2021届高考数学复习压轴题训练基本不等式含解析
- 格式:doc
- 大小:2.75 MB
- 文档页数:19
高考数学复习压轴题型专题讲解与练习专题01 集合一、单选题1.(2021·上海杨浦·高三期中)非空集合A ⊆R ,且满足如下性质:性质一:若a ,b A ∈,则a b A +∈;性质二:若a A ∈,则a A -∈.则称集合A 为一个“群”以下叙述正确的个数为( )①若A 为一个“群”,则A 必为无限集;②若A 为一个“群”,且a ,b A ∈,则a b A -∈;③若A ,B 都是“群”,则A B 必定是“群”;④若A ,B 都是“群”,且A B A ≠,A B B ≠,则A B 必定不是“群”;A .1B .2C .3D .4【答案】C【分析】根据性质,运用特例法逐一判断即可.【详解】①:设集合{}1,0,1A =-,显然110,101,101-+=-+=-+=,符合性质一,同时也符合性质二,因此集合{}1,0,1A =-是一个群,但是它是有限集,故本叙述不正确; ②:根据群的性质,由b A ∈可得:b A -∈,因此可得a b A -∈,故本叙述是正确; ③:设A B C =,若c C ∈,一定有,c A c B ∈∈,因为A ,B 都是“群”,所以,c A c B -∈-∈,因此c C -∈,若d C ∈,所以,d A d B ∈∈,c d C +∈,故本叙述正确;④:因为A B A ≠,A B B ≠,一定存在a A ∈且a B ∉,b A ∉且b B ∈,因此a b A +∉且a b B +∉,所以()a b A B +∉,因此本叙述正确,故选:C【点睛】关键点睛:正确理解群的性质是解题的关键.2.(2021·贵州贵阳·高三开学考试(文))“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G *∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元;④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( )A .G Q =,则(),+G 为一个群B .G R =,则(),G ⨯为一个群C .{}1,1G =-,则(),G ⨯为一个群D .G ={平面向量},则(),+G 为一个群【答案】B【分析】对于选项A,C,D 分别说明它们满足群的定义,对于选项B, 不满足④,则(),G ⨯不为一个群,所以该选项错误.【详解】A. G Q =,两个有理数的和是有理数,有理数加法运算满足结合律,0为G 的单位元,逆元为它的相反数,满足群的定义,则(),+G 为一个群,所以该选项正确;B. G R =,1为G 的单位元,但是1a b b a ⨯=⨯=,当0a =时,不存在唯一确定的b ,所以不满足④,则(),G ⨯不为一个群,所以该选项错误;C. {}1,1G =-,满足①②,1为G 的单位元满足③,1-是-1的逆元,1是1的逆元,满足④,则(),G ⨯为一个群,所以该选项正确;D. G ={平面向量},满足①②,0→为G 的单位元,逆元为其相反向量,则(),+G 为一个群,所以该选项正确.故选:B3.(2022·上海·高三专题练习)设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中,R a b ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集,对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集【答案】B【分析】运用集合的子集的概念,令1m P ∈,推得2m P ∈,可得对任意a ,1P 是2P 的子集;再由1b =,5b =,求得1Q ,2Q ,即可判断B 正确,A ,C ,D 错误.【详解】解:对于集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,可得当1m P ∈,即210m am ++>,可得220m am ++>,即有2m P ∈,可得对任意a ,1P 是2P 的子集;故C 、D 错误当5b =时,21{|50}Q x x x R =++>=,22{|250}Q x x x R =++>=,可得1Q 是2Q 的子集;当1b =时,21{|10}Q x x x R =++>=,22{|210}{|1Q x x x x x =++>=≠-且}x R ∈,可得1Q 不是2Q 的子集,故A 错误.综上可得,对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集.故选:B.4.(2022·浙江·高三专题练习)设3124a M a a a =+,其中1a ,2a ,3a ,4a 是1,2,3,4的一个组合,若下列四个关系:①11a =;②21a ≠;③33a =;④44a ≠有且只有一个是错误的,则满足条件的M 的最大值与最小值的差为( )A .233B .323C .334D .454【答案】C【分析】因为只有一个错误,故分类讨论,若①错,有两种情况,若②错则互相矛盾,若③错,有三种情况,若④错,有一种情况,分别求解M 即可得结果.【详解】若①错,则11a ≠,21a ≠,33a =,44a ≠有两种情况:12a =,24a =,33a =,41a =,3124324111a M a a a =+=⨯+= 或14a =,22a =,33a =,41a =,3124342111a M a a a =+=⨯+=; 若②错,则11a =,21a =,互相矛盾,故②对;若③错,则11a =,21a ≠,33a ≠,44a ≠有三种情况:11a =,22a =,34a =,43a =,31244101233a M a a a =+=⨯+=;11a =,23a =,34a =,42a =,312441352a M a a a =+=⨯+=; 11a =,24a =,32a =,43a =,31242141433a M a a a =+=⨯+=; 若④错,则11a =,21a ≠,33a =,44a =只有一种情况:11a =,22a =,33a =,44a =,31243111244a M a a a =+=⨯+= 所以max min 11331144M M -=-= 故选:C 5.(2021·福建·福州四中高三月考)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( )A .0B .1C .2D .3【答案】D【分析】根据条件可得集合B 要么是单元素集,要么是三元素集,再分这两种情况分别讨论计算求解.【详解】由{}2|0A x x x =+=,可得{}1,0A =-因为22()(1)0x ax x ax +++=等价于20x ax 或210x ax ++=,且{}1,0,1A A B =-*=,所以集合B 要么是单元素集,要么是三元素集.(1)若B 是单元素集,则方程20x ax 有两个相等实数根,方程210x ax ++=无实数根,故0a =;(2)若B 是三元素集,则方程20x ax 有两个不相等实数根,方程210x ax ++=有两个相等且异于方程20x ax 的实数根,即2402a a -=⇒=±且0a ≠.综上所求0a =或2a =±,即{}0,22S =-,,故()3C S =, 故选:D .【点睛】关键点睛:本题以A B *这一新定义为背景,考查集合中元素个数问题,考查分类讨论思想的运用,解答本题的关键是由新定义分析得出集合B 要么是单元素集,要么是三元素集,即方程方程20x ax 与方程210x ax ++=的实根的个数情况,属于中档题.6.(2020·陕西·长安一中高三月考(文))在整数集Z 中,被4除所得余数k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0,1,2,3k =.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”.其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误,而242-=+,故[]22-∈,故②正确.若整数a ,b 属于同一“类”,设此类为[]{}()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故,a b 除以4的余数相同,故a ,b 属于同一“类”, 故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确.由“类”的定义可得[][][][]0123Z ⊆,任意c Z ∈,设c 除以4的余数为{}()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确.故选:C.【点睛】方法点睛:对于集合中的新定义问题,注意根据理解定义并根据定义进行相关的计算,判断两个集合相等,可以通过它们彼此包含来证明.7.(2021·全国·高三专题练习(理))在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345Z =;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】 根据“类”的定义逐一进行判断可得答案.【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确; ②[][][][][][]012345{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确; ④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.8.(2021·浙江·路桥中学模拟预测)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈ ,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是( )A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【分析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【详解】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-, 由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈, 当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =-,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.9.(2021·广东番禺中学高一期中)设{}1,2,3,4I =,A 与B 是I 的子集,若{}1,2A B =,则称(),A B 为一个“理想配集”.规定(),A B 与(),B A 是两个不同的“理想配集”,那么符合此条件的“理想配集”的个数是( )A .4B .6C .8D .9【答案】D【分析】对子集A 分{}1,2A =,{}1,2,3A =,{}1,2,4A =,{}1,2,3,4A =四种情况讨论,列出所有符合题意的集合B 即可求解.【详解】{}1,2,3,4I =,A 与B 是I 的子集,{}1,2A B =, 对子集A 分情况讨论:当{}1,2A =时,{}1,2B =,{}1,2,3B =,{}1,2,4B =,{}1,2,3,4B =,有4种情况;当{}1,2,3A =时,{}1,2B =,{}1,2,4B =,有2种情况; 当{}1,2,4A =时,{}1,2B =,{}1,2,3B =,有2种情况; 当 {}1,2,3,4A =时,{}1,2B =,有1种情况; 所以共有42219+++=种, 故选:D.10.(2020·上海奉贤·高一期中)对于区间(1,10000)内任意两个正整数m ,n ,定义某种运算“*”如下:当m ,n 都是正偶数时,n m n m *=;当m ,n 都为正奇数时,log m m n n *=,则在此定义下,集合(){},4M a b a b =*=中元素个数是( ) A .3个 B .4个 C .5个 D .6个【答案】C 【分析】分别讨论a ,b 都是正偶数时,4b a b a *==,a ,b 都是正奇数时,log 4a a b b *==,所以4a b =,再由,(1,10000)a b ∈即可求出集合M ,进而可得集合M 中的元素的个数. 【详解】因为当m ,n 都是正偶数时,n m n m *=; 当m ,n 都为正奇数时,log m m n n *=,所以当a ,b 都是正偶数时,4b a b a *==,可得2a b ==; 当a ,b 都是正奇数时,log 4a a b b *==,所以4a b =, 因为,(1,10000)a b ∈, 所以3a =,81b =;5a =,625b =; 7a =,2401b =;9a =,6561b =;所以()()()()(){}2,2,3,81,5,625,7,2401,9,6561M =, 所以集合M 中的元素有5个, 故选:C.11.(2021·全国·高三专题练习)设X 是直角坐标平面上的任意点集,定义*{(1X y =-,1)|(x x -,)}y X ∈.若*X X =,则称点集X“关于运算*对称”.给定点集{}22(,)|1A x y x y +==,{}(,)|1==-B x y y x ,(){},|1|||1=-+=C x y x y ,其中“关于运算 * 对称”的点集个数为( )A .0B .1C .2D .3【答案】B 【分析】令1y X -=,1x Y -=,则1y X =-,1x Y =+,从而由A ,B ,C 分别求出*A ,*B ,*C ,再根据点集X “关于运算*对称”的定义依次分析判断即可得出答案. 【详解】解:令1y X -=,1x Y -=, 则1y X =-,1x Y =+,22{(,)|1}A x y x y =+=,*{(A X∴=,22)|(1)(1)1}Y Y X ++-=,故*A A ≠;{(,)|1}B x y y x ==-,*{(,)|111B X Y X Y ∴=-=+-,即1}Y X =-,故*B B ≠;{(,)||1|||1}C x y x y =-+=,*{(,)||11||1|1C X Y Y X ∴=+-+-=,即|||1|1}Y X +-=,故*C C =;所以“关于运算 * 对称”的点集个数为1个. 故选:B.12.(2021·黑龙江·哈师大附中高一月考)设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,那么称0x 为集合X 的聚点.则在下列集合中,以0为聚点的集合是( ) A .{|0}1nn Z n n ∈≥+, B .{|0}x x x ∈≠R ,C .221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣D .整数集Z【答案】B 【分析】根据给出的聚点定义逐项进行判断即可得出答案. 【详解】 A 中,集合{|0}1n n Z n n ∈≥+,中的元素除了第一项0之外,其余的都至少比0大12, 所以在102a <<的时候,不存在满足0x a <<的x ,0∴不是集合{|0}1nn Z n n ∈≥+,的聚点;故A 不正确;B 中,集合{|0}x x x ∈≠R ,,对任意的a ,都存在(2a x =实际上任意比a 小的数都可以),使得02a x a <=<,所以0是集合{|0}x x x ∈≠R ,的聚点;故B 正确;C 中,因为2211n n+>,所以当01a <<时,不存在满足0x a <<的x ,0∴不是集合221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣的聚点,故C 不正确;D ,对于某个1a <,比如0.5a =,此时对任意的x ∈Z ,都有00x -=或者01x -≥,也就是说不可能满足000.5x <-<,从而0不是整数集Z 的聚点.故D 不正确. 综上得以0为聚点的集合是选项B 中的集合. 故选:B .二、多选题13.(2020·广东广雅中学高三月考)设整数4n ≥,集合{}1,2,3,,X n =.令集合{(,,),,S x y z x y z X =∈,且三条件,x y z <<,y z x <<z x y <<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项不正确的是( ) A .(),,y z w S ∈,(),,x y w S ∉ B .(),,y z w S ∈,(),,x y w S ∈ C .(),,y z w S ∉,(),,x y w S ∈ D .(),,y z w S ∉,(),,x y w S ∉【答案】ACD 【分析】根据集合S 的定义可以得到,,x y z 和,,z w x 的大小关系都有3种情况,然后交叉结合,利用不等式的传递性和无矛盾性原则得到正确的选项. 【详解】因为(,,)x y z S ∈,则,,x y z 的大小关系有3种情况,同理,(,,)z w x S ∈,则,,z w x 的大小关系有3种情况,由图可知,,,,x y w z 的大小关系有4种可能,均符合(,,)y z w S ∈,(,,)x y w S ∈,所以ACD 错, 故选:ACD. 