一次函数与三角形面积问题ppt课件
- 格式:ppt
- 大小:450.50 KB
- 文档页数:11
一次函数与反比例函数求三角形面积
要求三角形的面积,首先要知道三角形的底和高。
对于一次函数,可以表示为y=ax+b。
设两个点的坐标为
(x1,y1)和(x2,y2),则可以通过这两个点求得直线的斜率
a和截距b。
斜率a即为直线的导数,表示直线的倾斜程度。
然后通过求两点间的距离|x2-x1|作为三角形的底d。
反比例函数形式为y=k/x,其中k是一个常数。
对于反比例函
数来说,由于分母x不能为0,所以不能计算出具体的斜率。
在求三角形面积时,我们可以假设x的值很小,可以无限接近于0,此时y的值趋于无穷大。
这时我们可以通过取两个非常
小的点(x1,y1)和(x2,y2)求出直线斜率的极限值,即为0。
我们同样通过|x2-x1|计算出三角形的底d。
对于一次函数和反比例函数,计算出底d之后,我们还需要计算出三角形的高h。
通过已有的函数表达式,可以在直线上取
两个点(x,y1)和(x,y2),计算出点到直线的距离即可,即
为三角形的高h。
最后,根据底d和高h,可以计算出三角形的面积S = 1/2 * d
* h。
一次函数与x轴y轴围成的三角形面积公式在咱们学习数学的旅程中,一次函数可是个重要的角色。
今天,咱们就来好好聊聊一次函数与 x 轴、y 轴围成的三角形面积公式这个有趣的话题。
还记得我上初中那会,有一次数学考试,最后一道大题就考到了这个知识点。
当时我拿到试卷,心里还美滋滋的,想着前几天刚认真复习过,这题肯定能拿下。
题目是这样的:已知一次函数 y = 2x + 4 ,求它与 x 轴、y 轴围成的三角形的面积。
我一开始信心满满,先求出了与 x 轴、y 轴的交点坐标。
当 y = 0 时,2x + 4 = 0 ,解得 x = -2 ,所以与 x 轴的交点坐标是(-2,0);当 x = 0 时,y = 4 ,与 y 轴的交点坐标就是(0,4)。
然后我就按照老师教的方法,算出了三角形的底和高。
以与 x 轴的交点到原点的距离为底,长度是 2 ;以与 y 轴的交点到原点的距离为高,长度是 4 。
最后用三角形面积公式 S = 1/2 ×底 ×高,算出面积是4 。
做完这道题,我心里那个得意呀,觉得自己肯定能拿高分。
可等到试卷发下来,我傻眼了,居然因为粗心,计算过程中少写了一个负号,扣了好几分。
那叫一个懊悔啊!好了,言归正传,咱们来说说一次函数与 x 轴、y 轴围成的三角形面积公式到底是怎么回事。
对于一次函数 y = kx + b (k≠0),它与 x 轴的交点坐标为( -b/k ,0 ),与 y 轴的交点坐标为(0,b)。
那这个三角形的底就是与 x 轴交点的横坐标的绝对值,也就是 | -b/k | ;高就是与 y 轴交点的纵坐标的绝对值,即 | b | 。
所以,这个三角形的面积 S 就可以表示为:S = 1/2 × | -b/k | × | b | 。
为了更好地理解这个公式,咱们再来看几个例子。
比如一次函数 y = 3x - 6 ,它与 x 轴的交点,令 y = 0 ,3x - 6 = 0 ,解得 x = 2 ,交点坐标就是(2,0);与 y 轴的交点,令 x = 0 ,y = -6 ,交点坐标是(0,-6)。
一次函数三角形面积最小值在数学中,我们经常会遇到求解最值的问题。
今天,我们来讨论一种有趣的问题:如何找到一条直线,使得与坐标轴所围成的三角形面积最小?我们需要明确一次函数的定义。
一次函数是指形如y=ax+b的函数,其中a和b是常数,x是自变量,y是因变量。
一次函数的图像是一条直线,斜率为a,截距为b。
现在,我们假设三角形的顶点为A(a, 0),B(b, 0)和C(c, f(c)),其中a、b和c分别是自变量的取值,f(c)是一次函数的值。
我们知道,三角形的面积可以通过以下公式计算:面积=底边长度*高/2。
在这个问题中,底边长度为c-a,高为f(c)。
我们的目标是找到一个c的取值,使得三角形的面积最小。
为了实现这个目标,我们需要求解面积对c的导数,并使导数等于0,即求解面积函数的极值点。
