设计规范PCB(Printed Circuit Board,印刷电路板)是电子产品上实现电路连接和组件安装的重要组成部分。
在现代电子产品中,PCB设计的可靠性是至关重要的,它直接关系到产品的质量、寿命和用户的满意度。
为了确保PCB的可靠性,设计规范起到了重要的作用。
本文将介绍一些常见的PCB可靠性设计规范。
首先,良好的PCB布局是确保可靠性的基础。
在布局设计中,应尽量减小信号与电源、驱动和干扰源之间的距离,以降低信号线路上的电磁干扰。
此外,还应避免与高功率和高速信号线路的交叉,以减少串扰。
要注意避开可能引起电容耦合和互感耦合的元件和线路,并采用地线等电气隔离方法,以降低共模噪声。
其次,良好的电源设计对确保PCB可靠性至关重要。
电源应具有稳定的输出电压和电流,以确保电子元件工作在其额定电压和电流下。
电源的稳定性可以通过合理选择电源配置和滤波电路来实现。
此外,还应为高功率元件和敏感电子元件提供单独的电源,以减少互相干扰。
第三,适当的散热设计可以提高PCB的可靠性。
当电子元件工作时,会产生大量的热量,如果不能及时散热,将导致元件过热,甚至损坏。
为了确保散热效果,应合理选择散热器的尺寸和材料,并将其安装在需要散热的元件附近。
此外,还应考虑到通风条件,尽量使空气流通,以提高散热效果。
第四,电子元件的正确安装也是提高PCB可靠性的重要因素。
在元件的安装过程中,应遵循正确的焊接规范,确保焊接点牢固可靠。
焊接时使用合适的焊接温度和时间,避免产生过多的热量和应力,以减少焊接引起的损坏。
此外,还应合理选择元件的安装位置和方式,减少机械应力和振动对元件的影响。
第五,合理选择材料和元器件也是PCB可靠性设计的关键。
在PCB设计中,应选择具有高耐热、低膨胀系数和稳定性好的材料。
对于元器件,应选择有资质认证和质量可靠的供应商提供的元器件,以确保其质量和可靠性。
最后,良好的PCB维护和检测也是确保其可靠性的重点。
PCB可靠性分析PCB(Printed Circuit Board,印刷电路板)作为电子设备的重要组成部分,其可靠性对产品的性能和寿命具有重要影响。
通过对PCB的可靠性分析,可以帮助我们了解和评估电路板的性能和故障特性,进而优化设计和生产过程,提高产品质量和可靠性。
本文将介绍PCB可靠性分析的相关内容,包括可靠性指标、故障分析方法和提高可靠性的措施等。
一、可靠性指标1. MTBF(Mean Time Between Failures,平均无故障工作时间):指在给定条件下,设备平均无故障工作的时间。
MTBF是衡量设备可靠性的重要指标,可以通过故障数据统计和可靠性预测等方法得到。
2. 故障率(Failure Rate):是指在单位时间内发生故障的频率。
故障率与可靠性相互关联,可以通过故障数据统计和可靠性预测等方法得到。
3.可靠性指标:还包括各种可靠性指标,如可靠性增长、可靠性指标分布等,用于描述和评估设备的可靠性水平。
二、故障分析方法1.故障模式与效应分析(FMEA):通过分析PCB中存在的潜在故障模式和可能的故障效应,确定关键零部件和关键工艺,进而制定相应的预防和控制措施,提高PCB的可靠性。
2.可靠性预测:通过统计故障和失效数据,应用可靠性预测模型,进行可靠性预测和评估。
可靠性预测可以指导产品设计和可靠性改进措施的制定。
3.故障树分析(FTA):通过分析电路板中故障的可能原因和关系,构建故障树,分析故障发生的概率和可能性,找出故障发生的主要原因,并制定相应的改进措施。
4.场效应分析(FMEA):通过局部强氧化和电泳法,研究PCB中微小缺陷的几何形态和电学特性,进而评估缺陷对PCB可靠性的影响。
5.老化试验和可靠性测试:通过在特定环境条件下进行PCB的老化试验和可靠性测试,模拟和加速PCB在使用过程中的老化和故障情况,验证和评估PCB的可靠性。
三、提高可靠性的措施1.合理的设计和布局:包括选择合适的材料、合理布局电路、减少焊点和焊盘数量、避免过度热应力等,从而减少故障的可能性。
