激光相变硬化的概念讲解
- 格式:ppt
- 大小:556.00 KB
- 文档页数:7
激光表面相变硬化
激光表面相变硬化是激光热处理技术中发展较早且最成熟的工艺,可以对所有经相变而硬化的碳钢、合金钢、工具钢及铸铁等进行表面猝火,这与高频感应加热猝火原理类似,利用激光对材料表面高速瞬时加热及急速冷却的特性,在缺少奥氏体成分均匀化及长大的条件下,使材料表面形成细晶结构。
猝火后马氏体中碳的分布很不均匀,相当于无数高碳马氏体组织弥散分布于底火马氏体中,位错密度高即形成了高硬度的表面淬硬层,由于淬火效率高,被加工零件几乎无变形。
此外由于激光束的场深大,故可对几何型面不规则的零件进行表面硬化处理,如对汽车活塞耐磨部位、阀体、齿轮、凸轮轴、角齿沟槽等零件进行部位浅层淬火。
铝表面TIN硬化,采用激光方法进行粉末的沉积,熔化环流可有助于机械黏结的沉积层的形成在熔化环流和固体材料之间,氮化物粒子浮在熔化金属上,由于对流,其余粒子下沉并且散布在铝基体中,这样硬组织覆盖在表面上,表面硬化比基体硬度高出约2倍。
(摘自于表面处理手册)
锁紧螺母。
激光相变硬化1 激光相变理论1.1 激光相变与常规淬火的区别根据钢的淬火原理:将钢在固态下加热到临界温度Ac3或Ac1以上一定温度(50~100℃),并在该温度下保持一段时间以后大于临界速度的速度冷却得到马氏体(或下贝氏体)的热处理工艺叫做淬火,如图1中曲线2所示。
将钢加热到奥氏体转变临界温度(Ac3或Ac1)以上获得奥氏体组织,保温的目的是使组织充分奥氏体化,然后以大于临界淬火速度的冷却速度得到马氏体组织。
与常规淬火相比,激光淬火升温速度快,没有保温过程,达不到平衡时的均匀组织状态。
理想的淬火冷却过程如图2中曲线2所示:650℃以上应当缓慢冷却,以尽量降低淬火热应力;650~400℃之间应快速冷却,以通过过冷奥氏体最不稳定区域,避免发生珠光体或贝氏体转变。
在400℃以下Ms 点附近的温度区域,应当缓慢冷却以尽量减少马氏体转变时产生的组织应力。
这样可保证在获得马氏体组织条件下,减少淬火应力、避免工件产生变形或开裂。
激光淬火冷却的特点是停止加热的瞬间温度达到最高,随即以104~105℃/s 冷却速度冷却,远大于淬火介质为盐水或碱水的最大冷却速度(2000℃/s 和2830℃/s ),根据冷却速度与时间的关系可以推断激光淬火冷却曲线在钢的理想淬火冷却曲线左侧,如图2中曲线1。
图3是铁碳合金相图热力学上近于平衡时的组织状态与温度及合金成分之间的关系。
用缓慢的加热速度升温使钢奥氏体化,可以达到接衡的程度。
奥氏体是由生成核和长大而生成的,碳化物的溶解及奥氏体晶粒的长大,均受到扩散过程的支配。
在激光加热过程中,当加热速度足够高时(大于400~500℃/s ),钢铁中铁素体相α在某临界温度(约900℃)可发生马氏体型转变的逆转变,以切变方式瞬间生成与其成分相同的奥氏体相γ,即遵循非扩散型转变规律【9】。
由奥氏体形成动力学可知,随着钢中奥氏体温度的增加,奥氏体的形核率和长大速度均随之增加,因而激光快速加热条件下,奥氏体的形核极高。
激光束表面改性技术摘要:激光束表面改性技术在改善材料表面性能,提高材料使用寿命方面具有突出的优越性。
它作用于材料表面使得材料的表面性能得到了明显的提高,随着研究的深入和技术的逐渐成熟,表面改性技术在工业领域中的应用越来广泛,目前进行材料表面改性的工艺有激光相变硬化、激光熔覆、激光合金化、激光非晶化、激光冲击硬化,本文就其工艺方法进行了综述。
一、引言激光表面处理技术的研究始于20世纪60年代,但是直到20世纪70年代初研制出大功率激光器之后,激光表面处理技术才获得实际的应用。
它是将现代物理学、化学、计算机、材料科学、先进制造技术等多方面的成果和知识结合起来的高新技术,用激光的高辐射亮度,高方向性,高单色性特点,以非接触性的方式加热材料表面,借助于材料表面本身传导冷却, 使金属材料表面在瞬间被加热或熔化后高速冷却,来实现其表面改性的工艺方法。
二、激光相变硬化激光表面相变硬化又称激光淬火,它是以104~105W/cm2高能功率密度的激光束作用在工件表面,以105~106℃/s的加热速度,使受激光束作用的工件表面部位温度迅速上升到相变点以上,形成奥氏体,并通过仍处于冷却态的基体与加热区之间形成的极高的温度梯度的热传导,一旦激光停止照射,则以105℃/s的速度冷却,实现自冷淬火,形成表面相变硬化层。
三、激光熔覆激光熔覆是采用激光束加热熔覆材料和基材表面,使所需的特殊材料熔焊于工件表面的一种新型表面改性技术。
这项技术始于1974年, Gnanamuthu申请了激光熔覆一层金属于金属基体的熔覆方法专利[3]。
经过二十几年的发展, 激光熔覆已成为材料表面工程领域的前沿和热门课题。
影响激光熔覆的因素主要有熔覆材料的原始成分、基体材料成分、熔覆的工艺参数。
激光熔覆技术示意图见图11.短型光束或高斯型光束2.气动送粉3.测量孔4.振动器5.粉末漏斗箱6.二氧化碳气体激光束高频振动7样品运动8.样品9.熔覆厚度10.熔覆层图1激光熔覆技术示意图⑴激光熔覆材料激光熔覆材料主要有镍基、钴基、铁基自熔性合金和金属陶瓷等类型;激光熔覆材料的选择,主要考虑使用性能及工艺性能等因素。