我们计算底边长度:底边长度=c-a。
然后,我们计算高:高=f(c)。
接下来,我们将底边长度和高代入面积公式,得到面积函数:S=(c-a)*f(c)/2。
为了求解面积函数的极值点,我们对其求导。
根据一次函数的性质,我们知道一次函数的导数恒为常数。
因此,面积函数的导数为:S'=(f(c)-f(a))/2。
现在,我们将导数等于0,解方程得到c的取值:f(c)-f(a)=0,即f(c)=f(a)。
根据这个结果,我们可以得出结论:当c的取值使得f(c)=f(a)时,三角形的面积最小。
通过这个推导过程,我们发现一次函数三角形面积最小值的关键在于寻找使得函数值相等的两个点。
这两个点所确定的直线就是我们所要求的直线。
总结一下,我们讨论了一次函数三角形面积最小值的问题。
通过求解面积函数的导数,我们找到了使得三角形面积最小的直线。
这个问题不仅考察了数学知识,还涉及到优化和最值求解的思想。
希望通过这个问题的讨论,大家对数学的应用和思考能力有所提升。
一次函数与坐标轴围成的三角形面积要计算一次函数与坐标轴围成的三角形的面积,我们首先需要明确一次函数的图像和坐标轴之间的关系。
一次函数的图像是一条直线,而坐标轴是由两条垂直于彼此的直线组成的。
当一次函数与x轴相交时,我们可以找到与x轴相交的两个点,然后通过这两个点和与它们连结的线段来计算三角形的面积。
我们用y = mx + b来表示一次函数的一般形式。
其中,m是斜率,b是y轴截距。
当这个函数与x轴相交时,我们可以将y设置为零,然后解方程来找到交点的x坐标。
假设我们找到了两个相交点(x1, 0)和(x2, 0)。
接下来,我们可以计算通过这两个点的线段的长度。
线段的长度可以通过两点之间的距离公式来计算,即:d=√((x2-x1)²+(y2-y1)²)在我们的情况下,y1和y2都是零,所以这个式子简化为:d=√((x2-x1)²)这个线段的长度就是一次函数与x轴相交的两点之间的水平距离。
现在,我们可以使用海伦公式来计算三角形的面积。
海伦公式是一个用于计算三角形面积的公式,它的形式是:A=√(s(s-a)(s-b)(s-c))其中,a、b、c是三角形的三条边的长度,而s是半周长,s=(a+b+c)/2在我们的情况下,三角形的两条边就是x轴和一次函数的图像,而我们已经计算出了这两条边的长度,记为d。
所以我们可以将这些值代入到海伦公式中来计算三角形的面积:A=√(s(s-d)(s-d)(s-d))由于两边的长度都是d,我们可以简化公式为:A=√((3d/2)(d/2)(d/2)(d/2))A=√((3d/2)(d/2)³)A=√((3d/2)*(d²/4)²)A=√((3d²/8)*d²)A=(d/2)*√(3d²/2)A=(d/2)*√(3)d因此,一次函数与坐标轴围成的三角形的面积是(d/2)*√(3)d。
让我们通过一个具体的例子来计算一下,假设一次函数是y=2x+3、我们可以将y设置为零,然后解方程来找到交点的x坐标:0=2x+32x=-3x=-3/2所以,我们找到了与x轴相交的两个点(-3/2,0)和(0,0)。
一次函数与三角形面积作者:凌营来源:《中学生数理化·八年级数学人教版》2015年第04期提到求三角形的面积,我们首先想到的会是直接使用面积公式:三角形面积=底×高÷2.但在函数问题中,经常会碰到一些底或高不容易求的三角形(这样的三角形我们不妨称之为“不规则三角形”),这时直接用面积公式并不会奏效,对此,我们要有意识地去运用一种新的求面积的方法——割补法.其实,不论是直接法(公式法)还是间接法(割补法),其中的关键都在于找出或构造出有关的三角形的底和高,一次函数与三角形的面积相结合,考查方式主要有以下两类.一、根据条件求不规则三角形的面积常用的解题方法是“割补法”,即先将所给的三角形分割成两个(或更多个)三角形,再利用公式分别求出小三角形的面积,然后加在一起;或者在所表示的三角形外面补上一个特殊的几何图形,然后用该几何图形的面积减掉其他补出的小三角形的面积.规则三角形的面积可直接运用公式求出,我们不再赘述.例1 如图1,一次函数y=的图象过点A(4,3),且与x轴交于点B.