PCB可靠性设计PCB(Printed Circuit Board)可靠性设计是指通过合理的电路布局设计、选择合适的材料和制程、采取适当的工艺控制等手段来提高电路板的可靠性,确保电子产品在各种环境条件下运行稳定可靠,延长其使用寿命。
首先,合理的电路布局设计是提高PCB可靠性的关键。
在设计过程中,需要根据电子产品的功能要求以及电路的特性等因素,合理安排各个电路单元之间的布局关系,减少信号互干扰,避免电路噪声引起的故障。
同时,还需要考虑电磁兼容性(EMC)设计,合理安排信号和电源线的走线路径,减少电磁干扰,提高整体电路的抗干扰能力。
其次,选择合适的材料和制程对PCB可靠性设计至关重要。
在材料选择上,需要考虑其物理性质、机械强度、耐环境腐蚀性等因素,选择稳定可靠的材料,如高热稳定性的基板材料、抗电弧击穿性能好的绝缘材料等。
在制程方面,应选择可靠的生产工艺,确保PCB板的生产质量和稳定性。
例如,合适的表面处理工艺可以提高PCB板的耐腐蚀性和焊接性能,同时,合适的阻焊工艺可以提高PCB板的绝缘性能。
此外,采取适当的工艺控制也是提高PCB可靠性的重要手段。
在PCB制作过程中,应严格控制各项工艺参数,如蚀刻时间、镀金厚度、印刷精度等,确保产品符合设计要求。
同时,还需要对PCB板进行可靠性测试,如老化测试、振动测试、温度循环测试等,检测其在各种环境条件下的可靠性表现,从而及时发现问题并进行优化。
另外,PCB可靠性设计还需要注意电路板的热管理。
电子产品在工作时会产生热量,如果不能及时有效地排除热量,会导致温度升高,降低电子元件的可靠性。
因此,在电路布局和散热设计上,应合理安排散热区域,选择散热片或风扇等散热材料和设备,保持电子产品的正常工作温度。
综上所述,PCB可靠性设计是一个综合性的工作,需要在电路布局、材料和制程选择、工艺控制、热管理等方面进行全面考虑和优化。
只有通过合理的设计和严格的工艺控制,才能提高PCB电路板的可靠性,保证电子产品的正常稳定运行,延长其使用寿命。
pcb线路板的术语PCB线路板是电子产品中常见的一种基础组件,它承载着电子元器件的连接和传输功能。
在PCB线路板的设计和制造过程中,有许多术语被广泛使用。
本文将围绕这些术语展开讨论,为读者介绍和解释它们的含义和作用。
一、PCB线路板的定义和分类PCB是Printed Circuit Board的缩写,即印刷电路板。
它是一种通过印刷技术制作的具有导电性的板状基材,用于连接和支持电子元器件。
根据不同的特性和用途,PCB线路板可以分为单面板、双面板和多层板。
二、PCB线路板的材料PCB线路板的常用材料包括玻璃纤维布基材、铜箔、耐热树脂、填充材料等。
其中,玻璃纤维布基材是PCB线路板的主体,铜箔用于制作导线,耐热树脂用于固定电子元器件,填充材料用于填充空隙和加强结构。
三、PCB线路板的层次和层间连接PCB线路板可以有不同的层次,每个层次上都可以布置电子元器件和导线。
层间连接是指不同层次之间的导线连接,常用的方法包括通孔和盲孔。
通孔是通过整个PCB线路板厚度的孔,将不同层次的导线连接起来;盲孔是只连接部分层次的导线,通过钻孔和化学蚀刻等工艺实现。
四、PCB线路板的布线和走线规则布线是指在PCB线路板上布置导线和连接电子元器件的过程。
在布线过程中,需要遵守一定的规则,如避免导线交叉、保持导线长度一致、减少电磁干扰等。
走线规则是指布线时需要考虑的一些约束条件,如最小线宽、最小线距、最小孔径等。
五、PCB线路板的焊接和组装焊接是将电子元器件连接到PCB线路板上的过程。
常用的焊接方法包括手工焊接和自动化焊接。
手工焊接适用于小批量生产和维修,而自动化焊接适用于大批量生产。
组装是将焊接好的PCB线路板放入外壳中,并连接其他外部设备的过程。
六、PCB线路板的测试和质量控制PCB线路板的测试是为了验证其功能是否正常。
