高聚物粘弹性力学模型的几个问题
- 格式:ppt
- 大小:426.00 KB
- 文档页数:48
第五章 高聚物的高弹性和粘弹性第一部分 主要容§5 高弹态和粘弹性§5.1 高弹性的特点及热力学分析一、高弹性的特点(1 )E 小,ε大且可迅速恢复(2)E 随T 增大而增大3、拉伸或压缩过程:放热二、理想高弹性的热力学分析——理想高弹性是熵弹性1)橡胶拉伸过程热力学分析dU=-dW+dQdW=-fdl+PdU=-fdldQ=TdSdU=TdS+f fdl等温,等容过程V T l U .)(∂∂=T(V T lS .)(∂∂+f f=-T V T l S .)(∂∂+V T l U .)(∂∂ 熵 能所以,高弹性是一个熵变得过程2)理想高弹性是熵弹性f=-T V T l S .)(∂∂+V T lU .)(∂∂ =f s +f ua f ≈-T V T lS .)(∂∂弹性力是由熵变引起的 熵弹性 bf ∝T T ↑,f ↑,E=εσ↑ c 热弹较变现象ε〈10%时,f 对T 作图为负值§5.2 橡胶弹性的统计理论一、理想弹性中的熵变1)孤立链的S在(x,y,z)位置的几率 W(x,y,z)=)(32222)(z y x e ++-βπββ2=223zbS=klnn=c-k β2(x 2+y 2+z 2)2)理想交联网的假设(1) 两交链点间的链符合高斯链的特征(2)仿射变形(3)(4)Si= c-k β2(x 2i +y 2i +z 2i )Si ’=c-k β2(λ12x 2i +λ22y 2i +λ32z 2i )ΔSi= Si ’- Si=-k β2((λ12-1)x 2i +(λ22-1)y 2i +(λ32-1)z 2i )如果试样的网链总数为NΔS=-KN/2(λ12+λ22+λ32)=-1/2KN(λ2+λ-2-3)σ=-V T lS .)(∂∆∂=NKT(λ-λ-2) 二、真实(橡胶)弹性网与理论值比较及修正(1)比较a :λ很小, σ理=σ真b :λ较小,σ理〉σ真因自由端基或网络缺陷c :λ较大,σ理〈σ真因局部伸展或拉伸结晶引起(2)修正σ= NKT(λ-λ-2)=Mc RT ρ (λ-λ-2) 当分子量为时σ=Mc RT ρ(1-)2MnMc (λ-λ-2)其中 NMc N 1=ρ §5.3 粘弹性的三种表现ε.E (结构.T.t )弹性——材料恢复形变的能力,与时间无关。
第七章粘弹性一、思考题1. 何谓高聚物的力学性能?从承载速度区分,力学性能可分为哪几类?2. 何谓粘弹性?何谓Boltzmann 叠加原理?何谓时温等效原理?3. 粘弹性实验一般有哪些?何谓应力松弛和蠕变?什么是松弛模量和蠕变柔量?松弛时间与推迟时间有何异同?4. 什么是高聚物的力学滞后和内耗?表征高聚物动态粘弹性的参量有哪些?用什么参量描述其内耗大小?5. 如何由不同温度下测得的E-t 曲线得到某一参考温度下的叠合曲线?当参考温度分别取为玻璃化温度和玻璃化温度以上约50C时,WLF方程中的C2应分别取何值?哪一组数据普适性更好?6. 粘弹性力学模型中的基本元件和基本连接方式有哪些?它们有何基本关系式?写出Maxwell 模型和Voigt 模型的基本微分方程。
广义Maxwell 模型和广义Voigt 模型分别适用于描述高聚物在什么情况下的性质?二、选择题1.高聚物的蠕变与应力松弛的速度( ) CD与温度无关②随着温度增大而减小③随着温度增大而增大2 •用T g为参考温度进行E t曲线时温转换叠加时,温度低于T g的曲线,其lg a值为( )C1 正,曲线向右移动C2 负,曲线向左移动C3 负,曲线向右移动C4 正,曲线向左移动3.高聚物发生滞后现象的原因是( )C1 高聚物的弹性太大C2 运动单元运动时受到内摩擦力的作用C3 高聚物的惰性大4.Voigt 模型可用于定性模拟( )C1 线性高聚物的蠕变C2 交联高聚物的蠕变C3 线型高聚物的应力松弛C4 交联高聚物的应力松弛5.Maxwell 模型可用于定性模拟( )C1 线型高聚物的蠕变C2 交联高聚物的蠕变③线型高聚物的应力松弛(④交联高聚物的应力松弛6 •高聚物黏弹性表现最为明显的温度是()①v T g ②高于T g附近③T f附近7. 高聚物的蠕变适宜用()的模型来描述。
①理想弹簧和理想黏壶串联(②理想弹簧和理想黏壶并联③四元件模型8. 高聚物的应力松弛适宜用哪种模型来描述?()①广义Maxwell模型②广义Voigt模型③四元件模型9. 对于交联高聚物,以下关于其力学松弛行为哪一条正确?()③蠕变能回复到零③应力松弛时应力能衰减到零③可用四元件模型模拟三、判断题(正确的划“V”,错误的划“X”)1. 交联聚合物的应力松弛现象,就是随时间的延长,应力逐渐衰减到零的现象。