激光重熔与激光相变硬化的异同讲解
- 格式:ppt
- 大小:1.24 MB
- 文档页数:9
第二节激光热处理及其组织和性能一、激光热处理的特点激光热处理是在七十年代出现了大功率激光器以后才开始研究的新技术。
由于激光热处理可以获得其它热处理技术所不能达到的效果,因而对它的研究应用日益广泛和深入。
激光热处理就是以激光作为热源的热处理。
将激光束扫描至零件表面上,其红外能量被零件表面吸收而迅速形成极高的温度,可使金属产生相变甚至熔化。
随着激光束离开零件面,其表面的热量迅速向内部传递而形成极高的冷却速度,而使零件表面硬化。
激光热处理与常规热处理比较具有以下优点:(1)加热快,工件热变形小。
因激光功率密度高, 半秒钟内就可将工件表面从室温加热到淬火温度或熔点,因而热影响区小,热变形极小。
这样不仅节省能源, 并且工件表面清洁, 处理后无需修磨, 可在零件精加工后作为最后一道工序。
(2)可对形状复杂的工件或其局部进行热处理,如盲孔、小孔、小槽、薄壁零件等。
也可根据需要在同一零件的不同部位进行相应的处理。
还可对价廉的零件表面进行高级金属的局部熔覆或合金化。
(3)通用性强。
由于激光焦距大,在离焦点75毫米左右的范围内功率密度基本相同。
因此,激光热处理对工件尺寸大小及表面是否平整均无严格的限制。
用一台带光学系统的激光器可以处理不同形状和各种尺寸的工件,而通常此类工件对变形非常敏感,常规热处理无法满足。
(4)生产率高,操作简单,便于实现自动化生产。
生产重复性好,质量稳定可靠,并可纳入流水线。
(5)无需处理介质, 有利于环境保护。
基本不产生氧化,必要时又可使零件在特殊气氛(例如真空)中进行处理。
上述的优点是某些先进的热处理工艺难以达到的。
但是激光热处理的弱点是:它只是一种表面处理方法,无法善零件芯部性能。
处理层太薄,不能用于重负荷零件,也不适用于大型零件。
激光热处理设备激光器的种类很多,可分为固体、气体、液体、半导体等几种类型:( 1 )固体激光器一般小而坚固,脉冲辐射功率较高,应用范围较广泛。
如:Nd:YAG激光器。
激光熔凝及激光熔凝淬火激光熔凝原理激光熔凝也称激光熔化淬火。
激光熔凝是用激光束将获得工件表面加热熔化到一定深度,然后自冷使熔层凝固,获得较为细化均质的组织和所需性能的表面改性技术。
激光熔凝原理与激光非晶化基本上相一致。
但激光熔凝处理时激光的能量密度和扫描速·度均远小于激光非晶化。
激光熔凝与激光合金化不同,它在表面熔化时一般不添加任何合金元素,熔凝层与材料基体是天然的冶金结合;在激光熔凝过程中,可以排除杂质和气体,激光熔凝原理激光熔凝也称激光熔化淬火。
激光熔凝是用激光束将获得工件表面加热熔化到一定深度,然后自冷使熔层凝固,获得较为细化均质的组织和所需性能的表面改性技术。
激光熔凝原理与激光非晶化基本上相一致。
但激光熔凝处理时激光的能量密度和扫描速·度均远小于激光非晶化。
激光熔凝与激光合金化不同,它在表面熔化时一般不添加任何合金元素,熔凝层与材料基体是天然的冶金结合;在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的组织有较高的硬度、耐磨性和抗蚀性;其表面熔层深度远大于激光非晶化。
激光熔凝是将金属材料表面在激光束照射下成为溶化状态,同时迅速凝固,产生新的表面层。
根据材料表面组织变化情况,可分为合金化、重溶细化、上釉和表面复合化等。
我公司的轧辊激光熔凝产品是用适当的参数的激光辐照材料表面,使其表面快速熔融、快速冷凝,获得较为细化均质的表面改性技术。
它具有以下优点:表面熔化时一般可添加超硬耐磨金属元素或化学元素,熔凝层与材料基体形成冶金结合。
在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的杂质有较高的硬度、耐磨性和抗腐蚀性。
其熔层薄、热作用区小,对表面粗糙度和工件尺寸影响不大,有时可不再进行后续磨光而直接使用。
提高溶质原子在基体中固溶度极限,晶粒及第二相质点超细化,形成亚稳相可获得无扩散的单一晶体结构甚至非晶态,从而使生成的新型合金获得传统方法得不到的优良性能。
第一章1 表面工程也称为“表面技术”、“表面处理”或“表面改性”,是应用物理、化学、机械等方法改变固体材料表面成分或组织结构,获得所需性能的表面,以提高产品的可靠性或延长其使用寿命的各种技术的总称。
2 原子沉积:原子、离子、分子及基团在基体上的凝聚、成核、长大;例如电镀、化学镀、蒸镀、溅射、气相沉积等。
3 颗粒沉积:熔化的液滴、细小颗粒在外力作用下于基体表面凝聚、沉积或烧结;例如热喷涂、搪瓷涂层等。
4 表面改性:用离子处理、热处理、机械处理、化学处理的方法改变材料表面的组成和性质。
5 表面改性:改变基体金属材料表面层的化学成分,例如化学热处理、等离子扩渗处理、离子注入。