常用的测试方法包括可视检查、电气测试、功能测试等。
质量控制是在PCB线路板的设计和制造过程中,采取一系列措施来确保产品质量。
PCB可靠性分析PCB(印刷电路板)的可靠性分析是指评估和预测PCB在使用过程中的性能和寿命。
因为PCB是电子器件的关键组成部分,其可靠性对于整个电子系统的正常运行至关重要。
首先,PCB设计是影响其可靠性的关键因素之一、在设计过程中,需要考虑电路的布局、布线的合理性、电源和地线的设计、信号完整性、EMC(电磁兼容性)和ESD(电气静电放电)等因素。
通过使用CAD软件来模拟和分析电路板的布局和布线,可以提前预测和解决潜在的问题,从而提高PCB的可靠性。
其次,材料选择也是影响PCB可靠性的重要因素。
选择适用的基板材料、有良好热传导性能的铜箔、可靠的封装材料等等对于提高PCB的可靠性至关重要。
材料的优良特性可以降低PCB的损耗、提高整个电路的工作效率和稳定性。
制造过程中的工艺控制也是确保PCB可靠性的重要环节。
例如,PCB 的裂纹、焊点的质量、表面镀层的粘附力等缺陷都可能影响其可靠性。
因此,在制造过程中,需要进行严格的质量控制,包括使用先进的设备和工艺,确保每个工艺步骤的良好执行,以减少制造缺陷。
最后,对于已制造的PCB,需要进行可靠性测试。
可靠性测试是评估PCB在不同环境条件下的可靠性和稳定性的重要手段。
通过对PCB进行加速老化测试、温度循环测试、振动测试、湿度测试等,可以模拟实际使用条件下的PCB的可靠性表现。
在进行可靠性分析时,应该综合考虑上述因素,并结合产品的实际应用环境和使用条件来评估和预测PCB的可靠性。
通过合理的设计、优质的材料、良好的制造工艺和可靠性测试,可以提高PCB的可靠性,从而确保电子系统的正常运行。
总之,PCB可靠性分析是确保电子产品正常工作的重要环节。
通过综合考虑设计、材料、制造和测试等因素,可以提前发现和解决潜在的问题,从而提高PCB的可靠性,确保整个电子系统的可靠工作。
PCB可靠性测试方法PCB(Printed Circuit Board)可靠性测试是评估PCB在实际使用过程中的稳定性和可靠性的一种方法。
它包括一系列的测试和评估,以确保PCB能够满足产品设计的要求,并在各种环境和负载条件下正常工作。
在本篇文章中,我将介绍几种常用的PCB可靠性测试方法。
1. 热冲击测试(Thermal Shock Test):热冲击测试是评估PCB在温度变化时的可靠性的一种方法。
它通过将PCB放置在高温和低温环境之间进行多次切换,来模拟PCB在现实应用中的温度变化情况。
测试过程中,PCB会经历热胀冷缩,从而引起其内部材料和连接件的应力变化,以此评估其可靠性。
2. 恒温恒湿测试(Temperature and Humidity Test):恒温恒湿测试是评估PCB在潮湿和高温环境下的可靠性的一种方法。
在这种测试中,PCB被置于特定的温度和湿度条件下,以模拟实际使用中可能遇到的恶劣环境。
测试过程中,PCB会遭受潮湿和高温对其内部材料和连接件的影响,以此评估其稳定性和可靠性。
3. 电气性能测试(Electrical Performance Test):电气性能测试是评估PCB在正常工作条件下的电气性能和可靠性的一种方法。
这些测试可能包括电阻测试、电容测试、电流测试、输入输出信号测试等。
通过这些测试,可以检查PCB上的连接是否正常、电气参数是否符合设计规格,并评估其可靠性。
4. 冲击振动测试(Shock and Vibration Test):冲击振动测试是评估PCB在受到冲击和振动时的可靠性的一种方法。
在这种测试中,PCB会经历各种冲击和振动条件,以模拟真实环境下可能遭受的物理变化。
测试过程中,PCB会受到不同方向的力和振动,以此评估其结构强度和连接件的可靠性。
5. 寿命测试(Life Test):寿命测试是评估PCB在连续工作条件下的寿命和可靠性的一种方法。