【点睛】本题考查新定义型集合,涉及不等式的基本性质,首先要理解集合S 中元素的性质,利用列举画图,根据无矛盾性原则和不等式的传递性分析是关键.14.(2021·河北·石家庄二中高三月考)若集合A 具有以下性质:(1)0A ∈,1A ∈;(2)若x 、y A ,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“完美集”.下列说法正确的是( )A .集合{}1,0,1B =-是“完美集” B .有理数集Q 是“完美集”C .设集合A 是“完美集”,x 、y A ,则x y A +∈D .设集合A 是“完美集”,若x 、y A 且0x ≠,则yA x∈ 【答案】BCD 【分析】利用第(2)条性质结合1x =,1y =-可判断A 选项的正误;利用题中性质(1)(2)可判断B 选项的正误;当y A 时,推到出y A -∈,结合性质(2)可判断C 选项的正误;推导出xy A ∈,结合性质(2)可判断D 选项的正误.【详解】对于A 选项,取1x =,1y =-,则2x y A -=∉,集合{}1,0,1B =-不是“完美集”,A 选项错误;对于B 选项,有理数集Q 满足性质(1)、(2),则有理数集Q 为“完美集”,B 选项正确; 对于C 选项,若y A ,则0y y A -=-∈,()x y x y A ∴+=--∈,C 选项正确; 对于D 选项,任取x 、y A ,若x 、y 中有0或1时,显然xy A ∈; 当x 、y 均不为0、1且当x A ∈,y A 时,1x A -∈,则()11111A x x x x -=∈--,所以()1x x A -∈,()21x x x x A ∴=-+∈,()()2222221111122A xy xy xy x y x y x y x y ∴=+=+∈+--+--,xy A ∴∈, 所以,若x 、y A 且0x ≠,则1A x∈,从而1yy A x x=⋅∈,D 选项正确. 故选:BCD. 【点睛】本题考查集合的新定义,正确理解定义“完美集”是解题的关键,考查推理能力,属于中等题.15.(2022·全国·高三专题练习)(多选)若非空数集M 满足任意,x y M ∈,都有x y M +∈,x y M-∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( )A .AB 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集【答案】ACD 【分析】结合集合的运算,紧扣集合的新定义,逐项推理或举出反例,即可求解. 【详解】对于A 中,任取,x A B y A B ∈∈,因为集合,A B 是优集,则,x y A x y B +∈+∈,则 x y A B +∈,,x y A x y B -∈-∈,则x y A B -∈,所以A 正确;对于B 中,取{|2,},{|3,}A x x k k Z B x x m m Z ==∈==∈, 则{|2A B x x k ⋃==或3,}x k k Z =∈,令3,2x y ==,则5x y A B +=∉,所以B 不正确; 对于C 中,任取,x A y B ∈∈,可得,x y A B ∈, 因为A B 是优集,则,x y A B x y A B +∈-∈, 若x y B +∈,则()x x y y B =+-∈,此时 A B ⊆; 若x y A +∈,则()x x y y A =+-∈,此时 B A ⊆, 所以C 正确;对于D 中,A B 是优集,可得A B ⊆,则A B A =为优集; 或B A ⊆,则A B B =为优集,所以A B 是优集,所以D 正确. 故选:ACD. 【点睛】解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.16.(2020·山东·高三专题练习)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( ) A .1M B .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断. 【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y = 所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在x y e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.第II 卷(非选择题)三、填空题17.(2021·上海市进才中学高三期中)进才中学1996年建校至今,有一同学选取其中8个年份组成集合{}1996,1997,2000,2002,2008,2010,2011,2014A =,设i j x x A ∈、,i j ≠,若方程i j x x k -=至少有六组不同的解,则实数k 的所有可能取值是_________.【答案】{}3,6,14 【分析】根据i j x x k -=,用列举法列举出集合A 中,从小到大8个数中(设两数的差为正),相邻两数,间隔一个数,间隔二个数,间隔三个数,间隔四个数,间隔五个数,间隔六个数的两数差,从中找出差数出现次数不低于3的差数即可. 【详解】集合A 中,从小到大8个数中,设两数的差为正: 则相邻两数的差:1,3,2,6,2,1,3; 间隔一个数的两数差:4,5,8,8,3,4; 间隔二个数的两数差:6,11,10,9,6; 间隔三个数的两数差:12,13,11,12; 间隔四个数的两数差:14,14,14; 间隔五个数的两数差:15,17; 间隔六个数的两数差:18;这28个差数中,3出现3次,6出现3次,14出现3次,其余都不超过2次, 故k 取值为:3,6,14时,方程i j x x k -=至少有六组不同的解, 所以k 的可能取值为:{}3,6,14, 故答案为:{}3,6,1418.(2021·北京·高三开学考试)记正方体1111ABCD A B C D -的八个顶点组成的集合为S .若集合M S ⊆,满足i X ∀,j X M ∈,k X ∃,l X M ∈使得直线i j k l X X X X ⊥,则称M 是S 的“保垂直”子集. 给出下列三个结论:①集合{}1,,,A B C C 是S 的“保垂直”子集;②集合S 的含有6个元素的子集一定是“保垂直”子集;③若M 是S 的“保垂直”子集,且M 中含有5个元素,则M 中一定有4个点共面. 其中所有正确结论的序号是______. 【答案】② 【分析】首先弄清楚可取其中的5,6,7,8个点时,符合M 是S 的“保垂直”子集,且正方体的两条体对角线不垂直,然后根据定义逐项判断可得答案. 【详解】对于①,当取体对角线1AC 时,找不到与之垂直的直线,①错误; 对于②,当8个点任取6个点时,如图当M 集合中的6个点是由上底面四个点和下底面两个点;或者由上底面两个点和下底面四个点构成时,必有四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 当M 集合中的6个点是由上底面三个点和下底面三个点构成时,如{}111,,,,,M B C A C A B =,则存在11,,,B A A B 四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 如{}111,,,,,M B C A C A D =,取,B A 存在11BC A D ⊥,取,B C 存在11BC C D ⊥,取,C A 存在1AC BD ⊥,符合M 是S 的“保垂直”子集,所以②正确;对于③,举反例即可,如{}11,,,,M B C D C A =,③错误.故答案为:②.19.(2021·江苏扬州·模拟预测)对于有限数列{}n a ,定义集合()1212,110k i i i k a a a S k s s i i i k ⎧⎫+++⎪⎪==≤<<<≤⎨⎬⎪⎪⎩⎭,,其中k ∈Z 且110k ≤≤,若n a n =,则()3S 的所有元素之和为___________.【答案】660【分析】可得()3S 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭,得出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,求出每个数字被选中的次数即可求解.【详解】()1231233,1103i i i a a a S s s i i i ⎧⎫++⎪⎪==≤<<≤⎨⎬⎪⎪⎩⎭ 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭, 则()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,1,2,,10每个被选出的次数是相同的,若()110i i ≤≤被选中,则共有29C 种选法,即1,2,,10每个被选出的次数为29C ,则()3S 的所有元素之和为()()29101109812102266033C ⨯+⨯⨯⋅+++==. 故答案为:660.【点睛】关键点睛:解决本题的关键是判断出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,再求出每个数字被选中的次数.20.(2021·北京东城·一模)设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ≠∅,则12A A 具有性质P ; ③若12,A A 具有性质P ,则12A A 具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②④【分析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈,所以12A A 具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A ∈,23A ∈,但1223A A +∉,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④正确;故答案为:①②④【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数.常用结论已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( ) (2)ab ≤⎝⎛⎭⎪⎫a +b 22成立的条件是ab >0.( )(3)“x>0且y>0”是“xy+yx≥2”的充要条件.()(4)若a>0,则a3+1a2的最小值是2a.()答案:(1)×(2)×(3)×(4)×二、易错纠偏常见误区|(1)忽视不等式成立的条件a>0且b>0;(2)忽视等号成立的条件.1.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2 D.有最大值,且最大值为-2解析:选D.因为x<0,所以-x>0,-x+1-x≥21=2,当且仅当x=-1时,等号成立,所以x+1x≤-2.2.若x≥2,则x+4x+2的最小值为________.解析:设x+2=t,则x+4x+2=t+4t-2.又由x≥2,得t≥4,而函数y=t+4t-2在[2,+∞)上是增函数,因此当t=4时,t+4t -2取得最小值4+44-2=3.答案:3利用基本不等式求最值(多维探究)角度一通过拼凑法利用基本不等式求最值(1)已知0<x<1,则x(4-3x)取得最大值时x的值为________.(2)已知x<54,则f(x)=4x-2+14x-5的最大值为________.【解析】(1)x(4-3x)=13·(3x)(4-3x)≤13·⎣⎢⎡⎦⎥⎤3x+(4-3x)22=43,当且仅当3x=4-3x,即x=23时,取等号.(2)因为x<54,所以5-4x>0,则f(x)=4x-2+14x-5=-⎝⎛⎭⎪⎫5-4x+15-4x+3≤-2 (5-4x)15-4x+3≤-2+3=1.当且仅当5-4x=15-4x,即x=1时,等号成立.故f(x)=4x-2+14x-5的最大值为1.【答案】(1)23(2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b 的最小值为________.【解析】 ⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b = ⎝ ⎛⎭⎪⎫2+b a ·⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号. 【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立.答案:4【迁移探究2】 (变条件)若本例条件变为已知a >0,b >0,4a +b =4,则⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b 的最小值为________. 解析:由4a +b =4得a +b4=1, ⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎪⎫1+a +b 4b =⎝ ⎛⎭⎪⎫2+b 4a ⎝ ⎛⎭⎪⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号.答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A .223 B .23 C .33D .233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x .由⎩⎨⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.角度四 多次利用基本不等式求最值若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.【解析】 因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.【答案】 4当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.1.(2021·湖北八校第一次联考)已知x >0,y >0,且1x +9y =1,则x +y 的最小值为( )A .12B .16C .20D .24解析:选B .方法一:由题意x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=1+y x +9x y +9≥1+2y x ×9xy +9=16,当且仅当⎩⎪⎨⎪⎧x >0,y >0,1x +9y =1,y x =9x y ,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B .方法二:由1x +9y =1得9x +y -xy =0,即(x -1)(y -9)=9,可知x >1,y >9,所以x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当⎩⎪⎨⎪⎧x >1,y >9,1x +9y=1,x -1=y -9=3,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B . 2.(2021·贵阳市四校联考)已知a +b =2,且a >-1,b >0,则1a +1+1b 的最小值为( )A .23B .1C .43D .32解析:选C .由a +b =2,得a +1+b =3.因为a >-1,所以a +1>0,所以1a +1+1b =13(a +1+b )⎝ ⎛⎭⎪⎫1a +1+1b =13⎝ ⎛⎭⎪⎪⎫2+b a +1+a +1b ≥13·⎝⎛⎭⎪⎪⎫2+2b a +1·a +1b =43,当且仅当b a +1=a +1b ,即a =12,b =32时等号成立,所以1a +1+1b 的最小值为43,故选C .3.已知x ,y 为正实数,则4x x +3y +3yx 的最小值为( )A .53B .103C .32D .3解析:选D .由题意得x >0,y >0,4x x +3y +3y x =4xx +3y+x +3y x -1≥24x x +3y·x +3yx -1=4-1=3(当且仅当x =3y 时等号成立).基本不等式的实际应用(师生共研)某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,则每批应生产产品() A.60件B.80件C.100件D.120件【解析】若每批生产x件产品,则每件产品的生产准备费用是800x元,仓储费用是x8元,总的费用是800x+x8≥2800x·x8=20,当且仅当800x=x8,即x=80时取等号,故选B.【答案】 B利用基本不等式求解实际问题的注意事项(1)根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.(2)设变量时一般要把求最大值或最小值的变量定义为函数.(3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2021·安徽安庆大观模拟)如图所示,矩形ABCD的边AB靠在墙PQ上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的()A.