设C(3,1),求△ABC的面积.分析:该三角形是不规则三角形,其面积用公式不好直接求,所以使用间接法,可将△ABC分割成两个三角形.如过点C作y轴的平行线,构造出同底的两个三角形,然后再结合A,B,C三点的横坐标即可求出面积,解:过点C作CD//y轴,交直线AB于点D,如图2.将A(4,3)代入一次函数解析式中,可解得点评:当然,也可以过C点作x轴的平行线,将△ABC分成上下两个三角形,如图3.这种割的方法与例1中的方法本质上是相同的,就是让分割出来的三角形的底和高与坐标轴平行,另外,我们也可以将该不规则三角形通过“补”的方法放在一个规则的几何图形中,然后用大几何图形减去多出的几个小几何图形来求出面积,如图4所示,分别过点A,C作x轴的垂线,垂足分别为E,D,所以三、根据三角形的面积求坐标或解析式在这种考查方式下,将面积表示出来是解题的关键.至于是用公式法还是用割补法,可根据条件具体分析.需要注意的是,所求点的坐标或直线的解析式往往不止一个,因此要有分类讨论的意识.例2 如图5,点A(1,6),B(m,1)在一次函数y=kx+7的图象上.AD⊥x轴于点D,BC⊥x轴于点C.在x轴上是否存在一点E.使△ABE的面积为57若存在,求出点E的坐标;若不存在,请说明理由.分析:这类求点的坐标的题目,往往需要分类讨论,因为所求的点可能会不止一个.本题中,虽然点E在x轴上并且△ABE的面积一定,但是如果点E相对于其他已知点的位置不同,那么面积的表达形式就会不同,解:将A(l,6)代人y=kx+7,得k=-l.∴一次函数的解析式为y=-x+7.将B(m,1)代入y=-x+7,得m=6.故B(6,1).设E(n.0).一次函数的图象与x轴交于M点,则M(7,0).(1)当点E在点D,M之间时,如图6.解得n=5,故E(5,0).(2)当点E在点D左侧时,如图7.解得n=5,故E(5,0).但这与题设矛盾,故点E不可能在点D的左侧.(3)当点E在点M右侧时,如图8.解得n=9,故E(9,0).综上,点E的坐标为(5,0)或(9,0).点评:本题中△ABE的面积的表示,还是采用了间接法,只不过不是“割补法”,而是“大减小”,即利用现有图形,求出一个大图形的面积,然后减掉其他几个小图形的面积.这种解法同学们也一定要掌握,侧3 已知直线y=x+3与x轴和y轴交于A,B两点.直线2经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分.求直线f的解析式,解:由题意可知A(-3,0),B(O,3),故A0=B0=3.点评:当我们不能确定两个图形的面积谁大谁小时,一定要想到分类讨论.练习:1.一次函数y=x+3的图象与两坐标轴所围成的三角形的面积为().A.6B.3C.9D. 4.52.已知一次函数y=kx+b的图象与正比例函数的图象交于点A,并与y轴交于点B(O,-4).点O为坐标原点.若△AOB的面积为6.则一次函数的解析式为______.3.如图11所示.一次函数的图象经过点A,且与正比例函数y=-x的图象交于点B.求一次函数图象、正比例函数图象与x轴围成的三角形的面积.4.一次函数V=kx +b的图象经过A(2,3),B(-3,一2)两点.若P是y轴上的一点,且使△ABP的面积是5.求OP的长.5.一次函数v-kx-k的图象经过点A(2,2).设一次函数y=kx-k的图象与y轴交于点B.若点P是x轴上一点,且满足△PAB的面积是4,求P点的坐标.参考答案:1.D2.y=-x-4或(提示:以OB为底,则高为3.点A的横坐标为±3)3.1(提示:先根据正比例函数的解析式确定出点B的坐标为(-1,1),然后利用待定系数法求出一次函数的解析式).4.1或3(提示:先求出一次函数的解析式,设该一次函数的图象与y轴的交点为C,将△ABP的面积分解为△ACP的面积与△BCP的面积之和,求出P点的坐标.注意分类讨论,还有一点需要注意,就是求出点P的坐标后,不要习惯性地以为就结束了,要写出OP的长才可以).5.(3,0)或(-1,0)(提示:将三角形以x轴为分界线,分为两个三角形进行计算).。