在这种测试中,PCB会被长时间加电和加热,以模拟实际使用中的工作环境。
PCB板设计与制作的可靠性PCB(Printed Circuit Board)板是电子产品中不可或缺的组成部分,它承载着各种电子元器件,并通过导线连接它们,使得电子产品可以正常工作。
在PCB设计与制作过程中,可靠性是一个至关重要的指标,它直接影响着电子产品的性能、稳定性和寿命。
在本文中,我们将探讨PCB板设计与制作的可靠性问题,并介绍如何提高PCB板的可靠性。
一、PCB设计的可靠性1.PCB布局设计PCB布局设计是PCB设计中至关重要的一环,它直接决定了PCB板的可靠性。
在进行PCB布局设计时,需要注意以下几点:(1)避免信号干扰:不同信号线之间需要保持足够的距离,避免信号干扰,影响电路性能。
(2)避免电磁干扰:布局时需要考虑电磁兼容性,避免电磁干扰对电路造成影响。
(3)合理布置电源线:电源线需要布置合理,避免因电源线设计不当而导致电路不稳定或无法正常工作。
2.PCB层叠设计在PCB板设计中,层叠结构的设计也是一个影响可靠性的重要因素。
在PCB层叠设计中,需要考虑以下几点:(1)地平面设计:合理的地平面设计可以提高PCB板的电磁兼容性,减少信号干扰。
(2)电源平面设计:电源平面设计不合理会导致电源线不稳定,影响电路性能。
3.选择合适的PCB材料PCB板的可靠性还与所选择的PCB材料密切相关。
在选择PCB材料时,需要考虑以下几点:(1)热膨胀系数:PCB板上元器件工作时会产生热量,因此PCB材料的热膨胀系数需要与元器件相匹配,以防止因热胀冷缩而导致PCB板出现变形或开裂。
(2)电气性能:PCB材料的电气性能直接影响电路的可靠性,选择合适的材料可以提高电路的稳定性和可靠性。
1.制造工艺PCB板的制造工艺对于其可靠性至关重要。
在PCB板的制作过程中,需要注意以下几点:(1)印制技术:印制技术是PCB板制作的关键步骤,需要确保印制技术的准确性和精度,以防止PCB板上元器件焊接偏差,导致电路出现问题。
(2)钻孔技术:在PCB板制作过程中,需要进行钻孔操作,确保孔径和位置的准确性,以保证元器件安装的正确性。
pcb成品可靠性测试标准PCB成品可靠性测试标准。
PCB(Printed Circuit Board)是电子产品中不可或缺的组成部分,其质量和可靠性直接影响着整个电子产品的性能和稳定性。
因此,对于PCB成品的可靠性测试标准显得尤为重要。
本文将从可靠性测试的意义、测试的内容和标准、测试方法等方面进行详细介绍。
首先,我们需要明确可靠性测试的意义。
可靠性测试是为了验证PCB成品在特定条件下的使用寿命和稳定性,以便预测其在实际使用中的可靠性表现。
通过可靠性测试,可以发现PCB成品在长期使用过程中可能出现的问题,及时进行改进和优化,提高产品的质量和可靠性。
接下来,我们来看一下PCB成品可靠性测试的内容和标准。
首先是环境适应性测试,包括高温、低温、湿热、干热等环境下的测试,以验证PCB成品在不同环境条件下的可靠性。
其次是机械性能测试,包括冲击、振动、跌落等测试,以验证PCB成品在运输和使用过程中的机械强度。
此外,还包括电气性能测试,包括电压、电流、绝缘电阻等测试,以验证PCB成品在电气方面的可靠性。
最后是可靠性寿命测试,包括加速寿命测试、可靠性抽样测试等,以验证PCB成品的使用寿命和可靠性。
针对上述测试内容,国际上已经形成了一系列的标准,如IPC-6012、IPC-6013、IPC-6018等,这些标准对于PCB成品的可靠性测试提供了详细的测试方法和要求,为PCB成品的可靠性测试提供了有力的支持和指导。
在进行PCB成品可靠性测试时,我们需要选择合适的测试方法。
常见的测试方法包括加速老化测试、可靠性抽样测试、可靠性试验等。
其中,加速老化测试是通过提高环境温度、湿度等条件,加速PCB成品的老化过程,以验证其在短时间内的可靠性表现;可靠性抽样测试是通过对一定数量的样品进行测试,以验证整批产品的可靠性水平;可靠性试验则是通过模拟实际使用条件,对PCB成品进行长时间的测试,以验证其在实际使用中的可靠性表现。