最小长度为8 B.最小长度为4 2C .最大长度为8D .最大长度为4 2解析:选B .设BC =a ,a >0,CD =b ,b >0,则ab =4,所以围成矩形ABCD 所需要的篱笆长度为2a +b =2a +4a ≥22a ·4a =42,当且仅当2a =4a ,即a =2时取等号,此时长度取得最小值4 2.故选B .基本不等式的综合应用(多维探究) 角度一 与其他知识的交汇问题(2021·吉林通钢一中等三校第五次联考)在Rt △ABC 中,已知∠C =90°,CA =3,CB =4,P 为线段AB 上的一点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则1x +1y 的最小值为( )A .76 B .712 C .712+33D .76+33【解析】 因为CA =3,CB =4,即|CA →|=3,|CB →|=4,所以CP →=x CA →|CA →|+y CB →|CB →|=x 3CA →+y 4CB →,因为P 为线段AB 上的一点,即P ,A ,B 三点共线, 所以x 3+y4=1(x >0,y >0),所以1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·⎝ ⎛⎭⎪⎫x 3+y 4=712+x 3y +y 4x ≥712+2112=712+33,当且仅当x 3y =y 4x 时等号成立,所以1x +1y 的最小值为712+33,故选C . 【答案】 C角度二 求参数的值或取值范围已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,所以(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解. (3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.1.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( ) A .2 B .2 2 C .4D .2 3解析:选C .因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )⎝ ⎛⎭⎪⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x 3y =4,当且仅当x =3y =12时取等号,所以1x +13y 的最小值为4.故选C .2.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.解析:a n =a 1+(n -1)d =n ,S n =n (1+n )2,所以S n +8a n =n (1+n )2+8n =12(n +16n +1) ≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.所以S n +8a n 的最小值是92.答案:923.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:对任意x ∈N *,f (x )≥3恒成立, 即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,当x =8x ,即x =22时,g (x )取得最小值,又x ∈N *,则g (2)=6,g (3)=173.因为g (2)>g (3),所以g (x )min =173, 所以-⎝ ⎛⎭⎪⎫x +8x +3≤-83,所以a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.答案:⎣⎢⎡⎭⎪⎫-83,+∞核心素养系列12 逻辑推理——利用基本不等式连续放缩求最值已知a >b >0,那么a 2+1b (a -b )的最小值为________.【解析】 因为a >b >0,所以a -b >0,所以b (a -b )≤⎝⎛⎭⎪⎫b +a -b 22=a 24,所以a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a 2=4,当且仅当b =a -b 且a 2=4a 2,即a =2且b =22时取等号,所以a 2+1b (a -b )的最小值为4.【答案】 4设a >b >0,则a 2+1ab +1a (a -b )的最小值是________.【解析】 因为a >b >0,所以a -b >0,所以a 2+1ab +1a (a -b )=(a 2-ab )+1(a 2-ab )+1ab +ab ≥2(a 2-ab )·1(a 2-ab )+21ab ×ab =4(当且仅当a 2-ab =1a 2-ab且1ab =ab ,即a =2,b =22时取等号).【答案】 4利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.已知正实数a ,b ,c ,d 满足a +b =1,c +d =1,则1abc +1d 的最小值是( )A .10B .9C .42D .3 3解析:选B .因为a +b =1,a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=14,所以1ab ≥4,当且仅当a =b =12时取等号.又因为c +d =1,c >0,d >0,所以1abc +1d ≥4·1c +1d =(c +d )·⎝ ⎛⎭⎪⎫4c +1d =5+4d c +cd ≥5+24d c ·c d =9,当且仅当a =b =12,且c =23,d =13时取等号,即1abc +1d 的最小值为9,故选B .[A 级 基础练]1.若正实数x ,y 满足x +y =2,则1xy 的最小值为( ) A .1 B .2 C .3D .4解析:选A .因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若a >0,b >0,a +b =ab ,则a +b 的最小值为( ) A .2 B .4 C .6D .8解析:选B .方法一:由于a +b =ab ≤(a +b )24,因此a +b ≥4或a +b ≤0(舍去),当且仅当a =b =2时取等号,故选B .方法二:由题意,得1a +1b =1,所以a +b =(a +b )(1a +1b )=2+a b +ba ≥2+2=4,当且仅当a =b =2时取等号,故选B .方法三:由题意知a =b b -1(b >1),所以a +b =b b -1+b =2+b -1+1b -1≥2+2=4,当且仅当a =b =2时取等号,故选B .3.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( ) A .12 B .43 C .-1D .0解析:选D .f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.4.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A . 2 B .2 C .2 2D .4解析:选C .因为1a +2b =ab ,所以a >0,b >0, 由ab =1a +2b ≥21a ×2b =22ab ,所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2. 5.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B .12 C .1D .32解析:选A .y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A .6.(2021·四省八校第二次质量检测)已知a =(1,x ),b =(y ,1),x >0,y >0.若a ∥b ,则xyx +y的最大值为( )A .12B .1C . 2D .2解析:选A .方法一:a ∥b ⇒xy =1,所以y =1x ,所以xy x +y =1x +y =1x +1x ≤12x ×1x=12(当且仅当x =1x ,即x =1时取等号),所以xy x +y 的最大值为12,故选A .方法二:a ∥b ⇒xy =1,又x >0,y >0,所以xy x +y =1x +y ≤12xy=12(当且仅当x =y =1时取等号),所以xy x +y的最大值为12,故选A . 7.(2020·高考天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.解析:依题意得12a +12b +8a +b =a +b 2ab +8a +b =a +b 2+8a +b≥2a +b 2×8a +b =4,当且仅当⎩⎪⎨⎪⎧a >0,b >0,ab =1,a +b2=8a +b,即⎩⎪⎨⎪⎧ab =1,a +b =4时取等号.因此,12a +12b +8a +b 的最小值为4.答案:48.(2020·高考江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是__________.解析:方法一:由5x 2y 2+y 4=1得x 2=15y 2-y 25,则x 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即y 2=12时取等号,则x 2+y 2的最小值是45. 方法二:4=(5x 2+y 2)·4y 2≤⎣⎢⎡⎦⎥⎤(5x 2+y 2)+4y 222=254·(x 2+y 2)2,则x 2+y 2≥45,当且仅当5x 2+y 2 =4y 2=2,即x 2=310,y 2=12时取等号,则x 2+y 2的最小值是45.答案:459.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0, 所以3-2x 2+83-2x ≥23-2x 2·83-2x=4,当且仅当3-2x 2=83-2x ,即x =-12(x =72舍去)时取等号. 于是y ≤-4+32=-52, 故函数的最大值为-52. (2)因为0<x <2,所以2-x >0, 所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x (4-2x )取最大值,为 2.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥2 8x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1, 则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8yx ≥10+22x y ·8yx =18.当且仅当x =12,y =6时等号成立, 所以x +y 的最小值为18.[B 级 综合练]11.已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24解析:选B .由3a +1b ≥ma +3b,得m ≤(a +3b )⎝ ⎛⎭⎪⎫3a +1b =9b a +ab +6.又9b a +ab +6≥29+6=12,当且仅当9b a =ab ,即a =3b 时等号成立, 所以m ≤12,所以m 的最大值为12. 12.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A .3B .5C .7D .9解析:选C .因为x >0,y >0.且1x +1+1y =12,所以x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y )=2(1+1+yx +1+x +1y )≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,所以x +y ≥7,故x +y 的最小值为7,故选C .13.若a +b ≠0,则a 2+b 2+1(a +b )2的最小值为________.解析:a 2+b 2+1(a +b )2≥(a +b )22+1(a +b )2≥212=2,当且仅当a=b =2-34时,a 2+b 2+1(a +b )2取得最小值 2. 答案: 214.某厂家拟定在2021年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-km +1(k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2021年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的 1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2021年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2021年的促销费用投入多少万元时,厂家利润最大? 解:(1)由题意知,当m =0时,x =1(万件), 所以1=3-k ⇒k =2,所以x =3-2m +1(m ≥0),每件产品的销售价格为1.5×8+16xx (元), 所以2021年的利润y =1.5x ×8+16xx -8-16x -m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3时,y max =21.故该厂家2021年的促销费用投入3万元时,厂家的利润最大,为21万元.[C 级 提升练]15.已知P 是面积为1的△ABC 内的一点(不含边界),若△P AB ,△P AC 和△PBC 的面积分别为x ,y ,z ,则y +z x +1y +z的最小值是( )A .23+13B .3+23C .13D .3解析:选D .因为x +y +z =1,0<x <1,0<y <1,0<z <1,所以y +z x +1y +z =1-x x+11-x =1-x x +1-x +x 1-x =1-x x +x1-x+1≥21-x x ·x1-x+1=3,当且仅当x 1-x =1-x x ,即x =12时等号成立,所以y +z x +1y +z的最小值为3.故选D . 16.(2021·洛阳市统考)已知x >0,y >0,且1x +2y =1,则xy +x +y 的最小值为________.解析:因为1x +2y =1,所以2x +y =xy ,所以xy +x +y =3x +2y ,因为3x +2y =(3x +2y )(1x +2y )=7+6x y +2yx ,且x >0,y >0,所以3x +2y ≥7+43,所以xy +x +y 的最小值为7+4 3.答案:7+4 3。
2021高考数学压轴题命题区间探究与突破专题第一篇函数与导数专题04巧妙构造函数,应用导数证明不等式问题一.方法综述利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.二.解题策略类型一“比较法”构造差函数证明不等式【例1】【2020·湖南长沙一中月考】已知函数()ln f x ax x =-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若21,a e ⎛⎤∈-∞- ⎥⎝⎦,求证:()12ax f x ax xe -≥-.【解析】(Ⅰ)由题意得()11'ax f x a x x-=-=,①当0a ≤时,则()'0f x <在()0,+∞上恒成立,∴()f x 在()0,+∞上单调递减.②当0a >时,则当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0f x f x >,单调递增,当10x a ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减.综上:当0a ≤时,()f x 在()0,+∞上单调递减;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(Ⅱ)令()()12ax g x f x ax xe-=-+1ln ax xe ax x -=--,则()111'ax ax g x eaxea x--=+--()()()111111ax ax ax xe ax e x x--+-⎛⎫=+-=⎪⎝⎭,设()11ax r x xe-=-,则()()1'1ax r x ax e -=+,∵10ax e ->,∴当10,x a⎛⎫∈- ⎪⎝⎭时,()()'0r x r x >,单调递增;当1,x a⎛⎫∈-+∞ ⎪⎝⎭时,()()0r x r x '<,单调递减.∴()2max 1110r x r a ae ⎛⎫⎛⎫=-=-+≤ ⎪ ⎪⎝⎭⎝⎭(因为21a e ≤-),∴110ax e x--≤.∴()g x 在10,a ⎛⎫- ⎪⎝⎭上单调递减,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,∴()min1g x g a ⎛⎫=- ⎪⎝⎭,设(210,t e a⎤=-∈⎦,则()221ln 1(0)t g h t t t e a e ⎛⎫-==-+<≤ ⎪⎝⎭,()211'0h t e t=-≤,()h t 在(20,e ⎤⎦上递减,∴()()20h t h e ≥=;∴()0g x ≥,故()12ax f x ax xe-≥-.