零件的几何精度
- 格式:ppt
- 大小:2.55 MB
- 文档页数:34
零件的加工精度包括哪些内容来源网络,由深圳机械展收集整理!更多精密零件加工展示,就在深圳机械展!零件加工精度包括尺寸精度指加工后零件的实际尺寸与零件尺寸的公差带中心的相符合程度。
形状精度指加工后的零件外表的实际几何形状与理想的几何形状的相符合程度。
位置精度指加工后零件有关外表之间的实际位置精度差异。
相互关系通常在设计机器零件及规定零件加工精度时,应注意将形状误差控制在位置公差内,位置误差又应小于尺寸公差。
即精密零件或零件重要外表,其形状精度要求应高于位置精度要求,位置精度要求应高于尺寸精度要求。
加工精度是加工后零件外表的实际尺寸、形状、位置三种几何参数与图纸要求的理想几何参数的符合程度。
理想的几何参数,对尺寸而言,就是平均尺寸;对外表几何形状而言,就是绝对的圆、圆柱、平面、锥面和直线等;对外表之间的相互位置而言,就是绝对的平行、垂直、同轴、对称等。
零件实际几何参数与理想几何参数的偏离数值称为加工误差。
加工精度主要用于生产产品程度,加工精度与加工误差都是评价加工外表几何参数的术语。
加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。
加工精度高,就是加工误差小,反之亦然。
公差等级从IT01,IT0,IT1,IT2,IT3至IT18一共有20个,其中IT01表示的话该零件加工精度高的,IT18表示的话该零件加工精度是低的。
任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。
机器的质量取决于零件的加工质量和机器的装配质量,零件加工质量包含零件加工精度和外表质量两大部分。
机械加工精度是指零件加工后的实际几何参数〔尺寸、形状和位置〕与理想几何参数相符合的程度。
它们之间的差异称为加工误差。
加工误差的大小反映了加工精度的高低。
误差越大加工精度越低,误差越小加工精度越高。
加工精度根据不同的加工精度内容以及精度要求,采用不同的测量方法。
加工中心几何精度检测方法加工中心是一种高精度、高效率的机床,其在工业生产中得到了广泛应用。
为了保证加工中心的几何精度,需要进行准确的检测和调整。
下面将详细介绍加工中心几何精度检测方法。
主轴是加工中心的核心部件,其几何精度对加工质量具有重要影响。
主要的几何精度包括主轴轴线的平行度、同心度和垂直度等。
1.主轴轴线的平行度检测方法:可以使用光学检测仪等设备进行。
具体操作是将光束通过中心孔,通过观察光束和检测仪的相互位置关系来判断主轴轴线的平行度。
2.主轴同心度检测方法:可使用同心度仪等设备进行。
具体操作是在主轴上安装一块标定圆盘,通过记录不同位置的同心度仪示数并进行比较,判断主轴同心度。
3.主轴垂直度检测方法:可使用平台式水平仪等设备进行。
具体操作是将水平仪放置在主轴上,观察水平仪指示是否在同一水平线上,判断主轴的垂直度。
工作台是加工中心上零件加工的位置,其几何精度对加工质量同样重要。
主要的几何精度包括工作台水平度、垂直度和平行度等。
1.工作台水平度检测方法:可使用平台式水平仪等设备进行。
具体操作是将水平仪放置在工作台上,观察水平仪指示是否在同一水平线上,判断工作台的水平度。
2.工作台垂直度检测方法:可使用光学投影仪等设备进行。
具体操作是将投影仪放置在工作台上,通过观察投影仪显示的图案是否在同一水平线上,来判断工作台的垂直度。
3.工作台平行度检测方法:可使用平台式平行度仪等设备进行。
具体操作是在工作台上安装两块标定块,通过观察平行度仪示数并进行比较,判断工作台的平行度。
刀库是加工中心存放刀具的部分,其几何精度对定位准确性有影响。
主要的几何精度包括刀夹孔的同心度和面板的平行度等。
