1.1 自由电子理论g
- 格式:ppt
- 大小:5.83 MB
- 文档页数:49
自由电子与电子能带理论的解释自由电子理论是固体物理学中的一个重要概念,它被广泛运用于描述和解释物质的电子结构和导电性质。
在这个理论中,电子被认为是不受束缚的,它们可以在一个无限深势阱中自由移动。
在固体中,电子受到其他原子核电荷的吸引,同时与其他电子之间的相互作用也不可忽视。
自由电子理论假设固体中的价电子(最外层电子)可以忽略其他电子和原子核之间的相互作用,从而成为类似自由粒子的行为。
这个假设为我们提供了描述固体中电子的简单模型,它可以用来解释电子的运动和导电性质。
自由电子理论对于描述导电性质而言是非常有效的。
在固体中,电子可以上升到更高的能级,或者从高能级下降到低能级。
当电子遇到外电场时,它们可以自由地加速或减速,并且在导体中形成电流。
这就是为什么金属具有良好导电性质的原因。
自由电子理论可以用来解释导体中的电子运动和导电现象,尽管它忽略了许多真实物质之间的相互作用。
然而,自由电子理论也有一些限制。
首先,它无法解释像绝缘体和半导体这样的材料的导电性质。
这些材料中的电子在价带和导带之间存在能隙,只有当光子提供足够的能量时,电子才能从价带跃迁到导带,形成电流。
自由电子理论无法描述这种现象。
为了解决这个问题,人们发展出了电子能带理论。
根据电子能带理论,固体中的电子在能量空间中被分布为一系列能带,每个能带可以容纳一定数量的电子。
其中,价带是最低能级的能带,它容纳了价电子;而导带是更高能级的能带,它容纳了自由电子。
能带之间的间隙被称为能隙。
电子能带理论在解释固体的导电性质时更加准确。
对于绝缘体而言,价带和导带之间的能隙非常大,因此电子无法跃迁到导带中。
这导致了绝缘体的低导电性质。
而半导体中的能隙比较小,一些电子可以通过吸收热量或光子来跃迁到导带,形成电流,使半导体表现出可变的导电性。
电子能带理论还可以解释为什么金属具有良好的导电性。
在金属中,导带与价带之间没有明显的能隙,因此即使不需要外电场的加速,电子也可以自由地在导带中移动和形成电流。
简述自由电子论的内容
金属中的正离子形成的电场是均匀的,价电子不被原子所束缚,可以在整个金属中自由地运动。
量子自由电子理论
自由电子的能量必须符合量子化的不连续性。
量子自由电子理论与经典电子理论的根本区别是自由电子的运动必须必须服从量子力学的规律。
经典电子理论
正离子所形成的电场是均匀的;自由电子运动的规律遵循经典力学气体分子的运动定律;自由电子与正离子之间的相互作用仅仅是类似于机械碰撞。
该理论认为,在没有外电场作用时,金属中的自由电子沿着各方向运动的几率相同,故不产生电流。
当施加外电场后,自由电子获得附加速度,于是便沿外电场方向发生定向迁移,从而形成电流。
自由电子在定向迁移过程中,因不断与正离子发生碰撞,使电子的迁移受阻,因而产生了电阻。