铸造工艺总汇-新成型技术
- 格式:pdf
- 大小:441.71 KB
- 文档页数:5
第二讲1. 精密洁净铸造成形工艺气化模铸造工艺与设备概述气化模铸造按工艺方法主要分为两种:气化模-铡压铸造(EPC-V法)和气化模-精铸-负压复合铸造(EPC-CS法)。
EPC-V法铸造是气化模-振动计紧实负压工艺。
它利用气化模作一次性模型和不含水分、粘结剂及任何其他附加物的干砂造型,浇注和凝固期间铸型保持一定的负压度,由此获得近零起模斜度,可直接铸螺纹及曲折通道,表面光洁、尺寸精确、无飞边的近无余量少加工精密铸件。
EPC-CS法复合铸造是气化模-精铸-振动紧实负压复合铸造工艺。
它是用气化模代替蜡融出,将超薄型壳埋入无粘结剂干砂中,采用振动紧实造型,浇注和凝固期间铸型保持一定的负压度,而获得表面光洁、尺寸精确的无余量精密铸件。
气化模铸造是在实型铸造基础上发展起来的。
实型铸造由美国H.F.Shoyer发明并于1958年获得专利。
后经德国Witmoser等深入研究,1961年进入工业化生产,尤其对冶金矿山、造船和机械用大型、单件、小批量生产的铸件更为适宜,在工业生产中应用实型铸造的国家主要有美、英、法、俄、日、德、和中国等。
由于实型铸造采用可消失的聚苯乙烯塑料模,不存在普通砂型铸造从铸型中取出模样的困难,简化了铸造工序,降低劳动强度和成本,提高了生产效率。
但实型铸造存在着铸件表面质量差,尺寸精度低,易造成中、低碳钢铸件表面增碳和缺陷,因此限制了该工艺的发展和应用。
80年代,工业发达国家,在实型铸造基础上,针对上述问题进行了研究,推出了EPC-V法铸造工艺,引起了铸造界的关注,认为这是铸造行业上的一项突破。
福特、通用、菲亚特等汽车公司已开始应用该工艺生产汽车、发动机和涡轮机用铸件,如图28所示。
该工艺在欧洲、美洲、日本及中国也等到大力开发和应用。
然而,EPC-V法铸造工艺易于在铸件内存在气化残物和造成中、低碳钢铸件表面增碳、增氢缺陷[59],一般渗碳层深度为0.5~2.5mm,渗碳量(质量分数)在0.01%~0.6%之间,使铝合金铸件的气密性较差,从而限制了EPC-V铸造在生产铸铝、铸钢件中的应用。
铸造成型工艺介绍1. 引言铸造成型是一种常见的制造工艺,用于生产各种金属制品,如零件、工具和机械部件。
在铸造成型工艺中,通过在熔化的金属中倒入模具中,使其冷却和凝固,得到所需的形状。
本文将介绍铸造成型的基本步骤、常见的铸造方法和一些注意事项。
2. 铸造成型的基本步骤铸造成型通常包括以下基本步骤:2.1 模具设计与制造首先,根据所需产品的形状和尺寸,设计和制造铸造模具。
模具可以是金属或非金属材料制成,具有所需的形状和表面质量。
2.2 熔炼金属材料将所需的金属材料放入锅炉或冶炼炉中,进行熔炼。
在熔炼的过程中,需要根据所需产品的成分要求,适量地添加合金元素。
2.3 金属液体的浇注当金属熔化并达到所需温度后,将其从熔炉中倒入预先准备好的模具中。
要确保金属液体在倒入模具前达到适当的温度和流动性。
2.4 冷却和凝固一旦金属液体倒入到模具中,它将开始冷却和凝固。
冷却时间的长短取决于金属的种类和模具的尺寸。
通常,铸造产品需要在模具中保持足够长的时间,以确保完全凝固。
2.5 模具的打开和清理一旦金属凝固完全,在模具上应用足够的力量来打开模具,以便从中取出铸造产品。
之后,需要清理铸造产品上的任何余砂或其他不需要的物质。
3. 常见的铸造方法3.1 砂型铸造砂型铸造是最常用的铸造方法之一,也是最早应用的方法。
在砂型铸造中,使用一种特殊的砂作为模具材料。
砂型铸造适用于生产简单的金属产品,如零件和工具。
3.2 铸型铸造铸型铸造是一种高精度的铸造方法,用于生产复杂形状的金属产品。
在铸型铸造中,使用耐火材料制成的金属模具。
铸型铸造通常用于生产汽车发动机和航空发动机等高精度零件。
3.3 压铸压铸是一种将金属加热至液体状态,并将其注入模具中的铸造方法。
压铸是一种高效的生产方法,适用于生产大批量的金属产品,如汽车零件和家用电器。
4. 注意事项4.1 安全性在进行铸造成型工艺时,必须严格遵守安全操作规程。
使用适当的个人防护装备,如耐热手套、防护眼镜和防护服。
铸造成型技术完整版铸造成型技术是一种广泛应用于工业领域的制造工艺,用于生产各种类型的金属零件。