1.刀夹孔同心度检测方法:可使用同心度仪等设备进行。
具体操作是安装同心度仪,观察仪器的示数并进行比较,判断刀夹孔的同心度。
2.刀库面板平行度检测方法:可使用平台式平行度仪等设备进行。
具体操作是在面板上安装两块标定块,通过观察平行度仪示数并进行比较,判断面板的平行度。
机械加工精度几何参数符号表示1. 介绍机械加工精度是指机械零件在加工过程中所能达到的尺寸精度、形位精度等几何参数的表示。
精度的表示在机械设计和加工中起着至关重要的作用,它直接关系到产品的质量和可靠性。
对于机械加工中的精度参数符号表示,需要有一套标准的符号表示方法。
2. 尺寸精度符号表示尺寸精度是衡量零件尺寸大小的准确度的指标,通常用T表示。
在图纸上,尺寸精度一般表示在公差之内是否合格。
如果一个孔的直径为20mm,公差为±0.01mm,那么在图纸上表示为Φ20±0.01。
3. 形位精度符号表示形位精度是指零件表面形状和相对位置的精度。
在图纸上,形位精度通常用符号来表示。
圆度用表示为R,平面度用符号表示为F,直线度用符号表示为L,倾斜度用符号表示为I。
这些符号通常会和具体的数值一起使用,例如R0.02表示圆度为0.02mm。
4. 符号表示方法在机械加工中,符号表示方法要符合国际标准化组织的标准,以保证符号的统一和准确性。
在图纸中,需要使用专门的标准符号字体,并按照规定的格式和位置进行标注。
5. 应用案例举例来说,如果一个机械零件需要达到直线度为0.05mm的精度要求,那么在图纸上表示为L0.05。
又如,如果需要控制孔的位置偏差在0.1mm范围内,那么在图纸上表示为0.1。
6. 结论机械加工精度的几何参数符号表示是机械设计和加工中非常重要的一环。
通过标准的符号表示方法,可以有效地表达出零件的精度要求,使得加工过程更加准确可靠。
在机械设计和加工中,应充分重视机械加工精度的几何参数符号表示。
为了更深入地了解机械加工精度几何参数的符号表示,我们可以对不同类型的精度参数符号表示进行更详细的探讨。
我们来看尺寸精度符号表示。
尺寸精度是衡量零件尺寸大小的准确度的指标。
在标准图纸上,尺寸精度通常用T表示。
T表示的尺寸精度等级分为IT01、IT0、IT1、IT2、IT3、IT4六个等级。
其中,IT01等级是最高精度等级,IT4等级是最低精度等级。
几何形状精度定义
几何形状精度是指零件的尺寸、形状、相对位置和表面特征等与设计要求的偏差程度。
这些偏差可能来自于制造过程中的加工误差、测量误差、材料变形等因素。
几何形状精度包括以下几个方面:
1. 尺寸精度:即零件尺寸与设计要求之间的偏差程度。
尺寸精度可以用公差来描述,例如,直径为50mm的孔的公差为±0.01mm。
2. 形状精度:即零件形状与设计要求之间的偏差程度。
常见的形状精度包括圆度、平面度、直线度、倾斜度等。
3. 相对位置精度:即零件之间相对位置关系与设计要求之间的偏差程度。
例如,两个孔之间的距离应为100mm,实际测量距离为100.1mm,则相对位置精度为0.1mm。
4. 表面特征精度:即零件表面特征(如粗糙度、平整度、圆柱度、椭圆度等)与设计要求之间的偏差程度。
表面特征精度常常用符号来描述,如Ra、Rz等。
几何形状精度是衡量零件质量的重要指标之一,不同的零件需要的精度要求不同,具体精度要求需根据实际情况和设计要求来确定。
在制造和测量过程中,需要采取相应的措施来保证几何形状精度的达到要求,例如,选用合适的加工设备和工艺、精确的测量工具和方法等。
1/ 1。
Creo零件精度设置方法详解关于零件精度:零件的精度设置控制几何计算的精度。
零件精度的有效范围是从0.01到0.0001。
Default_abs_accuracy配置选项的默认值为0,将创建精度为0.00039 英寸的新空零件(除非您定义其他值)。