说明:判断11ax e x--的符号时,还可以用以下方法判断:由110ax e x --=得到1ln x a x -=,设()1ln x p x x -=,则()2ln 2'x p x x -=,当2x e >时,()'0p x >;当20x e <<时,()'0p x <.从而()p x 在()20,e 上递减,在()2,e +∞上递增.∴()()22min 1p x p e e ==-.当21a e ≤-时,1ln x a x -≤,即110ax e x--≤.【指点迷津】当题目中给出简单的基本初等函数,例如()()3 f x x g x ln x =,=,进而证明在某个取值范围内不等式()()f x g x ≥成立时,可以类比作差法,构造函数()()()()()()h x f x g x x g x f x ϕ=-或=-,进而证明()()00min max h x x ϕ≥≤或即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明()()()00g x f x >>的前提下,也可以类比作商法,构造函数()()()()()f x f x h x xg x g x ϕ=(()=),进而证明()()()11min max h x x ϕ≥≤.【举一反三】【2020·河北衡水中学月考】已知函数1()ln (1),f x x a a R x=+-∈.(Ⅰ)若()0f x ≥,求实数a 取值的集合;(Ⅱ)证明:212ln (2)x e x x e x x+≥-++-.【解析】(Ⅰ)由已知,有221()(0)a x af x x x x x-'=-=>当0a ≤时,1(ln 202f a =-+<,与条件()0f x ≥矛盾,当0a >时,若(0,)x a ∈,则()0f x '<,()f x 单调递减,若(,)x a ∈+∞,则()0f x '>,则()f x 单调递增.所以()f x 在(0,)+∞上有最小值1()ln (1)ln 1f a a a a a a=+-=+-,由题意()0f x ≥,所以ln 10a a +-≥.令()ln 1g x x x =-+,所以11()1x g x x x-'=-=,当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,)x ∈+∞时,()0g x '<,()g x 单调递减,所以()g x 在(0,)+∞上有最大值(1)0g =,所以()ln 10g x x x =-+≤,ln 10a a -+≤,ln 10a a -+=,1a =,综上,当()0f x ≥时,实数a 取值的集合为{}1;(Ⅱ)证明:由(Ⅰ)可知:1a =时,()0f x ≥,即1ln 1x x ≥-在0x >时恒成立.要证212ln (2)x e x x e x x+≥-++-,只需证当0x >时,2(2)10x e x e x ----≥令2()(2)1(0)x h x e x e x x =---->()2(2)x h x e x e '=---,令()2(2)x u x e x e =---,则()2x u x e '=-,令()20x u x e '=-=,解得ln 2x =,所以,函数()u x 在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.即函数()h x '在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.而(0)1(2)30h e e '=--=->.(ln 2)(1)0h h '<'=∴存在0(0,ln 2)x ∈,使得0()0h x '=当0(0,)x x ∈时,()0,()h x h x '>单调递增;当0(,1)x x ∈时,()0,()h x h x '<单调递减.当(1,)x ∈+∞时,()0,()h x h x '>单调递增,又(0)110,(1)11(2)0h h e e =-==----=,∴对0,()0x h x ∀>≥恒成立,即2(2)10x e x e x ----≥,综上可得:212ln (2)x e x x e x x+≥-++-成立.类型二“拆分法”构造两函数证明不等式【例2】【2020·安徽阜阳统测】设函数()1f x x x=-,()ln g x t x =,其中()0,1x ∈,t 为正实数.(1)若()f x 的图象总在函数()g x 的图象的下方,求实数t 的取值范围;(2)设()()()221ln 1e 11x H x x x x x ⎛⎫=-++-- ⎪⎝⎭,证明:对任意()0,1x ∈,都有()0H x >.【解析】(1)因为函数()f x 的图象恒在()g x 的图象的下方,所以()()1ln 0f x g x x t x x-=--<在区间()0,1上恒成立.设()1ln F x x t x x =--,其中()0,1x ∈,所以()222111t x tx F x x x x-+'=+-=,其中24t ∆=-,0t >.①当240t - ,即02t < 时,()0F x ' ,所以函数()F x 在()0,1上单调递增,()()10F x F <=,故()()0f x g x -<成立,满足题意.②当240t ->,即2t >时,设()()2101x x tx x θ=-+<<,则()x θ图象的对称轴12tx =>,()01θ=,()120t θ=-<,所以()x θ在()0,1上存在唯一实根,设为1x ,则()1,1x x ∈,()0x θ<,()0F x '<,所以()F x 在()1,1x 上单调递减,此时()()10F x F >=,不合题意.综上可得,实数t 的取值范围是(]0,2.(2)证明:由题意得()()21e ln 1e 1xx H x x x x ⎛⎫=---+ ⎪⎝⎭()()21e 1e ln xx x x x x x--+=-,因为当()0,1x ∈时,e 10x x x -+>,ln 0x <,所以()()()21e 10e ln x xx x x H x x x--+>⇔>2e 1e 1ln x x x x x x x-⇔<-+.令()()e 101x h x x x =--<<,则()e 10xh x '=->,所以()h x 在()0,1上单调递增,()()00h x h >=,即e 1x x >+,所以()2e 1111xx x x x x x -+>+-+=+,从而2e e e 11x xx x x x <-++.由(1)知当2t =时,12ln 0x x x --<在()0,1x ∈上恒成立,整理得212ln x x x ->.令()()2e 011xm x x x =<<+,则要证()0H x >,只需证()2m x <.因为()()()222e 101x x m x x-'=>+,所以()m x 在()0,1上单调递增,所以()()e122m x m <=<,即()2m x <在()0,1上恒成立.综上可得,对任意()0,1x ∈,都有()0H x >成立.【指点迷津】当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为()()f x g x ≤的形式,进而证明()()max min f x g x ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.【举一反三】【2020届福建厦门双十中学月考】已知函数22()1ln ()f x x a x ax a R =-+-∈.(1)讨论()f x 的单调区间;(2)当0a =且(0,1)x ∈,求证:()11x f x x e x+-<.【解析】(1)函数()f x 定义域为(0,)+∞,21()2f x a x a x '=-+-2221(21)(1)a x ax ax ax x x--+-==.①若0a =时,则()0f x <,()f x 在(0,)+∞上单调递减;②若0a >时,1102a a >>-,令1()02f x x a >⇒<-或1x a>.又0x >,()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;③若0a <时,1102a a ->>,令1()0f x x a>⇒<或12x a >-.又0x >,()f x ∴在10,2a ⎛⎫- ⎪⎝⎭上单调递减,在1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(2)要证()11x f x x e x +-<,只需证1ln 11x x x e x-+-<,(0,1)x ∈ ,只需证()2(1ln )1x x x x x e -<+-,设()(1ln )g x x x =-,()2()1xh x x x e =+-,()ln 0g x x '=->在(0,1)x ∈上恒成立,所以()g x 在(0,1)上单调递增.所以()(1)1g x g <=,()2()2(2)(1)0x x h x x x e x x e '=--+=-+->,所以()h x 在(0,1)上单调递增,所以()(0)1h x h >=,所以当(0,1)x ∈时,()()g x h x <,即原不等式成立.类型三“换元法”构造函数证明不等式【例3】【2020湖北宜昌一中期中】已知函数()()1xf x e a x =--有两个零点.(1)求实数a 的取值范围;(2)设1x 、2x 是()f x 的两个零点,证明:1212x x x x <+⋅.【解析】(1)函数()()1x f x e a x =--,所以()xf x e a '=-,当0a ≤时,()0f x '>在R 上恒成立,所以()f x 在R 上单调递增,()f x 至多只有一个零点,不符合题意,当0a >时,由()0f x '=得ln x a =,所以(),ln x a ∈-∞时,()0f x '<,()f x 单调递减,()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增,所以ln x a =时()f x 取得极小值,也是最小值,()f x 要有两个零点,则()ln 0f a <,即()2ln 0a a -<,解得2a e >,所以ln 2a >,当1ln x a =<时,得()10f e =>,当2ln ln x a a =>时,()()22ln 2ln 2ln 1f a a a a a a a a =-+=-+,设()2ln 1a a a ϕ=-+,则()2210a a a aϕ-'=-=>所以()a ϕ单调递增,则()()22140a e e ϕϕ>=+->,所以()()2ln 2ln 10f a a a a =-+>,所以()f x 在区间()1,ln a 上有且只有一个零点,在()ln ,2ln a a 上有且只有一个零点,所以满足()f x 有两个零点的a 的取值范围为2()e +∞.(2)1x 、2x 是()f x 的两个零点,则()()120f x f x ==,要证1212x x x x <+⋅,即证()()12111x x --<,根据()()120f x f x ==,可知()111x e a x =-,()221xe a x =-,即证()()12122111x x e x x a+--=<,即证122x x e a +<,即证122ln x x a +<,即证212ln x a x <-,设1ln x a <,2ln x a >,由(1)知()f x 在()ln ,a +∞上单调递增,故只需证明()()212ln f x f a x <-,而()()21f x f x =,所以只需证()()112ln f x f a x <-令()()()2ln g x f a x f x =--,且ln x a<所以()222ln x x a g x e ax a a e =-+-,ln x a <,()22222x x xx x a a e ae g x e a e e +-'=--+=-()2xxe a e -=-<所以()g x 在(),ln a -∞上单调递减,所以()()()()ln 2ln ln ln 0g x g a f a a f a >=--=,所以()()2ln f a x f x ->在(),ln a -∞上恒成立,所以()()112ln f a x f x ->,故原命题得证.【指点迷津】若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m(x 1,x 2)的表达式(其中m(x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m(x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.【举一反三】【2020山西太原五中期中】已知函数2()2ln f x x x x =++.(1)求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若正实数12,x x 满足12()()4f x f x +=,求证:122x x +≥.【解析】(1)2(1)2ln111=2f =++,切点为(1,2).2()21f x x x'=++,(1)5k f '==.切线为:25(1)y x -=-,即530x y --=.(2)2212111222()()2ln 2ln 4f x f x x x x x x x +=+++++=221112222ln 2ln 4x x x x x x +++++=.212121212()()42(ln )x x x x x x x x +++=+-令12x x t =,()ln g t t t =-,0t >,11()1t g t t t-'=-=,(0,1)t ∈,()0g t '<,()g t 为减函数,(1,)t ∈+∞,()0g t '>,()g t 为增函数,min ()(1)1g t g ==,所以()1g t ≥.即21212()()426x x x x +++≥+=.得:1212(3)(2)0x x x x +++-≥,得到1220x x +-≥,即:122x x +≥.类型四“转化法”构造函数证明不等式【例4】【2020·天津南开中学月考】已知函数1()ln f x x a x x=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为()0,+∞,()222111a x ax f x x x x -+=--+-'=.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在()0,+∞单调递减.(ii )若2a >,令()0f x '=得,42a x =或42a x =.当0,,22a a x ⎛⎛⎫+∈⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当,22a a x ⎛+∈ ⎪⎝⎭时,()0f x '>.所以()f x在0,,,22a a ⎛⎛⎫++∞ ⎪ ⎪ ⎪⎝⎭⎝⎭单调递减,在,22a a ⎛-+ ⎪⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----,所以()()12122f x f x a x x -<--等价于22212ln 0x x x -+<.设函数()12ln g x x x x=-+,由(1)知,()g x 在()0,+∞单调递减,又()10g =,从而当()1,x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即()()12122f x f x a x x -<--.【指点迷津】在关于x 1,x 2的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.【举一反三】【2020·吉林省实验期末】已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围;(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>.【解析】(I )()ln 24f x x ax +'=-.∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立.令()ln 2x g x x x =+,则()21ln xg x x --'=,∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫ ⎪⎝⎭内为增函数;当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数.∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x ,由(I ),知e 04a <<.由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a +>,只需证明()()121212142ln ln x x a x x a x x +<--.即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+.令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减.∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+.