通过铸造成型技术,可以将熔化的金属注入成型工具中,随后冷却凝固,最终得到所需形状的零件。
这项技术的应用范围非常广泛,从汽车行业到航空航天,从机械制造到建筑领域,都有铸造成型技术的身影。
铸造成型技术的主要步骤包括:设计模具、选材、熔炼、浇注、冷却和取模。
下面将具体介绍每个步骤的详细过程。
首先,设计模具是铸造成型技术中至关重要的一步。
模具的设计需要根据所需零件的形状和尺寸来确定。
设计师们利用计算机辅助设计软件进行模型的三维建模,并结合具体生产需求,制定出最佳的模具设计方案。
其次,选材是非常重要的一环。
根据所需零件的性质和用途,选择合适的金属材料进行铸造。
不同材料具有不同的特性,在选择材料时需要考虑其机械性能、耐腐蚀性和可加工性等因素。
接下来是熔炼阶段,也是铸造成型技术中的核心步骤之一。
选定合适的金属材料后,将其加热至熔化状态,形成熔融金属。
通常采用高温炉来进行熔炼,确保金属材料达到适宜的流动性。
然后是浇注阶段。
在熔融金属状态下,将其倒入事先设计好的模具中。
浇注时需要注意金属的温度和浇注速度,以确保金属能够充分填充模具的空腔,并且得到均匀的密实度。
接着是冷却阶段。
在金属充分充满模具后,开始进行冷却。
通过控制冷却速度和冷却时间,可以使金属逐渐凝固并达到所需的硬度和强度。
冷却过程中,还需要考虑金属的收缩和应变等因素,以确保最终成型的零件符合要求。
最后是取模。
在完成冷却后,将模具打开,取出凝固完整的金属零件。
根据需要,还可以进行后续加工,如去毛刺、打磨和热处理等工艺,以达到最终的零件要求。
总结起来,铸造成型技术是一项重要的制造工艺,广泛应用于各个领域。
通过合理的模具设计、选材、熔炼、浇注、冷却和取模等步骤,可以实现金属零件的快速制造。
此外,随着科技的不断进步,铸造成型技术也在不断发展,出现了更多新的材料和工艺,为各行各业提供了更多的选择。
名词解释1.材料成形技术:利用生产工具对各种原材料进行增值加工或处理,材料制备成具一定结构形式和形状工件的方法2.液态成型:将液态金属浇注到与零件形状相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法3.逐层凝固:纯金属和共晶成分的合金在凝固中不存在固液两相并存的凝固区,所以固液分界面清晰可见,一直向铸件中心移动(铸铁)4.糊状凝固:铸件在结晶过程中,当结晶温度范围很宽且铸件界面上的温度梯度较小,则不存在固相层,固液两相共存的凝固区贯穿整个区域(铸钢)5.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性6.顺序凝固原则:在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口的部位凝固,最后才是冒口本身凝固。
7.均衡凝固原则:利用铸铁件石墨的共晶膨胀消除缩松的工艺方式8.砂型铸造:以型砂(SiO2)为铸型、在重力下充型的液态成形工艺方法9.金属型铸造:以金属为铸型、在重力下的液态成形方法。
10.熔模铸:以蜡为模型,以若干层耐火材料为铸型材料,成形铸型后,熔去蜡模形成型腔,最终在重力下成形的液态成形方法11.压力铸:把液态或半液态的金属在高压作用下,快速充填铸型,并在高压下凝固而获得铸型的方法12.低压铸造:是液态金属在较小的压力(20—80Kpa)作用下,使金属液由下而上对铸型进项充型,并在此压力下凝固成型的铸造工艺13.反重力铸造:液态金属在与重力相反方向力的作用下完成充型,凝固和补缩的铸造成型14.离心铸造:将液态金属浇注到高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法15.消失模铸造:用泡沫塑料制成带有浇冒系统的模型,覆上涂料,用干砂造型,无需取模,直接浇注的铸件方法16.浇注系统:液态金属流入型腔的通道的总称,通常由浇口杯,直浇道,直浇道窝,横浇道和内浇道组成17.阻流界面:在浇注系统各组元中,截面积最小的部分称为阻流截面18.集渣包:横浇道上被局部加大加高的部分19.浇口比:直浇道,横浇道,内浇道截面积之比20.热节:在壁的相互连接处由于壁厚增加,凝固速度最慢,最容易形成收缩类缺陷分型面:两半铸型相互接触的表面。