零件精度的值越小,重新生成的时间就越长。
配置选项accuracy_lower_bound可覆盖默认下限。
有两种类型的精度:•“相对”(Relative) - 将值设置为小于模型上最短边长与模型边界框最长对角线长度之比的一半。
如果不需要从其它零件或模型复制或导入几何,则使用相对精度。
•“绝对”(Absolute) (默认) –将值设置为最小识别大小(测量单位为当前单位)。
当导入使用另一个系统创建的零件或将几何从一个模型复制到另一个模型时,使用绝对精度。
必须设置统一的绝对精度或选择最小绝对精度值作为通用精度值,以使零件兼容。
对使用相对精度定义的两个模型的绝对精度进行匹配时,使用“工具”(Tools) > “调查”(Investigate) > “模型大小”(Model Size)确定零件大小,并分别将其与各自的相对精度相乘。
如果结果不同,请选择一个可为两个零件生成相同结果的相对精度值。
可能需要通过使用较小的相对精度值来增加较大零件的零件精度。
例如,如果一个零件的大小为100且其精度为.01,则这两个数的乘积为1。
如果另一个零件的大小为1000且其精度为.01,则这两个数的乘积为10。
将第二个零件的精度更改为.001便可产生相同的结果。
设置零件精度:1. 单击“文件”(File) > “准备”(Prepare) > “模型属性”(Model Properties)。
“模型属性”(Model Properties)对话框随即打开。
2. 单击“精度”(Accuracy)行中的“更改”(Change)。
“精度”(Accuracy)对话框随即打开。
加工中心几何精度检测方法加工中心是一种高精度的机床,广泛应用于各种零件的生产加工。
保证加工中心的几何精度对于加工出符合设计要求的零件至关重要。
本文将介绍几种常见的加工中心几何精度检测方法。
1.垂直度检测垂直度是指主轴与工作台之间垂直程度的精度。
常见的检测方法有:使用测微计测量主轴与工作台的垂直距离,根据测量结果判断垂直度是否在允许范围内;使用精密平台,将其放置在工作台上,通过光电跟踪仪测量主轴的位置,从而计算出垂直度。
2.平行度检测平行度是指主轴与工作台之间平行关系的精度。
通常使用平行度尺进行测量,将其放置在工作台上,并与主轴进行平行调整,通过读取尺上的数值来判断平行度是否在允许范围内。
3.轴向度检测轴向度是指主轴在轴向上的精度,也是加工中心的重要指标之一、轴向度的检测可以使用激光法,将激光瞄准到主轴的轴心上,测量激光点在工作台上的位置,从而计算出轴向度的误差。
4.位置精度检测位置精度是指主轴在各个坐标轴方向上的精度。
常用的检测方法有:使用编码器进行测量,编码器安装在主轴和工作台上,通过读取编码器上的数值计算出位置精度的误差;使用激光干涉仪进行测量,将激光引入主轴和工作台的光路中,通过干涉现象测量位置精度。
5.回转度检测回转度是指主轴在回转方向上的精度。
常用的检测方法有:使用刀具的径部作为参考,通过旋转主轴,测量刀具径部的位置偏差来判断回转度的精度;使用角度测量仪进行测量,将其安装在主轴和工作台上,通过读取角度测量仪上的数值来判断回转度是否在允许范围内。
综上所述,加工中心的几何精度检测方法有垂直度检测、平行度检测、轴向度检测、位置精度检测和回转度检测等。
根据不同的几何精度指标,可以选择相应的检测方法进行测量,并通过测量结果判断几何精度是否符合要求,从而保证加工中心的加工质量和精度。
机械加工精度与加工误差机械加工是制造业中的重要工艺之一,主要涉及到钣金加工,车削加工,铣削加工等不同类型的加工工艺。
在加工过程中,精度和误差是非常重要的概念,精度指的是加工零件尺寸与设计图纸所规定尺寸之间的偏差,而加工误差则是指加工零件实际尺寸与设计要求尺寸之间的差异。