即不等式12112221ln 1x x xx x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>.三.强化训练1.【2020·辽宁本溪一高期末】已知a R ∈,函数2()x f x e ax =+.(1)()f x '是函数数()f x 的导函数,记()()g x f x '=,若()g x 在区间(,1]-∞上为单调函数,求实数a 的取值范围;(2)设实数0a >,求证:对任意实数12,x x ()12x x ≠,总有()()121222f x f x x x f ++⎛⎫<⎪⎝⎭成立.附:简单复合函数求导法则为[()]()f ax b af ax b ''+=+.【解析】(1)由已知得()2x f x e ax '=+,记()2x g x e ax =+,则()2xg x e a '=+.①若0a ≥,()0g x '>,()g x 在定义域上单调递增,符合题意;②若0a <,令()0g x '=解得()ln 2x a =-,()g x '自身单调递增,要使导函数()g x 在区间(],1-∞上为单调函数,则需()ln 21a -≥,解得2ea ≤-,此时导函数()g x 在区间(],1-∞上为单调递减函数.综合①②得使导函数()f x '在区间(],1-∞上为单调函数的a 的取值范围是[),0,2e ⎛⎤-∞-+∞ ⎥⎝⎦.(2)因为12x x ≠,不妨设12x x <,取1x 为自变量构造函数,()()()1212122f x f x x x F x f ++⎛⎫=-⎪⎝⎭,则其导数为()()11211222f x x x F x f '+⎛⎫''=- ⎪⎝⎭()121122x x f f x ⎡+⎤⎛⎫''=- ⎪⎢⎥⎝⎭⎣⎦0a > ()2xf x e ax ∴'=+在R 上单调递增而且12211022x x x x x +--=>,所以()1212x x f f x +⎛⎫''> ⎪⎝⎭,即()10F x '>.故关于1x 的函数()1F x 单调递增,()()120F x F x <=即()()121222f x f x x x f ++⎛⎫<⎪⎝⎭证得.2.【2020·湖北随州一中期末】高三月考(理))已知函数()ln f x ax x =-.(Ⅰ)求()f x 的极值;(Ⅱ)若1a =-,1b ≥,()()xg x f x be =+,求证:()0g x >.【解析】(Ⅰ)()()10f x a x x'=->,当0a ≤时,()0f x '<恒成立,则()f x 在()0,∞+上单调递减,()f x 无极值;当0a >时,令()0f x '>,得1x a >;令()0f x '<,得10x a<<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,()f x 有极小值为1ln a +,无极大值;(Ⅱ)当1a =-,1b =时,()()ln 0xg x e x x x =-->,()11x g x e x'=--,令()()h x g x '=,则()210x h x e x =+>',所以()h x 在()0,∞+上单调递增.又1302h ⎛⎫=< ⎪⎝⎭,()120h e =->,所以01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()000110x h x e x =--=,即0011x e x =+,所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以函数()g x 的最小值为()00000001ln 1ln xg x e x x x x x =--=+--,又函数11ln y x x x=+--在1,12⎛⎫⎪⎝⎭上是单调减函数,所以()011ln1110g x >+--=>,又1b ≥,()()x xf x be f x e +≥+,故()0g x >.3.【2020·湖北黄石一高月考】已知函数2()1f x e x e =+--.(1)若()f x ax e ≥-对x ∈R 恒成立,求实数a 的值;(2)若存在不相等的实数1x ,2x ,满足12()()0f x f x +=,证明:122x x +<.【解析】(1)令()()()(1)1x g x f x ax e e a x =--=+--,则()1x g x e a '=+-,由题意,知()0g x ≥对x ∈R 恒成立,等价min ()0g x ≥.当1a ≤时,由()0g x '≥知()(1)1x g x e a x =+--在R 上单调递增.因为1(1)(1)10g a e-=---<,所以1a ≤不合题意;当1a >时,若(,ln(1))x a ∈-∞-,则()0g x '<,若(ln(1),)x a ∈-+∞,则()0g x '>,所以,()g x 在(,ln(1))a -∞-单调递减,在(ln(1),)a -+∞上单调递增.所以min ()(ln(1))2(1)ln(1)0g x g a a a a =-=-+--≥记()2(1)ln(1)(1)h a a a a a =-+-->,则()ln(1)h a a '=--.易知()h a 在(1,2)单调递增,在(2,)+∞单调递减,所以max ()(2)0h a h ==,即2(1)ln(1)0a a a -+--≤.而min ()2(1)ln(1)0g x a a a =-+--≥,所以2(1)ln(1)0a a a -+--=,解得2a =.(2)因为()()120f x f x +=,所以12122(1)x x e e x x e +++=+.因为12122122,x x x x e e ex x ++≥≠,所以121222x x x x e e e++>令12x x t +=,则22220t e t e +--<.记2()2220tm t e t e =+--<,则2()10t m t e '=+>,所以()m t 在R 上单调递增.又(2)0m =,由22220te t e +--<,得()(2)m t m <,所以2t <,即122x x +<.4.【2020·浙江高温州三中期末】已知函数()11114x x e e ax a f x ++⎛⎫=-+- ⎪⎝⎭,其中2.718e =⋅⋅⋅是自然对数的底数,()()'g x f x =是函数()f x 的导数.(1)若()g x 是R 上的单调函数,求a 的值;(2)当78a =时,求证:若12x x ≠,且122x x +=-,则()()122f x f x +>.【解析】(1)()()1112'1x x e e ax g x f x ++⎛⎫=-- ⎝=⎪⎭,()()11'1x x e e x g x a a ++=---,由题意()110x e ax a G x +=---≥恒成立,由于()10G -=,所以()'10G -=,解得1a =.方法一:消元求导死算(2)()11171488x x e x e f x ++⎛⎫=-- ⎪⎝⎭()111731484x x e e x ++⎛⎫=-++ ⎪⎝⎭,令1x t +=,120t t +=,不妨设210t x =+>,()173484t th e e t t ⎛⎫=-+⎪⎝⎭,令()()()H t h t h t =+-173173484484t tt t e e t e e --⎛⎫⎛⎫=-++++⎪ ⎪⎝⎭⎝⎭,原题即证明当0t >时,()2H t >,()171171288288't tt t e e t e e H t t --⎛⎫⎛⎫=---+-⎪ ⎪⎝⎭⎝⎭()()()()171288t t t t t t t te e e e t e e e e ----=+--+--()()()()711208216t t t t t t t t e e e e t e e e e ----⎡⎤⎡⎤=+--+-+-≥⎢⎥⎣⎦⎣⎦,其中()()11'1022t t t t e e t e e --⎡⎤--=+-≥⎢⎥⎣⎦,因为()02H =,所以当0t >时,()2H t >,得证.5.【2020·安徽黄山期末】已知函数()()2e 12e x x f x a a x =+--.(1)当0a <时,讨论()f x 的单调性;(2)若()f x 有两个不同零点1x ,2x ,证明:1a >且120x x +<.【解析】(1)()()()()22e 12e 1e 12e 1x x x x f x a a a '=+--=-+.因为0a <,由()0f x '=得,0x =或1ln 2x a ⎛⎫=- ⎪⎝⎭.i )1ln 02a ⎛⎫-< ⎪⎝⎭即12a <-时,()f x 在1,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在()0,∞+单调递减;ii )1ln 02a ⎛⎫-=⎪⎝⎭即12a =-时,()f x 在(),-∞+∞单调递减;iii )1ln 02a ⎛⎫->⎪⎝⎭即102a -<<时,()f x 在(),0-∞单调递减,在10,ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在1ln ,2a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭单调递减.(2)由(1)知,12a <-时,()f x 的极小值为111ln 1ln 10242f a a a ⎛⎫⎛⎫⎛⎫-=--->> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,102a -<<时,()f x 的极小值为()0110f a =->>,12a =-时,()f x 在(),-∞+∞单调,故0a <时,()f x 至多有一个零点.当0a ≥时,易知()f x 在(),0-∞单调递减,在()0,∞+单调递增.要使()f x 有两个零点,则()00f <,即120a a +-<,得1a >.令()()()F x f x f x =--,(0x >),则()()()F x f x f x '''=+-()()22e 12e 1x x a a =+--()()22e 12e 1x x a a --++--()()()2e e 1e e 2e e 20x x x x x x a ---=+++-++-≥,所以()F x 在0x >时单调递增,()()00F x F >=,()()f x f x >-.不妨设12x x <,则10x <,20x >,20x -<,()()()122f x f x f x =>-.由()f x 在(),0-∞单调递减得,12x x <-,即120x x +<.6.【2020·山东东营期末】已知函数()()sin ,ln f x x a x g x x m x =-=+.(1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立;(2)求函数()g x 的极值;(3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <.【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤ ,()11cos 0a f x a x '∴≤=-≥,,()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立;(2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=>当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值.(3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数,由(2)知,当0m ≥,()g x 在()0+∞,上为增函数,这时,()()f x g x +在()0+∞,上为增函数,所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--②由①②式可得:()()()2121211ln ln 22m x x x x x x -->---即()()21213ln ln 02m x x x x -->->又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③又要证12249x x m <,即证21294m x x >120,0m x x <<<即证m ->……④所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x x x x ->设211x t x =>,只需证1ln t t ->即证()ln 01t t ->>令()()ln 1h t t t =>由()()()2101h t t h t -'=>>,在()1+∞,上为增函数,()()10h t h∴>=2121ln ln x x x x -∴>-成立,所以由③知,0m ->>成立,所以1224 9x xm 成立.7.【2020届四川省成都一诊】已知函数.(1)求曲线在点处的切线方程;(2)设,证明:.【解析】(1)由题意,又,所以,因此在点处的切线方程为,即(2)证明:因为,所以由于,等价于,令,设函数当时,,所以,所以在上是单调递增函数,又,所以,所以,即等价于,令,设函数当时,,所以,所以在上是单调递减函数,又,所以所以,即综上①②可得:.8.【2020·天津南开期末】已知2()46ln f x x x x =--,(1)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调性;(2)对(1,)x ∀∈+∞,有21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭恒成立,求k 的最大整数解;(3)令()()4(6)ln g x f x x a x =+--,若()g x 有两个零点分别为1x ,2x ()12x x <且0x 为()g x 的唯一的极值点,求证:12034x x x +>.【解析】(1)2()46ln f x x x x=-- 所以定义域为()0,+¥6()24f x x x'∴=--;(1)8f '=-;(1)3f =-所以切线方程为85y x =-+;2()(1)(3)f x x x x'=+-,令()0f x '>解得3x >令()0f x '<解得03x <<所以()f x 的单调递减区间为()0,3,单调递增区间为(3,)+∞.(2)21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭等价于min ln ()1x x x k h x x +<=-;22ln ()(1)x x h x x --'∴=-,记()2ln m x x x =--,1()10m x x'=->,所以()m x 为(1,)+∞上的递增函数,且(3)1ln 30m =-<,(4)2ln 40m =->,所以0(3,4)x ∃∈,使得()00m x =即002ln 0x x --=,所以()h x 在()01,x 上递减,在()0,x +∞上递增,且()000min 000ln ()(3,4)1x x x h x h x x x +===∈-;所以k 的最大整数解为3.(3)2()ln g x x a x =-,()20ag x x x x -'=-==得0x =,当x ⎛∈ ⎝,()0g x '<,x ⎫∈+∞⎪⎪⎭,()0g x '>;所以()g x在⎛ ⎝上单调递减,⎫+∞⎪⎪⎭上单调递增,而要使()g x 有两个零点,要满足()00g x <,即2ln 02g a a e =-<⇒>;因为10x <<2x >,令21x t x =(1)t >,由()()12f x f x =,221122ln ln x a x x a x ∴-=-,即:2221111ln ln x a x t x a tx -=-,212ln 1a tx t ∴=-而要证12034x x x +>,只需证1(31)t x +>即证:221(31)8t x a+>即:22ln (31)81a t t a t +>-由0a >,1t >只需证:22(31)ln 880t t t +-+>,令22()(31)ln 88h t t t t =+-+,则1()(186)ln 76h t t t t t'=+-++令1()(186)ln 76n t t t t t =+-++,则261()18ln 110t n t t t -'=++>(1)t >故()n t 在(1,)+∞上递增,()(1)0n t n >=;故()h t 在(1,)+∞上递增,()(1)0h t h >=;12034x x x ∴+>.9.【2020·湖南洪湖期末】已知函数()1,f x xlnx ax a R=++∈(1)当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围;(2)当*n N ∈时,证明:2223122421n n n ln ln ln n n n +<+++<++ .【解析】(1)由()0f x ≥,得ln 10x x ax ++≥(0)x >.整理,得1ln a x x -≤+恒成立,即min 1ln a x x ⎛⎫-≤+ ⎪⎝⎭.令()1ln F x x x =+.则()22111'x F x x x x-=-=.∴函数()F x 在()0,1上单调递减,在()1,+∞上单调递增.∴函数()1ln F x x x=+的最小值为()11F =.