6 表面处理:不改变基体金属表面化学成分的情况下,使其组织与结构发生变化,例如喷丸强化、表面热处理等7 表面涂镀层技术:在基体材料表面形成一层新的覆盖层,覆盖层与基体之间有明显的分界面8 纳米表面工程技术:在基体表面制备含纳米颗粒的涂层或具有纳米结构的表层第二章1 界面一般指两相交界处,严格来讲固-固、液-液、固-液、气-液、固-液交界处皆为界面2 固体表面通常指固-气界面或固-液界面,一般由凝聚态物质靠近气体或真空的一个或几个原子层组成。
3理想表面是一种理论上的结构完整的二维点阵平面,忽略周期性势场的中断,忽略缺陷、扩散、热运动,忽略外界环境影响4 无缺陷的晶体被分成两个半无限大的晶体,分割前后的原子排列、电子密度不变;表面原子能量大于内部,既为表面能5 清洁表面指没有被其它任何物质污染,也没有吸附任何不是表面组分的其它原子或分子的表面,是我们在预处理后中想要得到的表面6 表面驰豫:表面的原子周期性突然破坏,表面上的原子会发生相对于正常位置的上、下位移以降低体系能量,表面上原子的这种位移称为表面驰豫7 表面重构:平行基底的表面上,原子的平移对称性与体内显着不同,原子位置作了较大幅度的调整8 化学吸附:外来原子吸附于表面并形成化学键。
激光相变硬化1 激光相变理论1.1 激光相变与常规淬火的区别根据钢的淬火原理:将钢在固态下加热到临界温度Ac3或Ac1以上一定温度(50~100℃),并在该温度下保持一段时间以后大于临界速度的速度冷却得到马氏体(或下贝氏体)的热处理工艺叫做淬火,如图1中曲线2所示。
将钢加热到奥氏体转变临界温度(Ac3或Ac1)以上获得奥氏体组织,保温的目的是使组织充分奥氏体化,然后以大于临界淬火速度的冷却速度得到马氏体组织。
与常规淬火相比,激光淬火升温速度快,没有保温过程,达不到平衡时的均匀组织状态。
理想的淬火冷却过程如图2中曲线2所示:650℃以上应当缓慢冷却,以尽量降低淬火热应力;650~400℃之间应快速冷却,以通过过冷奥氏体最不稳定区域,避免发生珠光体或贝氏体转变。
在400℃以下Ms 点附近的温度区域,应当缓慢冷却以尽量减少马氏体转变时产生的组织应力。
这样可保证在获得马氏体组织条件下,减少淬火应力、避免工件产生变形或开裂。
激光淬火冷却的特点是停止加热的瞬间温度达到最高,随即以104~105℃/s 冷却速度冷却,远大于淬火介质为盐水或碱水的最大冷却速度(2000℃/s 和2830℃/s ),根据冷却速度与时间的关系可以推断激光淬火冷却曲线在钢的理想淬火冷却曲线左侧,如图2中曲线1。
图3是铁碳合金相图热力学上近于平衡时的组织状态与温度及合金成分之间的关系。
用缓慢的加热速度升温使钢奥氏体化,可以达到接衡的程度。
奥氏体是由生成核和长大而生成的,碳化物的溶解及奥氏体晶粒的长大,均受到扩散过程的支配。
在激光加热过程中,当加热速度足够高时(大于400~500℃/s ),钢铁中铁素体相α在某临界温度(约900℃)可发生马氏体型转变的逆转变,以切变方式瞬间生成与其成分相同的奥氏体相γ,即遵循非扩散型转变规律【9】。
由奥氏体形成动力学可知,随着钢中奥氏体温度的增加,奥氏体的形核率和长大速度均随之增加,因而激光快速加热条件下,奥氏体的形核极高。
哈工大朱景川教授:硬度高达7.55GPa!激光重熔高性能中熵合金!导读:本文采用光纤激光重熔了一种多相无钴铸态 AlCrFe 2 Ni 2中熵合金 (MEA)。
通过表征铸态和重熔的 AlCrFe 2 Ni 2,研究了激光重熔对组织、相分布和机械性能的影响合金。
激光重熔工艺使晶粒尺寸从约780 μm 显着减小到58.89 μm(纵向截面)和 15.87 μm(横向截面),硬度从4.72 ± 0.293 GPa 增加到6.40 ± 0.147 GPa(纵向截面)和7.55 ± 0.360 GPa(横截面)。
还发现铸态合金中由FCC 相、有序B2相和无序BCC相组成的长边板状组织转变为由交替有序B2相和无序BCC相组成的纳米级编织状组织。
重熔后屈服应力从661.9 MPa增加到1347.6 MPa(纵截面)和1647.2 MPa(横断面)。
高熵合金 (HEAs) 和中熵合金 (MEAs) 是新开发的合金,它们由具有相等或接近相等摩尔比的几种元素组成。
HEA/MEA 的特殊成分特性导致非凡的性能,如高强度和硬度、良好的热稳定性, 高耐腐蚀性, 理想的高温抗氧化性能和优越的磁性。
电弧熔炼是HEA/MEAs最常用的制备方法,可以在一定程度上净化铸锭,改善结晶度。
然而,电弧熔化过程中冷却速度低,容易导致粗晶粒的形成,对合金的性能和使用性能产生显着的不利影响。
与电弧熔化工艺相比,激光重熔或基于激光的增材制造(AM)方法可以提供超快的冷却速度(高达 10 4 ∼10 7 K/s),这有利于扩大极限固溶,细化晶粒,消除偏析,形成新的亚稳相并最终表现出优异的机械性能。
布里夫等人已经使用选择性激光熔化制造了FeCoCrNi 高熵合金。
沉积态 HEA 的屈服应力为 600 MPa,远高于铸态 HEA 的屈服应力 188 MPa。
此外,沉积态合金的延伸率为 32%,与铸态合金相当。
他们的工作表明,高冷却速率的工艺可以帮助 HEA 同时实现高强度和良好的塑性。