本文就从这两个方面来介绍机械加工中精度和误差的相关知识。
一、机械加工精度机械加工的精度主要包括工件尺寸精度和几何精度两个方面。
1. 工件尺寸精度工件尺寸精度指的是加工出的工件的各个尺寸参数的精度程度,这种精度关系到一个零部件是否能够与其他零部件匹配,从而保证整个装配的精度。
在机械加工过程中,尺寸精度主要由机床本身的精度、刀具和夹具等的精度、加工材料的性质以及机工操作的技术水平等多种因素综合作用所决定。
在机械加工中需要控制的工件尺寸精度可以根据精度要求的不同,分为以下几类:(1)高精度:±0.001mm以内(2)中等精度:±0.01mm 以内(3)一般精度:±0.1mm以内2. 几何精度几何精度是指加工出的零件与其要求的几何形状要求之间的误差。
几何精度包括以下几个方面:直线度、平面度、圆度、圆柱度、倾斜度、同轴度、互相垂直度、翻转度和角度误差等。
在机械加工过程中需要控制的几何精度同样可以根据不同的要求进行分类:(1)高精度:直线度、平面度、圆度、圆柱度都要求在0.005mm以内。
(2)中等精度:直线度、平面度、圆度、圆柱度不超过0.01mm,而其他几个精度值需达到中等精度要求即可。
(3)一般精度:直线度、平面度、圆度、圆柱度需达到一般精度要求(0.1mm以内),而其他几个精度值可以稍高一些。
二、机械加工误差机械加工误差是由于加工过程中所产生的无法避免的错误,包括各个零部件之间的误差、机床刚性等因素带来的误差及非机械因素带来的误差等。
1. 设备误差设备误差是指加工设备本身的误差造成的误差,包括机床热变形、运动误差、加工速度误差、机床导轨偏差等因素。
在加工过程中零件会因为各种因素影响,导致精度无法达到理想精度,实际上,不可能将零件的每一个几何参数加工得与理想几何参数完全相符,总会产生一些偏离。
这种偏离,就是加工误差。
但我们在加工中还是需要尽量减少加工误差,确定零件的形状以及位置精度。
一、加工中获得形状精度的方法1、轨迹法这种加工方法主要是利用刀尖运动的轨迹来形成被加工表面的形状的。
刀尖轨迹法比较常见的有普通的车削、铣削、刨削和磨削等。
用这种方法得到的形状精度主要取决于成形运动的精度。
2、成形法机床的某些成形运动可以利用成形刀具的几何形状来代替,从而获得加工表面形状的。
例如成形车削、铣削、磨削等。
这种方法所获得的形状精度主要取决于刀刃的形状。
3、展成法展成法主要利用的是刀具和工件作展成运动所形成的包络面来得到加工表面的形状,例如滚齿、插齿、磨齿、滚花键等,都属于展成法。
这种方法所获得的精度,一般取决于刀刃的形状精度和展成运动精度等。
二、加工中获得位置精度方法机械加工中,被加工表面对其他表面位置精度的获得,主要取决工件的装夹。
1、直接找正装夹这种方法用的是百分表、划线盘或者目测直接在机床上找正工件位置的装夹方法。
2、划线找正装夹这种方法需要在毛坯上按照零件图划出中心线、对称线和各待加工表面的加工线,之后在机床上安装工件,并按照划好的线找正工件在机床上的装夹位置。
这种装夹方法在加工生产找那个不常使用,这主要是由于生产率、精度较低,而且对于工人技术水平要求高,一般会用在单件小批生产中加工或者复杂而笨重的零件。
3、用夹具装夹这种夹具按照被加工工序要求进行设计,夹具上的定位元件可以让工件相对于机床与刀具迅速占有正确位置,不需要找正,就可以确保工件装夹定位的精度。
用这种方式装夹,生产效率高,定位精度高,由于需要进行专用夹具制造,因此适用于成批、大量的生产。
机械零件技术中几何精度设计的探讨摘要一台机器性能的优势,首先取决于其零件的设计与制造精度。
要保证机械零件的精度,必须对其提出几何精度要求。
该文就机械零件设计过程中几何精度设计的一般原则和方法作了一些探讨。