∴1a -≤,即1a ≥-.∴a 的取值范围是[)1,-+∞.(2)∵24n n +为数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和,1n n +为数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.∴只需证明()()211ln 12n n n n +<++()11n n <+即可.由(1),当1a =-时,有ln 10x x x -+≥,即1ln x x x ≥-.令11n x n +=>,即得1ln 11n n n n +>-+11n =+.∴2211ln 1n n n +⎛⎫> ⎪+⎝⎭()()112n n >++1112n n =-++.现证明()211ln 1n n n n +<+,即<==()*现证明12ln (1)x x x x <->.构造函数()12ln G x x x x=--()1x ≥,则()212'1G x x x =+-22210x x x-+=≥.∴函数()G x 在[)1,-+∞上是增函数,即()()10G x G ≥=.∴当1x >时,有()0G x >,即12ln x x x <-成立.令x =,则()*式成立.综上,得()()211ln 12n n n n +<++()11n n <+.对数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭,21ln n n +⎧⎫⎨⎬⎩⎭,()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭分别求前n 项和,得223ln 2ln 242n n <++21ln 1n n n n ++⋅⋅⋅+<+.10.【2020·全国高三专题】已知函数()ln a f x x x=+,其中a R ∈.(1)试讨论函数()f x 的单调性;(2)若1a =,试证明:()e cos x x f x x +<.【解析】(1)由221()a x a f x x x x -'=-=(0)x >知:(i )若0a ≤,2()0(0)x a f x x x -'=>>,∴()f x 在区间()0,∞+上为增函数.(ii )若0a >,∴当x ∈()0,a 时,有()0f x '<,∴()f x 在区间()0,a 上为减函数.当x ∈(),a +∞时,有()0f x '>,∴()f x 在区间(),a +∞上为增函数.综上:当0a ≤时,()f x 在区间()0,∞+上为增函数;当0a >时,()f x 在区间()0,a 上为减函数;()f x 在区间(),a +∞上为增函数.(2)若1a =,则1()ln (0)f x x x x =+>要证e cos ()x x f x x +<,只需证ln 1e cos x x x x +<+,即证:ln e cos 1x x x x <+-.(i )当01x <≤时,ln 0x x ≤,而e cos 11cos11cos10x x +->+-=>∴此时ln <e cos 1x x x x +-成立.(ii )当1x >时,令()e cos ln 1x g x x x x =+--,()0,x ∈+∞,∵()e sin ln 1x g x x x '=---,设()()e sin ln 1x h x g x x x '==---,则1()e cos x h x x x'=-- 1x >,∴1()e cos e 110x h x x x '=-->-->∴当1x >时,()h x 单调递增,∴()(1)e sin110h x h >=-->,即()0g x '>∴()g x 在()1,+∞单调递增,∴()(1)e cos110g x g >=+->即()e cos ln 10x g x x x x =+-->,即ln <e cos 1x x x x +-,∴e cos ()<x x f x x+综上:当0x >时,有e cos ()<x x f x x +成立.。
易错点08 不等式-备战2021年高考数学一轮复习易错题【典例分析】(2020年普通高等学校招生全国统一考试数学)已知a >0,b 〉0,且a +b =1,则( ) A 。
2212a b +≥B 。
122a b ->C 。
22log log 2a b +≥-D.≤【答案】ABD 【解析】 【分析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B,211a b a -=->-,所以11222a b -->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D,因为2112a b =+++=,≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养。
【易错警示】易错点1.随意消项致误 【例1】解不等式;22(1025)(43)0x x x x -+-+≥.【错解】原不等式可化为:2(5)(1)(3)0x x x ---≥,因为2(5)x -≥,所以(1)(3)0x x --≥,所以31x x ≥≤或,故原不等式的解集为:{}|31x x x ≥≤或. 【错因】错误是由于随意消项造成的,事实上,当2(5)0x -=时,原不等式亦成立.【正解】原不等式可化为:50(1)(3)0x x x -≠⎧⎨--≥⎩或50x -=,解得3x ≥或1x ≤或5x =.所以原不等式的解集为:{}315x x x ≥≤=x|或或易错点2.认为分式不等式与二次不等式等价致误 【例2】解不等式;102x x -≤+. 【错解】原不等式可化为:(1)(2)0x x -+≤,解得21x -≤≤,所以原不等式的解集为[2,1]-.【错因】没有考虑分母不能为0【正解】原不等式可化为:(1)(2)02x x x -+≤⎧⎨≠-⎩,解得21x -<≤, 所以原不等式的解集为(2,1]-.易错点3.不等式两边同乘一个符号不确定的数致误 【例3】解不等式;122x x -≤+. 【错解】不等式两边同乘以2x +得:12(2)x x -≤+,解得5x ≥-, 所以原不等式的解集为[5,)-+∞. 【错因】两边同乘以2x +,导致错误【正解】原不等式可化为:1520022x x x x -+-≤⇒≥++,解得5x ≤-或2x >-,所以原不等式的解集为(,5](2,)-∞--+∞.易错点4.漏端点致误 【例4】集合{}{}2|20,|3A x x x B x a x a =--≤=<<+,且A B φ=,则实数的取值范围是______ 【错解】{}{}2|20|12A x xx x x =--≤=-≤≤ ,若使AB φ=,需满足231a a >+<-或.解得24a a ><-或,所以实数a 的取值范围是24a a ><-或.【错因】忽视了集合{}|12A x x =-≤≤的两个端点值-1和2,其实当2a =时{}|25B x x =<<,满足A B φ=;当31a +=-时,即4a =-时也满足AB φ=.【正解】{}{}2|20|12A x xx x x =--≤=-≤≤若使A B φ=,需满足231a a ≥+≤-或,解得24a a ≥≤-或,所以实数a 的取值范围是24a a ≥≤-或. 易错点5.忽视基本不等式成立的前提“正数” 【例5】求函数1y x x=+的值域.【错解】因为12y x x=+≥=,所以函数 1y x x=+的值域为[2,)+∞. 【错因】没有考虑为负数的情形.【正解】由题意,函数1y x x=+的定义域为{|0}x x ≠.当0x >时,12y x x=+≥=,当1x =时取得等号;当0x <时,11()2y x x x x=+=--+≤-=--,当1x =-时取得等号. 综上,求函数1y x x=+的值域是(,2][2,)-∞-+∞. 易错点6.忽视基本不等式取等的条件 【例6】求函数2y =的最小值.【错解】函数222y ===≥,所以函数的最小值为2.【错因】使用基本不等式求函数的最值时,一定验证等号成立的条件即a b a b+≥=才能取等号.上述解法在等号成立时,在实数范围内是不成立的. 【正解】22y ===令2t ≥,1y t t =+在2t ≥时是单调递增的,115222y t t ∴=+≥+=. 故函数的最小值是52.易错点7.多次使用基本不等式,忽视等号是否同时成立【例7】已知两个正实数,x y ,满足4x y +=,求14x y+的最小值.【错解】由已知得44x y xy =+≥≤,142x y +≥=≥,所以14x y +最小值是2.【错因】两次使用基本不等式,其中4xy ≤等号成立必须满足x y =,而14x y+≥的等号成立时,必须有4x y =,因为均为正数,所以两个等号不会同时成立,所以上述解法是错误的. 【正解】141444()()()59x y x y x y x y y x +=++=++≥,当且仅当14x y=且4x y +=,即48,33x y ==时取等号,1494x y ∴+≥,即14x y +最小值为94.【变式练习】一、单选题1.(2020·贵州铜仁伟才学校高一期中)已知0a b <<,则下列不等式正确的是( ) A .22a b <B .11a b <C .22ab < D .2ab b<【答案】C 【解析】试题分析:取a =-2,b =—1,代入到各个选项中得到正确答案为C .2.(2020·河北省高二开学考试)若正数a ,b 满足31a b +=,则13a b+的最小值为( ) A .12 B .14C .16D .18【答案】C【解析】因为31a b +=,所以()131333310b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因为a ,b 为正数,所以33b a a b +≥,当且仅当33b a a b =,即14a b ==时取等号, 故13a b +的最小值为16,故选:C 。
数学高考一轮复习基本不等式专项练习(带解析)学习数学能够让我们的思维更清晰,我们在摸索和解决问题的时候,条理更清晰。
小编预备了差不多不等式专项练习,期望你喜爱。
1.若xy0,则对xy+yx说法正确的是()A.有最大值-2B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y差不多上正整数,则xy的最大值是()A.400B.100C.40D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x0时,求f(x)的最小值;(2)当x0 时,求f(x)的最大值.解:(1)∵x0,12x,4x0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x0时,f(x)的最小值为83.(2)∵x0,-x0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.当x0时,f(x)的最大值为-83.一、选择题1.下列各式,能用差不多不等式直截了当求得最值的是()A.x+12xB.x2-1+1x2-1C.2x+2-xD.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3B.-3C.62D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是()A.200B.100C.50D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2ba②∵x,y(0,+),lgx+lgy2lgx③∵aR,a0,4a+a 24a④∵x,yR,,xy0,xy+yx=-[(-xy)+(-yx)]-2-xy-yx=-2.其中正确的推导过程为()A.①②B.②③C.③④D.①④解析:选D.从差不多不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合差不多不等式的条件,故①的推导过程正确;②尽管x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合差不多不等式的条件,4a+a24aa=4是错误的;④由xy0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合差不多不等式的条件,故④正确.5.已知a0,b0,则1a+1b+2ab的最小值是()A.2B.22C.4D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64B.最大值164C.最小值64D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x0,y0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y4y=4xy,xy116.答案:大1169.(2021年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x0,y0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x1)的最值.解:(1)∵x-1,x+10.y=x+4x+1+6=x+1+4x+1+52 x+14x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x1,x-10.(x-1)+9x-1+22x-19x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b-1)(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建筑单价为每米400元,中间一条隔壁建筑单价为每米100元,池底建筑单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120211600x225x+12021=36000(元)家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
新高考数学《不等式》专题解析一、选择题1.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟…,则x y y +的取值范围是( )A.12,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤⎥⎝⎦C .11,3⎛⎤-- ⎥⎝⎦D .3,22⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】作出不等式121x y x +⎧⎨-⎩剟…表示的平面区域,整理得:x y y +1x y =+,利用yx 表示点(),x y 与原点的连线斜率,即可求得113x y -<-…,问题得解. 【详解】将题中可行域表示如下图,整理得:x y y+1xy =+ 易知yk x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,yk x=取得最小值-3. 且斜率k 小于直线1x y +=的斜率-1, 故31k -≤<-,则113x y -<-…, 故203x y y +<…. 故选B 【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.2.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.3.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.4.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--,当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.5.已知函数())2log f x x =,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值. 【详解】0,x x x x ≥-=所以定义域为R ,因为()2log f x =,所以()f x 为减函数 因为()2log f x =,())2log f x x -=,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=,所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为96b a a b +≥=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C.【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.6.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5 B .45C .5D .25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.7.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.8.已知,x y 满足33025010x y x y x y -+≥⎧⎪+≥⎨⎪+-≤⎩,则36y z x -=-的最小值为( )A .157B .913C .17D .313【答案】D 【解析】 【分析】画出可行域,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率.