第七节 斯托克斯公式 环流量与旋度
- 格式:doc
- 大小:252.00 KB
- 文档页数:4
一、斯托克斯( Stokes )公式定理1. 右手法则(斯托克斯公式)证:情形1(利用格林公式) ∂P∂P=-⎰⎰[+fy]cosγdS∑∂y∂z情形2 证毕注意:⎰⎰∑dydzdzdxdxdy∂∂∂∂x∂y∂zPQRcosαcosβcosλ∂∂∂dS⎰⎰∂x∂y∂z∑PQR例1.解:利用对称性=3⎰⎰dxdyDxy 例2.解:*二、空间曲线积分与路径无关的条件定理2. ⎰ΓPdx+Qdy+Rdz=0Γ⎰Pdx+Qdy+Rdzdu=Pdx+Qdy+Rdz证:(4)⇒(1)(1)⇒(2)(2)⇒(3)(x,y,z)Pdx+Qdy+Rdz(x0,y0,z0)u(x,y,z)=⎰∂u∂x=P(x,y,z)du=Pdx+Qdy+Rdz(3)⇒(4)证毕例3.解:P=y+z,Q=z+x,R=x+y三、环流量与旋度n=(cosα,cosβ,cosγ)τ=(cosλ,cosμ,cosν)记作rotA⎰⎰∑(rotA)ndS=⎰ΓAτds定义: 环流量旋度旋度的力学意义:=2ω(此即“旋度”一词的来源)斯托克斯公式①的物理意义:注意∑与Γ的方向形成右手系!例4.解:例5.解:*四、向量微分算子=gradu=divA=rotA内容小结1. 斯托克斯公式2. 空间曲线积分与路径无关的充要条件∂Q∂R∂R∂P∂P∂Q==,=,∂y∂x∂z∂y∂x∂zrot(P,Q,R)==03. 场论中的三个重要概念梯度:散度:旋度:2r0提示:思考与练习作业。
第七节 斯托克斯公式 环流量与旋度㈠本课的基本要求了解斯托克斯公式,了解旋度的概念,并会计算。
㈡本课的重点、难点斯托克斯公式为重点,其运用为难点㈢教学内容作为格林公式的推广,高斯公式反映了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系。
如果将格林公式在空间作另一方面的推广,即把平面曲线L 推广到空间曲线Γ,并把以L 为边界的平面区域推广到以Γ为边界的有向曲面∑,姨可得到如下的斯托克斯公式。
一.斯托克斯公式定理1 设Γ为分段光滑的有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则(即当右手除拇指外的四指依Γ的绕行方向时,拇指所指的方向与∑上的法向量的指向相同)。
若函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含∑在内的一个空间区域内具有一阶连续偏导数,则⎰⎰⎰Γ∑++=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂Rdz Qdy Pdx dxdy y P x Q dzdx x R z P dydz z Q y R )()()(⑴ 公式⑴叫做斯托克斯公式。
证 先假定∑与平行于z 轴的直线相交不多于一点,并设∑为曲面),(y x f z =的上侧,∑的正向边界曲线Γ在xoy 面上的投影为平面有向曲线C ,C 所围成的闭区域为xy D (如图)。
我们设法把曲面积分⎰⎰∑∂∂-∂∂dxdy y P dzdx z P 化为闭区域xy D 上的二重积分,然后通过格林公式使它与曲线积分相联系。
根据对面积的和对坐标的曲面积分间的关系,有⎰⎰⎰⎰∑∑∂∂-∂∂=∂∂-∂∂ds y P z P dxdy y P dzdx z P )cos cos (γβ ⑵ 由第八章第六节知道,有向曲面∑的法向量的方向余弦为22222211cos ,1cos ,1cos y x y x y y x xf f f f f f f f ++=++-=++-=γβα因此γβcos cos y f -=,把它代入⑵式得⎰⎰⎰⎰⎰⎰∑∑∑∂∂+∂∂-=∂∂+∂∂-=∂∂-∂∂dxdy f z P y P ds f z P y P dxdy y P dzdx z P y y )(cos )(γ ⑶ 上式右端的曲面积分化为二重积分时,应把),,(z y x P 中的z 用),(y x f 来代替。
第七节 斯托克斯公式 环流量与旋度
斯托克斯公式是格林公式的推广,格林公式建立了平面区域上的二重积分与其边界曲线上的曲线积分之间的联系,而斯托克斯公式则建立了沿空间曲面∑的曲面积分与沿∑的边界曲线Γ的曲线积分之间的联系. 一、斯托克斯公式★ 例1 ★ 例2 ★ 例3 二、空间曲线积分与路径无关的条件 三、三元函数的全微分求积 四、环流量与旋度★ 例4 ★ 例5 ★ 例6 五、斯托克斯公式的向量形式, 向量微分算子
内容要点
一、斯托克斯公式
定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式
dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝
⎛∂∂-∂∂⎰⎰∑.⎰++=L
Rdz Qdy Pdx (7.1)
公式(7.1)称为斯托克斯公式.