着重指出形位公差与尺寸公差、表面粗糙度之间的关系,通过其间关系可以比较正确、合理地进行零件的几何精度设计。
关键词几何精度设计;尺寸公差;形位公差;表面粗糙度前言几何精度就是零、部件答应的几何误差,也称为几何公差,简称公差。
几何精度是根据产品的使用功能要求和加工工艺确定的。
几何精度设计知识根据产品的使用功能要求和制造条件确定机械零部件几何要素答应的加工和装配误差。
一般来说,零件上任何一个几何要素的误差都会以不同的方式影响其功能。
例如,曲柄-连杆-滑块机构中的连杆长度尺寸L的误差,将导致滑块的位置和位移误差,从而影响使用功能。
由此可见,对零件每个要素的各类误差都应给出精度要求。
正确合理地给出零件几何要素的公差是工程技术人员的重要任务。
几何精度设计在机械产品的设计过程中具有十分重要的意义。
下面就其中主要问题进行探讨。
零件的几何精度包括:1)零件的尺寸精度;2)外形和位置精度;3)表面精度等。
几何精度数值选择得是否合理,直接关系到零件的使用要求和加工成本。
几何精度设计的方法主要有:类比法、计算法和试验法三种。
类比法(亦称经验法)就是与经过实际使用证实合理的类似产品上的相应要素相比较,确定所设计零件几何要素的精度。
采用类比法进行精度设计时,必须正确选择类比产品,分析它与所设计产品在使用条件和功能要求等方面的异同,并考虑到实际生产条件、制造技术的发展、市场供给信息等诸多因素。
采用类比法进行精度设计的基础是资料的收集、分析与整理。
类比法是大多数零件要素精度设计所采用的方法。
计算法就是根据由某种理论建立起来的功能要求与几何要素精度之间的定量关系,计算确定零件要素的精度。
例如,根据液体润滑理论计算确定滑动轴承的最小间隙、根据弹性变形理论计算确定圆柱结合的过盈、根据机构精度理论和概率设计方法计算确定传动系统中各传动件的精度等等。
机械零件的几何精度与公差分析在机械制造领域,几何精度与公差是非常重要的概念。
几何精度是指零件在制造过程中所要求达到的几何形状和相对位置的精度,而公差则是指零件所允许的最大偏差范围。
本文将通过几个案例和分析,探讨几何精度与公差的关系,以及其在机械设计和制造中的应用。
在机械制造中,几何精度和公差是相辅相成的概念。
几何精度的高低直接影响着零件的质量和性能,而公差则是制定零件和装配尺寸的重要依据。
几何精度包括平面度、圆度、直线度、圆柱度等,而公差包括零件尺寸公差、形位公差、位置公差等。
以一个简单的轴加工为例,几何精度与公差的分析可以让我们更好地理解其应用。
假设我们有一个要求直径为50mm的轴零件,根据设计图纸的要求,我们可以设定公差为±0.01mm。
这意味着我们在制造过程中可以允许零件直径在49.99mm 到50.01mm之间波动。
在实际的制造过程中,我们可以采取不同的加工方法和工艺控制来满足几何精度和公差的要求。
例如,我们可以使用精密磨床来加工零件的外径,以保证直径的精确度。
同时,我们还需要控制加工过程中的温度、刀具磨损等因素,以确保零件的公差在允许范围内。
除了机械制造过程中的加工控制外,几何精度和公差的分析还可以应用于零件的装配过程。
在装配过程中,我们需要考虑不同零件之间的配合关系,以及零件的相对位置和定位要求。
通过对几何精度和公差的分析,我们可以确定零件的最佳配合方式,以确保装配后的整体性能和可靠性。
几何精度和公差的分析还可以帮助我们优化机械设计。
在设计过程中,我们需要考虑零件的功能和使用要求,并结合几何精度和公差的要求进行设计。
例如,在设计一台精密仪器时,我们可能需要采用更严格的几何精度和公差要求,以确保仪器的测量精度和稳定性。
此外,几何精度和公差的分析也可以用于机械故障的排查和分析。
当机械设备出现故障时,我们可以通过对几何精度和公差的分析来确定可能的故障原因,并采取相应的维修和保养措施。