同的铸件,浇注系统也因此十分灵活。
总之,我们可以说,每种优势都与经济利益相一致,同时还改善了工作条件。
1.2.3 环境保护
聚苯乙烯和PMMA在燃烧时产生一氧化碳、二氧化碳、水及其他碳氢化合物气体,其含量均低于欧洲允许的标准。
干砂可使用天然硅砂,100%反复循环使用,不含有粘结剂。
模型使用的涂料是在水中添加粘结剂等辅料组成,不产生污染。
2.快速成型技术及其在铸造中的应用
2.1 引 言
快速成型制造(Rapid Prototyping-RP)技术是国际上新开发的一项高科技成果,简称快速成型技术。
它的核心技术是计算机技术和材料技术。
快速成型技术摒弃了传统的机械加工方法,根据CAD生成的零件几何信息,控制三维数控成型系统,通过激光束或其它方法将材料堆积而形成零件的。
用这种方法成型,无需进行费时、耗资的模具或专用工具的设计和机械加工,极大地提高了生产效率和制造柔性。
在铸造生产中,模板、芯盒、压蜡型、压铸模等的制造往往是靠机械加工的办法,有时还需要钳工进行修整,费时耗资,而且精度不高。
特别是对于一些形状复杂的薄壁铸件,例如飞机发动机的叶片、船用螺旋浆,汽车、拖拉机的缸体、缸盖等,模具的制造更是一个老大难的问题。
虽然一些大型企业的铸造厂也进口了一些数控机床、仿型铣等高级设备,但除了设备价格昂贵之外,模具加工的周期也很长,而且由于没有很好的软件系统支持,机床的编程也很困难。
面对今天世界上经济市场的竞争,产品的更新换代日益加快,铸造模具加工的现状很难适应当前的形势。
而快速成型制造技术的出现为解决这个问题提供了一条颇具前景的新路。
2.2 快速成型方法
目前世界上已投入应用的快速成型装置所采用的主要方法有以下6种:
(1)SL(Stereo Lithography)法--立体平版印刷法;
(2)SLS(Selective Laser Sintering)--激光分层烧结法;
(3)LOM(Laminated Object Manufactu-ring)--逐层轮廊成型法;
(4)SGC(Sold Ground Curing)--光掩膜法;
(5)FDM(Fused Deoposite Manufacturing)--熔化堆积法;
(6)DSPC (Direct Shell Production Casting)--陶瓷壳法。
以上各种方法的具体工艺各有特点,但工艺的基本过程是相同的。
此外,还有一些方法尚处于研究之中。
在这6种方法中,SL法最成熟,也是市场的最大占有者。
工艺原理图
图1 SL工艺原理图
激光成型技术在铸造中的应用
目前,国际上激光成型技术在铸造中的应用主要有以下3个方面。
1.直接浇注铸件
这种方法适用于形状复杂的单件生产,例如航空航天工业中的特铸件,或者是在新产品试制时先做一两个铸件供进一步试验用。
具体操作是将树脂模样或者用熔模铸造方法制壳浇注铸件,或者用消失模铸造方法直接浇注铸件。
在用SLS法成型时,当以石蜡粉末为原料,直接制出石蜡原型来,可以方便在浇出铸件。
2.用原型翻制母模后再浇注铸件
对铸件数量需要较多时可以应用这种方法。
它是先用硅橡胶方法、石膏型方法或自硬砂型方法等翻制母模,然后制蜡模或直接浇注成铸件。
SLS法所使用的原料为石蜡、尼龙或聚碳酸酯等。
用聚碳酸酯材料烧结制成的模样,在许多性能上优于石蜡,可以做许多复杂的高精度件。
美国克莱斯勒公司和通用机器公司应用SLS法减少新型汽车发动机零件的开发费用。
克莱斯勒公司用SLS法制成蜡模,生产形状很复杂的汽车进排气管,通用机器公司也用这种方法来制造航天器上的复杂零件。
美国的Rorketdyhe公司甚至用蜡和尼龙来做复杂的六缸气缸体模样,然后用熔模铸造的方法生产铸件。
3.利用原型模样制造模具
这个方面的应用最广泛,可用于铸件的大量生产。
1)最直接的模具应用是在砂型铸造用的模板和芯盒上。
选用适当的树脂材料制得原型模样,再进行表面喷镀,或者是用LOM法烧结陶瓷原型,然后将模样直接安装在模板、芯盒上使用。
这样可以减少模具的制造周期,成本比用数控机床加工还有所降低。
图2 LOM法工艺原理示意图
美国福特汽车公司用LOM 法制造长685mm的汽车曲轴模样,先分3块做,然后再拼装成砂型铸造用的模板,尺寸精度达到±0.13mm。
2)把一些低熔点合金喷涂在原型表面,可以用作压蜡模具,也可用环氧树脂配合原型模样做成芯盒或压蜡模具。