为了便于记忆,斯托克斯公式常写成如下形式:
⎰⎰⎰
Γ∑
++=∂∂
∂∂∂∂Rdz Qdy Pdx R
Q P z
y x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成
.c o s c o s c o s ⎰⎰⎰
Γ∑
++=∂∂
∂∂∂∂Rdz Qdy Pdx dS R
Q P z
y x γβα
二、环流量与旋度
设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A
++=
则沿场A
中某一封闭的有向曲线C 上的曲线积分⎰++=ΓC
Rdz Qdy Pdx
称为向量场A
沿曲线C 按所取方向的环流量. 而向量函数
⎭
⎬⎫
⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A 的旋度,记为A rot ,即
.k y P x Q j x R z P i z Q y R A rot ⎪⎪⎭
⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=
旋度也可以写成如下便于记忆的形式:
R
Q P
z y x k j i A rot ∂∂∂∂∂∂=
. 例题选讲利用斯托克斯公式计算
例1 (E01) 计算曲线积分,⎰Γ
++ydz xdy zdx 其中Γ是平面1=++z y x 被三坐标面所截
成的三角形的整个边界, 它的正向与这个三角形上侧的法向量之间符合右手规则.
解 按斯托克斯公式,有
,⎰⎰⎰∑
++=++Γ
dxdy dzdx dydz ydz xdy zdx
由于
∑
的法向量的三个方向余弦都为正,再由对称性知:
,3⎰⎰⎰⎰=∑
++xy
D d dxdy dzdx dydz σ所以 .23
=++⎰Γydz xdy zdx 例 2 计算曲线积分
,)()()(222222dz y x dy x z dx z y -+-+-⎰
Γ
其中Γ是平面
2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向
看法,取逆时针方向.
解 取
∑
为题设平面的上侧被Γ所围成部分,则该平面的法向量,
3}
3,1,1{=n
即,31
cos cos cos ===λβα原式dS y x x y z y z y x z
⎰⎰
∑
---∂∂
∂∂∂∂=
2
2
22
22
3
13131
⎰⎰∑++-
=dS z y x )(34
.29
3322334-=-=∑⋅-=⎰⎰⎰⎰xy
D dxdy dS 例3 (E02) 计算,)()()(222222⎰+++++C
dz y x dy z x dx z y 式中C 是
).0,0(2,222222><<=+=++z R r rx y x Rx z y x 此曲线是顺着如下方向前进的: 由它
所包围在球面Rx z y x 2222=++上的最小区域保持在左方 解 由斯托克斯公式,有 原式⎰⎰∑
-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2
γβα
dS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣
⎡-+-+⎪⎭⎫ ⎝⎛--=
)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2
22
2
R r
d R Rdxdy rx
y x πσ==∑
=
⎰⎰⎰⎰≤+
例4 求矢量场k z j xy i x A 2
22+-=在点()2,1,10M 处的散度及旋度. 解 A div z
A y A x A z y x ∂∂+∂∂+∂∂=
z x x 2)2(2+-+=.2z =故0M A div
.4= A rot k y A x A j x A z A i z A y A x y z x x z ⎪⎪⎭
⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂= k y j i
)02()00()00(--+-+-= .2k y -=故0
M A
rot .2k -=
例5 (E03) 设,32222yz xy y x u -+= 求grad u div(grad u );rot(grad u ). 解 g r a d u ⎭
⎬⎫
⎩⎨⎧∂∂∂∂∂∂=
z u y u x u ,,}.6,4,2{yz xy xy -= div(gradu)⎭
⎬⎫
⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=
rot(gradu).,,222222⎭
⎬⎫
⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u
因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故
rot(gradu).0=
注:一般地,如果u 是一单值函数,我们称向量场A
=grad u 为势量场或保守场,而
u 称为场A
的势函数.
例6 (E04) 设一刚体以等角速度k j i z y x
ωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v
的旋度.
解 取定轴l 为z 轴(见图10-7-4),点M 的内径r
OM =,k z j y i x ++= 则点M 的线速度
v r
⨯=ωz
y
x k
j
i z y
x ωωω =,)()()(k x y j z x i y z y x x z z y
ωωωωωω-+-+-= 于是v rot x y z x y z z y x k
j i y x x z z y ωωωωωω---∂∂
∂∂∂∂=
)(2k j i z y x ωωω++=.2ω =
即速度场v 的旋等于角速度ω
的 2 倍.
课堂练习
1. 计算,)()()(222⎰
-+-+-AmB
dz xy z dy xz y dx yz x 其中AmB 是螺线
π
ϕ
ϕϕ2,sin ,cos h z a y a x ===从)0,0,(a A 到),0,(h a B 的一段曲线. 2. 物体以一定的角速度ω依逆时针方向绕Oz 轴旋转, 求速度v 和加速度w
在空间点),,(z y x M 和已知时刻t 的散度和旋度.。