总之,PCB成品的可靠性测试标准对于保证产品质量和可靠性至关重要。
PCB可靠性测试方法则要PCB(Printed Circuit Board,印刷电路板)是电子设备中重要的组成部分,其可靠性对整个系统的稳定运行和寿命有着重要影响。
为了确保PCB的可靠性,需要进行一系列的测试方法,以下将介绍几种常用的PCB可靠性测试方法。
1.焊接可靠性测试:焊接是PCB组装中的重要工艺,焊接可靠性测试主要目的是评估焊接质量和连接稳定性。
常用的焊接可靠性测试方法包括环境测试、热冲击测试、振动测试和冲击测试等。
环境测试将PCB置于高温、低温、高湿和低湿等不同环境条件下进行测试,以模拟实际使用环境;热冲击测试则是在极端温度变化下测试焊点的稳定性;振动测试和冲击测试则是评估焊点的机械强度和耐久性。
2.电气性能测试:电气性能测试是评估PCB的工作稳定性和可靠性的重要手段。
常用的电气性能测试方法包括耐压测试、绝缘电阻测试、接触电阻测试和信号传输测试等。
耐压测试通过对PCB内部电路的导电材料和结构的耐压能力进行测试,以确保PCB能够在工作电压范围内正常运行;绝缘电阻测试评估PCB的绝缘性能,确保电路之间不发生意外电流引起的故障;接触电阻测试用于评估焊接点和连接器的接触质量等;信号传输测试则是测试PCB上各个信号线路的传输性能,以保证数据的准确性和可靠性。
3.环境适应性测试:环境适应性测试是评估PCB在特定环境条件下的可靠性。
这些环境条件包括温度、湿度、气压、气氛和介质等。
环境适应性测试方法主要包括高温老化测试、低温冷冻测试、湿热循环测试和腐蚀性气体测试等。
高温老化测试用于评估PCB在高温下的稳定性和耐久性;低温冷冻测试用于评估PCB在低温下的性能和可靠性;湿热循环测试则是在高温高湿条件下测试PCB的可靠性;腐蚀性气体测试则是评估PCB对环境中腐蚀气体的抵抗能力。
4.动态电热测试:动态电热测试是评估PCB在实际工作条件下的电热特性和可靠性。
这种测试方法主要是通过在PCB上施加实际工作负载,并在不同工况下测试PCB的温度分布、热传导性能和散热能力等。
PCB覆铜板性能特点及其用途PCB是Printed Circuit Board的缩写,又称印刷电路板。
它是一种用于电子元器件连接和支持的基础材料,广泛应用于电子产品中。
PCB覆铜板是印刷电路板的主要构成部分之一,具有以下性能特点:1.导电性:PCB覆铜板使用铜作为导电层,具有优良的导电性能。
铜的导电性能优异,能够确保电流传输的稳定性和可靠性。
2.可靠性:PCB覆铜板通过印刷电路板工艺制造而成,具有很高的可靠性。
它能够承受温度变化、湿度变化和机械应力等因素的影响,并保持稳定的性能。
3.防腐性:铜具有良好的抗氧化和耐腐蚀性能,能够有效防止化学物质对印刷电路板的侵蚀。
通过覆铜板保护,PCB的寿命可以得到延长。
4.可加工性:PCB覆铜板具有良好的可加工性,可以根据需要进行孔加工、线路铺设和焊接等工艺。
这使得PCB可以适应各种电子产品的设计需求。
5.热散性:覆铜板能够提高电子元件和印刷电路板的热散性能。
铜具有良好的导热性,可以快速将元件产生的热量传导到周围环境中,从而保持电子元件的温度稳定。
1.电子通信领域:PCB覆铜板广泛应用于手机、通信基站、网络设备等电子通信产品中。
作为电子设备的核心部件,覆铜板保证了电子信号的传输和处理的稳定性和可靠性。
2.计算机领域:PCB覆铜板用于制造计算机主板、显卡、内存条等相关设备。
覆铜板能够支持复杂的电路连接,满足计算机设备对电路处理能力的需求。
3.消费电子领域:PCB覆铜板被应用于各种消费电子产品,如电视机、音响、数码相机等。
覆铜板能够提供稳定的电路连接,保证了消费电子产品的性能和功能。
4.汽车电子领域:PCB覆铜板应用于汽车电子系统,如发动机控制模块、车载娱乐系统等。