直线330x y-+=与直线10x y+-=交于点13(,)22A-,由图可知,当可行域内的点为A时,PAk最小,故min333211362z-==--.故选:D.【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.已知不等式组y xy xx a≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点,则的最大值为()A.3 B.6 C.9 D.12【答案】C【解析】【分析】【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a=,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.11.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( ) A .(1,1)- B .(0,1)C .(,1)(1,)-∞⋃+∞D .(1,0]-【答案】A 【解析】 【分析】结合不等式组,绘制可行域,判定目标函数可能的位置,计算参数范围,即可. 【详解】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则<1a -,此时a 的范围为(]1,0- 当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A . 【点睛】本道题考查了线性规划问题,根据最值计算参数,关键明白目标函数在坐标轴上可能的位置,难度偏难.12.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+= ()212222225529x y x yx y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.13.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A.169πB.89πC.1627πD.827π【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r,高为x,体积为V,则由题意可得323r x-=,332x r∴=-,∴圆柱的体积为23()(3)(02)2V r r r rπ=-<<,则33333163331616442()(3)()9442939r r rV r r r rπππ++-=-=g g g g….当且仅当33342r r=-,即43r=时等号成立.∴圆柱的最大体积为169π,故选:A.【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.14.若实数x,y满足不等式组11y xx yy≤⎧⎪+≤⎨⎪≥-⎩,则2x y+的最小值是( )A .3B .32C .0D .3-【答案】D【解析】【分析】 根据已知的约束条件画出满足约束条件的可行域,再由目标函数2z x y =+可得2y x z =-+,此时Z 为直线在y 轴上的截距,根据条件可求Z 的最小值.【详解】解:作出不等式组所表示的平面区域,如图所示得阴影部分的ABC ∆, 由2z x y =+可得2y x z =-+,则z 为直线在y 轴上的截距把直线:2l y x =-向上平移到A 时,z 最小,此时由1y x y =⎧⎨=-⎩可得(1,1)A -- 此时3z =-,故选:D .【点睛】本题考查用图解法解决线性规划问题,分析题目的已知条件,找出目标函数中的z 的意义是关键,属于中档题.15.已知正数x ,y 满足144x y +=,则x y +的最小值是( ) A .9B .6C .94D .52 【答案】C【解析】【分析】先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】Q正数x,y满足144 x y+=,11414149()14524444y x y xx y x yx y x y x y⎛⎫⎛⎫⎛⎫∴+=+⋅+=++++⨯=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…,当且仅当4144y xx yx y⎧=⎪⎪⎨⎪+=⎪⎩,即34x=,32y=时,取等号.故选:C【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.16.实数,x y满足20360x yx yx y-≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y-的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数,2z x y=-,则2y x z=-,z表示直线与y轴截距的相反数,根据平移知:当3,3x y==时,2z x y=-有最大值为3.故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.17.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) A .5 B .5 C .3 D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩………平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2222523(1)d -⎛⎫+ ⎪= ⎝⎭=⎪; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4B .3 C.2 D .2【答案】D【解析】【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】 解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D .【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.20.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A .3B .2C .2D .32【答案】B【解析】【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C A B ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1B B =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B -=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B .【点睛】 本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.。
专题二不等式【考情探究】课标解读考情分析备考指导主题内容一、不等式及其解法1.了解生活中的不等关系,会从实际问题中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。
1.考查内容:从近几年高考的情况看,本专题内容考查的重点是不等式的性质与解法,基本不等式及不等式的综合应用。
常与导数、函数零点等知识结合,常用到数形结合、分类讨论、化归与转化等数学思想方法.2.不等式是常考的内容,在选择题、填空题中,常考查不等式的性质、解法及应用基本不等式求最值;在解1。
不等式的性质及不等式的解法难度较小,对于含有参数的一元二次不等式的求解要学会分类讨论(特别是二次项系数、判别式符号均不确定的问题)。
2.对于利用基本不等式求最值的问题,要学会配凑方法,将之表示成“和定"或“积定"的形式,对于多次使用基本不等式求最值的问题,要保证每次的等号均能同时取到.3。
对于不等式恒成立问题,不能停留在具体的求解方法(比如分离参数法等)上,而是将较难的、生疏的问题经过分析、转化为基本的研究函数单调性的问题,积累具体分析、转化的经验.二、基本不等式与不等式的综合了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)应用值问题。
答题中,常与导数结合研究与函数相关的大小关系.【真题探秘】§2.1不等式及其解法基础篇固本夯基【基础集训】考点一不等式的性质1。
若a〉b>0,c〈d〈0,则一定有()A.ac >bdB。
ac〈bdC.ad>bcD。
ad〈bc答案D2.已知实数a=ln22,b=ln33,c=ln55,则a ,b,c 的大小关系是( )A 。
a<b<c B.c 〈a<b C.c<b 〈a D 。
b<a<c 答案 B3。
若a 〈0,b<0,则p=b 2a+a 2b与q=a+b 的大小关系为 .答案 p≤q考点二 不等式的解法4.不等式x 2+2x —3≥0的解集为( )A.{x |x≤—3或x≥1} B 。
基本不等式压轴题
以下是一个基本不等式的压轴题:
证明对于任意的正实数x,有以下不等式成立:
(x + 1/x)^2 ≥ 4
证明过程:
我们可以展开不等式左边的平方:
(x + 1/x)^2 = x^2 + 2 + 1/x^2
我们知道对于任意的正实数x,x^2和1/x^2都是非负的。
根据算术-几何均值不等式(AM-GM不等式),我们有:
(x^2 + 1/x^2) / 2 ≥√(x^2 * 1/x^2) = 1
将这个结果代入不等式中,我们得到:
(x + 1/x)^2 ≥ 2 + 2 = 4
因此,我们证明了对于任意的正实数x,不等式(x + 1/x)^2 ≥ 4成立。
这道题目考察了对基本不等式和算术-几何均值不等式的理解和运用。
通过展开平方、运用不等式性质和数学推导,我们可以得到所需的不等式。
高考数学二轮复习专题练:热点专练2 不等式一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.1a <1b C.b a >a bD.a 2>ab >b 2解析 c =0时,A 不成立; 1a -1b =b -a ab>0,B 错; b a -a b =b 2-a 2ab =(b +a )(b -a )ab<0,C 错; 由a <b <0,∴a 2>ab >b 2,D 正确. 答案 D2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A.2B.-2C.-12D.12解析 依题意,-1与-12是(ax -1)(x +1)=0的两根,且a <0,∴-1×⎝⎛⎭⎫-12= (-1)×1a ,则a =-2.答案 B3.若a >0,b >0且2a +b =4,则1ab 的最小值为( )A.2B.12C.4D.14解析 因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b ,即a =1,b =2时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2,∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). 答案 B4.(2020·日照检测)若实数x ,y 满足2x +2y =1,则x +y 的最大值是( ) A.-4B.-2C.2D.4解析 由题意得2x +2y ≥22x ·2y =22x +y (当且仅当x =y =-1时取等号),∴1≥22x +y ,∴14≥2x +y ,∴2-2≥2x +y ,∴x +y ≤-2.∴x +y 的最大值为-2. 答案 B5.(2020·菏泽模拟)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43B.53C.2D.54解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,当且仅当x =3,y =233时取等号,∴xy 的最大值为2.答案 C6.(2020·滨州模拟)设x >0,y >0,x +2y =5,则(x +1)(2y +1)xy 的最小值为( )A.2 2B.2 3C.4 2D.4 3解析 ∵x >0,y >0,∴xy >0.∵x +2y =5,∴(x +1)(2y +1)xy =2xy +x +2y +1xy=2xy +6xy =2xy +6xy≥212=43, 当且仅当2xy =6xy, 即x =3,y =1或x =2,y =32时取等号.∴(x +1)(2y +1)xy的最小值为4 3.答案 D7.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A.16B.9C.4D.2解析 在(1,+∞)上,x +a x -1=(x -1)+ax -1+1≥2(x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5.所以a ≥4. 答案 C8.(2020·宜昌模拟)若对任意的x ∈[1,5],存在实数a ,使2x ≤x 2+ax +b ≤6x (a ∈R ,b >0)恒成立,则实数b 的最大值为( ) A.9B.10C.11D.12解析 已知当x ∈[1,5]时,存在实数a ,使2x ≤x 2+ax +b ≤6x 恒成立,则-x 2+2x ≤ax +b ≤-x 2+6x ,令f (x )=-x 2+2x (1≤x ≤5),g (x )=-x 2+6x (1≤x ≤5),作出函数f (x ),g (x )的图象如图所示,要使b 最大,且满足-x 2+2x ≤ax +b ≤-x 2+6x (1≤x ≤5),则直线y =ax +b 必过(1,5),且与函数y =f (x )的图象相切于点B .易得此时b =5-a ,此时的直线方程为y =ax +5-a .由⎩⎪⎨⎪⎧y =ax +5-a ,y =-x 2+2x ,得x 2+(a -2)x +5-a =0.∴Δ=(a -2)2-4(5-a )=0,解得a =-4或a =4(舍去),∴b max =5-(-4)=9.故选A. 答案 A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分. 9.(2020·德州模拟)对于实数a ,b ,c ,下列命题中正确的是( ) A.若a >b ,则ac <bc B.若a <b <0,则a 2>ab >b 2 C.若c >a >b >0,则a c -a >bc -bD.若a >b ,1a >1b,则a >0,b <0解析 若c >0,则由a >b 得ac >bc ,A 错;若a <b <0,则a 2>ab ,ab >b 2,a 2>ab >b 2,B 正确;若c >a >b >0,则c -b >c -a >0,∴1c -a >1c -b >0,∴a c -a >bc -b ,C 正确;若a >b ,且a ,b 同号,则有1a <1b ,因此由a >b ,1a >1b 得a >0,b <0,D 正确.故选BCD.答案 BCD10.(2020·石家庄一模)若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( ) A.a +b +c ≤ 3 B.(a +b +c 2)≥3 C.1a +1b +1c≥2 3D.a 2+b 2+c 2≥1解析 由基本不等式可得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca )=2,∴a 2+b 2+c 2≥1,当且仅当a =b =c =±33时,等号成立.∴(a +b +c )2=a 2+b 2+c 2+2(ab +bc+ca )≥3,∴a +b +c ≤-3或a +b +c ≥ 3.若a =b =c =-33,则1a +1b +1c=-33<2 3.因此,A ,C 错误,B ,D 正确.故选BD. 答案 BD11.(2020·济南一中期中)设正实数a ,b 满足a +b =1,则( ) A.1a +1b有最小值4 B.ab 有最小值12C.a +b 有最大值 2D.a 2+b 2有最小值12解析 对于A ,因为a ,b 是正实数,且a +b =1,所以有1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·ab=4(当且仅当a =b 时取等号),故A 正确;对于B ,因为a ,b 是正实数,所以有1=a +b ≥2ab ,即ab ≤12(当且仅当a =b 时取等号),故B 不正确;对于C ,因为a ,b 是正实数,所以有a +b2≤(a )2+(b )22=12,即a +b ≤2(当且仅当a =b 时取等号),故C 正确;对于D ,因为a ,b 是正实数,所以有a +b2≤a 2+b 22,即a 2+b 2≥12(当且仅当a =b 时取等号),故D 正确.故选ACD. 答案 ACD12.(2020·烟台模拟)下列说法正确的是( ) A.若x ,y >0,x +y =2,则2x +2y 的最大值为4 B.若x <12,则函数y =2x +12x -1的最大值为-1C.若x ,y >0,x +y +xy =3,则xy 的最小值为1D.