电工学 正弦交流电路
- 格式:ppt
- 大小:170.00 KB
- 文档页数:17
正选交流电路+三相交流电知识点整理(1)1、正选交流电与直流电的区别所谓正弦交流电路,是指含有正弦电源(激励)而且电路各部分所产生的电压和电流(响应)均按正弦规律变化的电路。
交流发电机中所产生的电动势和正弦信号发生器所输出的信号电压,都是随时间按正弦规律变化的。
它们是常用的正弦电源。
在生产上和日常生活中所用的交流电,一般都是指正弦交流电。
因此,正弦交流电路是电工学中很重要的一个部分。
直流电路:除在换路瞬间,其中的电流和电压的大小与方向(或电压的极性)是不随时间而变化的,如下图所示:正选交流电:正弦电压和电流是按照正弦规律周期性变化的,其波形如下图所示。
正弦电压和电流的方向是周期性变化的。
正弦量:正弦电压和电流等物理量。
正弦量的特征表现在变化的快慢、大小及初始值三个方面,而它们分别由频率(或周期)、幅值(或有效值)和初相位来确定。
所以频率、幅值和初相位就称为确定正弦量的三要素。
2、周期T与频率f周期T:正弦量变化一次所需的时间。
单位:秒(s)频率f:每秒内变化的次数。
单位:赫兹(Hz)两者关系:频率是周期的倒数 f=1/T高频炉的频率是200- 300kHz;中频炉的频率是500-8000Hz;高速电动机的频率是150-2000Hz; 通常收音机中波段的频率是530-1600kHz ,短波段是2.3-23MHz;移动通信的频率是900MHz和1800MHz; 在元线通信中使用的频率可高 300 GHz。
正弦量变化的其他表达方式:角频率正弦量变化的快慢除用周期和频率表示外,还可用角频率ω来表示。
因为一周期内经历了 2π弧度(图 4.1.3) ,所以角频率为:上式表示 T,f,ω三者之间的关系,只要知道其中之一,则其余均可求出。
3、幅值与有效值正弦量在任一瞬间的值称为瞬时值,用小写字母来表示,如 i , U 及 e 分别表示电流、电压及电动势的瞬时值。
瞬时值中最大的值称为幅值或最大值,用带下标 m 的大写字母来表示,如Im, Um 及 Em 分别表示电流、电压及电动势的幅值。
正弦交流电路定义正弦交流电路是指由正弦波形式的电压或电流组成的电路。
在正弦交流电路中,电压或电流的变化遵循正弦函数的规律,其波形呈现出周期性的波动。
正弦交流电路广泛应用于电力系统、电子设备以及通信系统等各个领域。
正弦交流电路的特点是具有周期性、频率稳定以及幅度可调的特性。
在正弦交流电路中,电压或电流的周期性表示了波形的重复性,频率稳定性表示波形中重复的时间间隔保持恒定,而幅度的可调性意味着可以通过调节振幅来控制电路的输出。
正弦交流电路可以使用不同的元器件来实现,其中最常见的是电阻、电容和电感。
电阻用于限制电流的流动和控制电路中的能量损耗,电容用于储存和释放电荷以及滤波,而电感用于储存和释放磁能以及调节电流。
在正弦交流电路中,电压和电流可以通过几种不同的方式表示。
最常见的是峰值值(peak value)、峰峰值(peak-to-peak value)以及有效值(rms value)。
峰值值表示波形的最大值和最小值之间的差异,峰峰值表示波形最高点和最低点之间的差异,而有效值表示波形在一个周期内产生的平均功率与直流电平相同的值。
正弦交流电路的设计和分析需要考虑到电路元件的阻抗和相位差。
阻抗是指电路中电压和电流之间的比例关系,其单位是欧姆。
相位差表示两个正弦波的相对位置,可以是正值(在同一方向)、负值(在相反方向)或零值(同相位)。
正弦交流电路在实际应用中具有广泛的用途。
在电力系统中,交流电路通过变压器、发电机和输电线路进行传输和分配电能。
在电子设备中,交流电路通过放大器、滤波器和振荡器等电路模块进行信号处理和控制。
在通信系统中,交流电路通过调制、解调和放大等电路模块进行信息传递和信号增强。
总结而言,正弦交流电路是由正弦波形式的电压或电流组成的电路,具有周期性、频率稳定以及幅度可调的特性。
正弦交流电路的设计和分析需要考虑到电路元件的阻抗和相位差。
正弦交流电路在电力系统、电子设备以及通信系统等领域中起着重要的作用,为各种电路应用提供了稳定且可调的电源和信号处理功能。
第二章正弦交流电路2.1.1 正弦量的三要素及表示方法(1)正弦交流电路:如果在线性电路中施加正弦激励(正弦交流电压源或正弦交流电流源),则电路中的所有响应在电路达到稳态时,也都是与激励同频率的正弦量,这样的电路称为正弦交流电路。
(2)正弦交流电压或正弦交流电流等物理量统称为正弦量,它们的特征表现在变化的快慢、大小及初值3个方面,分别由频率(或周期)、幅值(或有效值)和初相位来确定。
所以称频率、幅值(或有效值)和初相位为正弦量的三要素。
(3)因为正弦量具有3个要素,它们完全可以表达对应的正弦量的特点和共性。
所以,只要能够反映出正弦的三要素,就可以找到多种表示正弦量的方法,其常见的表示方法如下。
①三角函数表示法和正弦波形图示法,比如正弦电压u=U m sin(ωt+φ),其正弦波形如图2.1所示,但是正弦量的这两种表示方法都不利于计算。
②旋转矢量表示法,由于复平面上一个逆时针方向旋转的复数能够反映出正弦量的3个要素,因此可用来表示正弦量。
③相量及相量图表示法,由于正弦交流电路中的激励和响应均为同频率的正弦量,故可在已知频率的情况下,只研究幅值和初相位的问题。
这样,不仅可以用旋转矢量表示正弦量,而且也能把正弦量表示成复数(该复数与一个正弦量对应,称为相量)。
图2.1所示正弦电压的幅值相量和有效值相量分别为2.1.2 电路基本定律的相量形式将正弦量用相量表示有利于简化电路的分析和计算,其中电路分析的基本定律在频域中也是成立的,即为表2.1的电路基本定律的相量形式。
当用相量来表示正弦电压与电流,用复阻抗来表示电阻、电感和电容时,正弦交流电路的分析与计算也就类似于直流电路,复阻抗的串并联等效、支路电流法、叠加定理和戴维宁定理等分析方法均可应用。
为了研究复杂正弦交流电路中激励与响应之间的关系,以及研究电路中能量的转换与功率问题,就必须首先掌握单一参数(电阻、电感、电容)元件在正弦交流电路中的特性(见表2.2),以作为分析复杂正弦交流电路的基础。