覆铜板能够承受汽车工作环境的振动、温度变化等条件,确保电子系统的稳定性和可靠性。
5.工业控制领域:PCB覆铜板广泛应用于工业自动化控制系统中,如PLC(可编程逻辑控制器)、变频器等。
覆铜板可以支持复杂的控制电路,满足工业控制系统对电路处理能力的要求。
线路板可靠性与微切片中英名词解释(一)
1、Abrasion Resistance耐磨性
在电路板工程中,常指防焊绿漆的耐磨性。
其试验方法是以 1 k g 重的软性砂轮,在完成绿漆的IP-B-25样板上旋转磨擦 50 次,其梳型电路区不许磨破见铜(详见电路板信息杂志第 54 期P.70),即为绿漆的耐磨性。
某些规范也对金手指的耐磨性有所要求。
又,Abrasive是指磨料而言,如浮石粉即是。
Accelerrated Test(Aging)加速试验,加速老化也就是加速老化试验(Aging)。
如板子表面的熔锡、喷锡或滚锡制程,其对板子焊锡性到底能维持多久,可用高温高湿的加速试验,仿真当板子老化后,其焊锡性劣化的情形如何,以决定其品质的允收与否。
此种人工加速老化之试验,又称为环境试验,目的在看看完工的电路板(已有绿漆)其耐候性的表现如何。
新式的"电路板焊锡性规范"中(ANSI/J- STD-003,本刊 57 期有全文翻译)已有新的要求,即高可靠度级CLASS 3的电路板在焊锡性(Solderability)试验之前,还须先进行 8 小时的"蒸气老化"(Steam Aging),亦属此类试验。
2、Accuracy 准确度
指所制作的成绩与既定目标之间的差距。
例如所钻成之孔位,有多少把握能达到其"真位"(True Position)的能力。
3、Adhesion 附着力
指表层对主体的附着强弱而言,如绿漆在铜面,或铜皮在基材表面,或镀层与底材间之附着力皆是。
4、Aging 老化
指经由物理或化学制程而得到的产物,会随着时间的经历而逐渐失去原有的品质,这种趋向成熟或劣化的过程即称之"Aging"。
不过在别的学术领域中亦曾译为"经时反应"。
5、Arc Resistance 耐电弧性
指在高电压低电流下所产生的电弧,当此电弧在绝缘物料表面经过时,物料本身对电弧
抗拒力或忍耐力谓之"耐电弧性"。
其耐力品质的好坏,端视其被攻击而造成碳化物导电之前,所能够抵抗的时间久暂而定。
6、Bed-of-Nail Testing 针床测试
板子进行断短路(Open/Short)电性试验时,需备有固定接线的针盘(Fixture),其各探针的安插,需配合板面通孔或测垫的位置,在指定之电压下进行电性测试,故又称为"针床测试"。
这种电性测试的正式名称应为 Continuity Test,即 "连通性试验"。
7、Beta Ray Backscatter 贝他射线反弹散射
是利用同位素原子不安定特性所发出的β射线,使透过特定的窗口,打在待测厚的镀层样本上,并利用测仪中具有的盖氏计数管,侦测自窗口反弹散射回来部份的射线,再转成厚度的资料。
一般测金层厚度仪,例如 UPA 公司的 Micro-derm 即利用此原理操作。
8、Bond strength 结合强度
指积层板材中,欲用力将相邻层以反向之方式强行分开时(并非撕开),每单位面积中所施加的力量(LB/in2)谓之结合强度。
9、Breakdown Voltage 崩溃电压
造成板子绝缘材料(如基材或绿漆)失效的各种高压中,引发其劣化之最低最起码之电压即为"崩溃电压"或简称"溃电压"。
或另指引起气体或蒸气达到离子化的电压。
由于"薄板"日渐流行,这种基材的特性也将要求日严。
此词亦常称为Dielectric Withstanding Voltage。
10、Burn-In 高温加速老化试验
完工的电子产品,出货前故意放在高温中,置放一段时间(如 7 天),并不断测试其功能的劣化情形,是一种加速老化试验,也称为高温寿命试验。
11、Chemical Resistance 抗化性