3)可以直接通过三维CAD系设设计出模具图形,然后用激光快速成型技术制得模具原型,再用上述各种方法直接铸造出金属模具。
3.组芯工艺
3.1 概述
组芯工艺(Cosworth),即用组芯技术生产铸件,组芯由单个砂芯组合而成。
组芯技术与湿型砂工艺相比的优势在于尺寸精度高、大量减少了砂的循环、采用气体硬化单一芯砂系统(添加有机树脂的芯砂可有效地回收,回收率达95%以上)。
目前有以下几种组芯工艺方法:粘胶、螺钉紧固、注铝和锁芯工艺。
1. 粘胶是最快速、最常用的组芯法,尺寸精度最高。
主要优点:
1)聚酷胺类型热熔粘结剂品种较多(粘胶熔化温度140-1800C,相应的粘度为2-4(Pa·s),粘结时间为3-4s;
2)粘结处经按压后强度大增;
3)在干燥的储存室中元储存时间限制;
4)抗湿性能好,可抵御高潮湿空气;
5)用量少,强度高;
6)多种有效而经济的熔化装置。
2. 注铝
简单连接处可以注铝,如预组合水套芯和圆筒芯。
该工艺的优点在于落砂后用过的芯砂和金属铝不会混淆。
回收后的铝可被再次熔化并使用。
缺点是该工艺成本高己难以自动化。
3. 螺钉紧固
螺钉紧固不适用于圆弧芯头。
另外螺钉不能被再利用。
该工艺经济效率比粘胶法差,但比注铝好。
4. 锁芯工艺
该工艺的优点是用一个通用芯固定预组合芯,但同时也是缺点。
组合预组合芯必须使用昂贵的工装。
通用芯生产的费用比热熔粘结胶及螺钉的费用高得多。
另外,只有当组合预组合芯的工装没有被磨损时,缸体尺寸的精度才可被保证。
约射制50000次后将出现尺寸偏差,必须进行检测、调整。
3.2 组芯工艺的经济效率
1. 组芯工艺与湿型砂比较
图1是砂箱尺寸为1200mm×1000mm×350/350mm的有箱湿型砂造型线与用冷芯盒组芯生产线每小时生产90个4缸铝发动机缸体(2.0L轿车)的费用比较。
该比较显示了用组芯法批量生产铸件不仅在技术工艺上前景广阔,而且从经济角度考虑也是如此。
图1 用湿型砂及组芯工艺年产129600个铝缸体的费用比较
2. 组芯工艺与重力铸造相比较
用重力铸造取代湿型砂工艺,来比较一下组芯工艺与重力铸造工艺。
组芯工艺将采用同样的生产数据。
缸体外形在重力铸造中是采用金属模具。
浇注前,将组芯放入模具中。
这样,缸体内脏采用芯砂,与湿型砂工艺相似。
表1是重力铸造工艺与组芯工艺年产29600件缸体的经济效益比较,其中缸体是用转台式设备生产。
要达到每小时叨件缸体的生产量需3个转台,每个带3台重力浇注机。
平均生产时间是120s/件。
表1 重力铸造工艺与组芯工艺费用比较
生产工艺重力铸造组芯工艺
生产设备
转台,每个带3台重力铸造机 带辅助设备的制芯机
生产能力
每个转台:件/120s=30件/h 共需三个转台 90组机芯/h 年产量(1600h/年)一般利用率90%
90件/h*1600h /年*0.9=129600件/年 芯砂最大消耗量(kg/件)
70 184 芯砂组成(重量比)
100%硅砂, 0.4%树脂,0.4%硬化剂,0.06%三乙胺 材料价格(马克/t)
95 内腔造型
2400000 2400000 外形造型
82500009(三个转台,9台重力铸造机,9副模具) 1400000 尾气净化
60000 300000 芯砂混制
500000 800000 初始投资
/马克 总计
11210000 4900000 内腔芯砂消耗(马克/年) 0.07t 组芯*129600件/年*95马克/ t =862000862000 材料费用
外形芯砂消耗(马克/年) 0
0.11t 组芯*129600件/年*95马
克/ t =1354000 3. 不同组芯工艺的比较
生产1个4缸l.6L 发动机缸盖的组芯包括1个水套芯、一个进气道和一个排气道芯。
单芯可用不同制芯方法制造。
铸件材质为铝合金。
组芯重量约8kg 。
不涂涂料。
不同工艺费比较见图2。
图2 每组芯总费用
3.3 结论
组芯工艺是生产高尺寸精度铝合合金缸体缸盖的最新最好的组芯工艺之一。
世界著名的汽车集团,如福特,马自达,大众、奥迪,雪铁龙正成功的运用该工艺。
选择这种生产工艺的理由是:高生产率、高柔性(在切换发动机型号时)、高铸件质量稳定性、潜在的高自动化、最小的消耗。