广义是指各种物质对化学品的忍耐或抵抗能力。
狭义是指电路板基材对于溶剂或湿式制程中的各种化学品,以及对助焊剂等的抵抗性或忍耐性。
12、Cleanliness 清洁度
是指完工的板子,其所残余离子多寡的情形。
由于电路板曾经过多种湿式制程,一旦清洗不足而留下导电质的离子时,将会降低板材的绝缘电阻,造成板面线路潜在的腐蚀危机,甚至在湿气及电压下点引起导体间(包含层与层之间)的电子迁移(Electromigration)问题。
因而板子在印绿漆之前必须要彻底清洗及干燥,以达到最良好的清洁度。
按美军规
MIL-P-55110E 之要求,板子清洁度以浸渍抽取液(75%异丙醇+25%纯水)之导电度(Conductivity)表示,必须低于2×10-6 mho,应在2×106 ohm以,才算及格。
13、Comb Pattern 梳型电路
是一种"多指状"互相交错的密集线路图形,可对板面清洁度及绿漆绝缘性等,进行高电压测试的一种特殊线路图形。
14、Corner Crack 通孔断角
通孔铜壁与板面孔环之交界转角处,其镀铜层之内应力(Inner Stress)较大,当通孔受到猛烈的热冲击时 (如漂锡),在 Z 方向的强力膨胀拉扯之下,其孔角。
其对策可从镀铜制程的延展性加以改善,或尽量降低板子的厚度,以减少Z 膨胀的效应。
15、Crack 裂痕
在 PCB 中常指铜箔或镀通孔之孔铜镀层,在遭遇热应力的考验时,常出现各层次的局部或全部断裂,谓之 Crack。
其详细定义可见 IPC-RB-276 之图 7。
16、Delamination 分层
常指多层板的金属层与树脂层之间的分离而言,也指"积层板"之各层玻纤布间的分开。
主要原因是彼此之间的附着力不足,又受到后续焊锡强热或外力的考验,而造成彼此的分离。
17、Dimensional Stability 尺度安定性
指板材受到温度变化、湿度、化学处理、老化(Aging) 或外加压力之影响下,其在长度、宽度、及平坦度上所出现的变化量而言,一般多以百分率表示。
当发生板翘时,其 PCB 板面距参考平面(如大理石平台) 之垂直最高点再扣掉板厚,即为其垂直变形量,或直接用测孔径的钢针去测出板子浮起的高度。
以此变形量做为分子,再以板子长度或对角线长度当成分母,所得之百分比即为尺度安定性的表征,俗称"尺寸安定性"。
本词亦常指多层板制做中
其长宽尺寸的收缩情形,尤其在压合后,内层收缩最大,通常经向约万分之四,纬向约万分之三左右。
18、Electric Strength(耐)电性强度
指绝缘材料在崩溃漏电以前,所能忍受的最高电位梯度(Potential Gradient,即电压、电位差),其数值与材料的厚度及试验方法都有关。
此词另有同义字为(1)Dielectric Strength介质强度(2)Dielectric Break Down介质崩溃(3)Dielectric Withstand Voltage 介质耐电压等,一般规范中的正式用语则以第三者为多。
19、Entrapment 夹杂物
指不应有的外物或异物被包藏在绿漆与板面之间,或在一次铜与二次铜之间。
前者是由于板面清除不净,或绿漆中混有杂物所造成。
后者可能是在一次铜表面所加附的阻剂,发现施工不良而欲"除去"重新处理时,可能因清除未彻底留下残余阻剂,而被二次铜所包覆在内,此情形最常出现于孔壁镀铜层中。
另外当镀液不洁时,少许带电固体的粒子也会随电流而镀在阴极上,此种夹杂物最常出现在通孔的孔口,下二图所示即是典型镀铜的 Entrap。
20、Fungus Resistance 抗霉性
电路板面若有湿气存在时,可能因落尘中的有机物而衍生出霉菌,此等菌类之新陈代谢产物会有酸类出现,将有损板材的绝缘性。
故板面的导体电路或所组装的零件等,都要尽量利用绿漆及护形漆(Conformal Clating ,指组装板外所服贴的保护层)予以封闭,以减少短路或漏电的发生。