函数y =1sin 2x +4cos 2x的最小值为9解析 对于A ,取x =32,y =12,可得2x +2y =32>4,A 错误;对于B ,y =2x +12x -1=-⎝ ⎛⎭⎪⎫1-2x +11-2x +1≤-2+1=-1,当且仅当x =0时等号成立,B 正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误;对于D ,y =1sin 2x +4cos 2x =⎝⎛⎭⎫1sin 2x +4cos 2x (sin 2x+cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos2x =23,sin 2x =13时等号成立,D 正确.故选BD. 答案 BD三、填空题:本题共4小题,每小题5分,共20分.13.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.解析 由题设知a -3b =-6,又2a >0,8b >0,所以2a +18b ≥22a ·18b =2·2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.答案 1414.(2020·深圳统测)已知x >0,y >0,且x +2y =xy ,若x +2y >m 2+2m 恒成立,则xy 的最小值为________,实数m 的取值范围为________.(本小题第一空2分,第二空3分)解析 ∵x >0,y >0,x +2y =xy ,∴2x +1y =1,∴1=2x +1y ≥22x ·1y,∴xy ≥8,当且仅当x =4,y =2时取等号,∴x +2y =xy ≥8,∴m 2+2m <8,解得-4<m <2. 答案 8 (-4,2)15.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________.解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b=4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b 的最小值为4.答案 416.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 解析 法一 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝⎛⎭⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1,所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0.由Δ=25t 2-16≥0,解得t ≥45⎝⎛⎭⎫t ≤-45舍去. 故x 2+y 2的最小值为45.答案 45。
真题四 平面向量与不等式一、单选题1.已知向量()()2332a b ==,,,,则|–|a b =( ) A 2B .2 C .2D .50【答案】A 【解析】由已知,(2,3)(3,2)(1,1)a b -=-=-, 所以22||(1)12a b -=-+=故选A2.已知向量()2,3a =,()1,b λ=-,若向量2a b -与向量a 共线,则b =( ) A .32-B .132 C 13 D .134【答案】B 【解析】由向量坐标运算得到2a b -,根据向量共线可构造方程求得λ,由模长的坐标运算得到结果. 【详解】()24,32a b λ-=-,又向量2a b -与向量a 共线,()432λλ∴=--,解得:32λ=-,()2239131124b ⎛⎫∴=-+-=+= ⎪⎝⎭. 故选:B. 【点睛】结论点睛:若()11,a x y =与()22,b x y =共线,则1221x y x y =. 3.在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C 【解析】根据向量的加减法运算法则算出即可. 【详解】()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-=故选:C4.已知,,a b c 均为单位向量,且22a b c +=,则a c ⋅=( ) A .12-B .14-C .14D .12【答案】C 【解析】由22a b c +=两边平方得14-⋅=a b ,又因为22a b c +=可得()1=22+c a b ,再计算a c ⋅即可得结果. 【详解】 由()()2222+=a bc 得222444++⋅=ab a b c因为,,a b c 均为单位向量,则1a b c ===,所以14-⋅=a b , 又()1=22+c a b ,所以()()21111122122224⎛⎫⋅=⋅+=+⋅=-= ⎪⎝⎭a c a a b a a b故选:C .5.已知,a b 是相互垂直的单位向量,与,a b 共面的向量c 满足2,a c b c ⋅⋅==则c 的模为( ) A .1 B 2C .2D .22【答案】D 【解析】根据,a b 是相互垂直的单位向量,利用坐标法以及数量积的坐标表示,建立方程进行求解即可. 【详解】,a b 是相互垂直的单位向量,不妨设()1,0a =,()0,1b =, 设(),c x y =,由2,a c b c ⋅⋅== 可得2x y ==,即()2,2c =, 则c 的模为2222822c =+==.故选:D6.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则z =x +2y 的取值范围是( )A .(,4]-∞B .[4,)+∞C .[5,)+∞D .(,)-∞+∞【答案】B 【解析】首先画出可行域,然后结合目标函数的几何意义确定目标函数在何处能够取得最大值和最小值从而确定目标函数的取值范围即可. 【详解】绘制不等式组表示的平面区域如图所示,目标函数即:1122y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, z 取得最小值时,其几何意义表示直线系在y 轴上的截距最小, 据此结合目标函数的几何意义可知目标函数在点A 处取得最小值, 联立直线方程:31030x y x y -+=⎧⎨+-=⎩,可得点A 的坐标为:()2,1A ,据此可知目标函数的最小值为:min 2214z =+⨯= 且目标函数没有最大值.故目标函数的取值范围是[)4,+∞. 故选:B.7.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可. 【详解】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意;D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.8.已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( ) A .3135-B .1935-C .1735D .1935【答案】D 【解析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()22222526367a b a b a a b b +=+=+⋅+=-⨯+,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.9.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范围是( ) A .()2,6- B .(6,2)- C .(2,4)- D .(4,6)-【答案】A 【解析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB 方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果. 【详解】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.10.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为( ) A .−7 B .1C .5D .7【答案】C 【解析】 由题意1,11yy x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.11.设2log 3a =,24log 3b =,则2a b +,ab ,ba 的大小关系为( ) A .2ab b ab a +>> B .2a b b ab a +>> C .2a b b ab a +>> D .2b a bab a +>> 【答案】C 【解析】由已知得1,0a b >>且2a b +=,然后结合基本不等式与中间值1比较,用不等式的性质比较大小可得. 【详解】易知:0,0a b >>,12a b +=,()214a b ab +<=,1b ab a a >⇔>,显然成立. 所以2a b bab a+>>.故选:C .12.已知,a b 是平面向量,满足||2,||1a b =≤,且322b a -≤,记a 与b 的夹角为θ,则cos θ的最小值是( ) A .1116B .78C 15D 315【答案】B 【解析】先给322b a -≤两边平方然后展开,代入2a =,得到2143a b b⋅≥+,然后利用23||113||4cos 8||||2||2||b a b b a b b b θ+⋅=≥=+⋅,然后当1b ≤时,求解cos θ的最小值. 【详解】由322b a -≤得,()2223294124b ab a a b -=+-⋅≤,所以2143a b b ⋅≥+.则23||113||4cos 8||||2||2||b a b b a b b b θ+⋅=≥=+⋅⋅ 令函数13()28xf x x =+,因为()f x 在[]0,1上单调递减. 又因为1b ≤,故当1b =时,cos θ取得最小值,最小值为78. 故选:B 【点睛】本题考查向量间夹角余弦值的取值范围的计算问题,解答的一般思路为:当已知a ,b 和a b λμ+(其中,λμ为常数)时,一般采用平方法,得到2a b λμ+然后展开,得到cos θ的值.13.已知a ,b ,R c ∈,若关于x 不等式01a cx b x x≤++≤-的解集为[]{}()123321,0x x x x x x ⋃>>>,则( )A .不存在有序数组(,,)a b c ,使得211x x -=B .存在唯一有序数组(,,)a b c ,使得211x x -=C .有且只有两组有序数组(,,)a b c ,使得211x x -=D .存在无穷多组有序数组(,,)a b c ,使得211x x -= 【答案】D 【解析】根据1>0x ,不等式转化为一元二次不等式的解的问题,利用两个一元二次不等式解集有交集的结论,得出两个不等式解集的形式,从而再结合一元二次方程的根与系数关系确定结论. 【详解】由题意不等式20x bx a c x ≤++≤-的解集为[]{}()123321,0x x x x x x ⋃>>>,即220x bx a x bx a c x ⎧++≥⎨++≤-⎩的解集是[]{}123,x x x ⋃,则不等式20x bx a ++≥的解是{|x 2x x ≤或3x x ≥},不等式2x bx a c x ++≤-的解集是13{|}x x x x ≤≤, 设1x m =,21x m =+,3x n =(1)m n +<, 所以0c n -=,n c =,1m +和n 是方程20x bx a ++=的两根,则11b m n m c -=++=++,(1)a m n mc c =+=+, 又22(1)m bm a m m m c mc c c m ++=+---++=-, 所以m 是2x bx a c x ++=-的一根, 所以存在无数对(,,)a b c ,使得211x x -=. 故选:D .14.已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( ) A .a <0 B .a >0C .b <0D .b >0【答案】C 【解析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案. 【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点 为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <, 即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <. 综上一定有0b <. 故选:C15.已知22220,0,3,3a b a b ab a b >>+-=-≤,则+a b 的最小值是( )A .22B .3C .23D .4【答案】B 【解析】将223a b ab +-=,变形为223324b b a ⎛⎫-+= ⎪⎝⎭,令3233ba θθ⎧-=⎪⎪=,根据0,0a b >>确定203θπ<<,得到22a b -2323πθ⎛⎫=+ ⎪⎝⎭,然后由223a b -≤,,进一步确定62ππθ≤≤,然后由33sin 236a b πθθθ⎛⎫+=+=+ ⎪⎝⎭,利用三角函数性质求解.【详解】因为222222344b b a b ab a b ab +-=+-++, 223324b b a ⎛⎫=-+= ⎪⎝⎭,令3233ba θθ⎧-=⎪⎪=,则3sin 2sin 32sin a b πθθθθ⎧⎛⎫=+=+⎪ ⎪⎝⎭⎨⎪=⎩, 因为0,0a b >>,所以sin 03sin 0πθθ⎧⎛⎫+>⎪ ⎪⎝⎭⎨⎪>⎩,即030πθπθπ⎧<+<⎪⎨⎪<<⎩, 解得203θπ<<, 所以)()22223sin 2sin a b θθθ-=+-,2223cos 23sin cos sin 4sin θθθθθ=++-,()223cos sin 23cos θθθθ=-+3cos23sin 2θθ=,2323πθ⎛⎫=+ ⎪⎝⎭,因为203θπ<<, 所以52333ππθπ<+<,因为223a b -≤,所以33sin 23πθ⎛⎫≤+≤⎪⎝⎭ 解得242333ππθπ≤+≤, 所以62ππθ≤≤,则2363πππθ≤+≤, 所以33sin 233,236a b πθθθ⎛⎫⎡⎤+=+=+∈ ⎪⎣⎦⎝⎭, 所以+a b 的最小值是3, 故选:B关键点点睛:本题关键是将223a b ab +-=,变形为223324b b a ⎛⎫-+= ⎪⎝⎭,利用三角换元,转化为三角函数求解. 二、多选题16.已知0a b c >>>且1abc =,则下列结论中一定成立的是( ) A .1b = B .1ab >C .01bc <<D .22a c +>【答案】BCD 【解析】由0a b c >>>且1abc =,可以得到1a >,01c <<,然后结合不等式的性质容易对A ,B ,C 选项进行判断,然后利用基本不等式可对D 选项进行判断. 【详解】A :因为0a b c >>>且1abc =,所以331c abc a <=<,即1a >,01c <<,b 不一定等于1,故A 项不一定成立;B :因为01c <<,所以11ab c =>,所以B 项一定成立; C :因为1a >,所以101bc a<=<,C 项一定成立;D :22211222a a c a a ab ab b+=+≥⋅,D 项一定成立. 17.已知,a b 均为正实数,且1a b +=,则( ) A .ab 的最大值为14B .2b a b+的最小值为22C .221155a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为15D .2221a b a b +++的最小值为94 【答案】AC 【解析】对于选项A ,直接根据基本不等式可求得结果;对于选项B ,化为积为定值的形式后,根据基本不等式求出最小值可得答案; 对于选项C ,变形后利用二次函数求出最小值可得答案; 对于选项D ,变形后利用基本不等式求出最小值可得答案. 【详解】对于选项A ,2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取“=”,故A 正确;对于选项B ,22222b b a b b aa b a b a b++=+=++≥222, 当且仅当222b a ==“=”,故B 错误;对于选项C ,22222111()55525a b a b ab +⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭ 222121111()()5525555ab a b ab ab ⎛⎫=++-+=-+≥ ⎪⎝⎭,当且仅当15ab =时取“=”,故C 正确; 对于选项D ,22a a ++222(22)(11)121b a b b a b +-+-=++++ 41241221a b a b =+-+++-+++ 41221a b =+-++, 令2s a =+,1t b =+,则4s t +=,所以4121a b +++=141(4s s t ⎛⎫++ ⎪⎝⎭14)414t s t s t ⎛⎫=+++⎪⎝⎭ 1495244t s s t ⎛≥+⋅= ⎝, 当且仅当2s t =,即43t =,83s =时取“=”,所以41221a b +-++91244≥-=, 所以221214a b a b +≥++,当且仅当23a =,13b =时取“=”,故选项D 错误. 故选:AC. 【点睛】方法点睛:利用基本不等式求解最值问题常采用常数代换法,其解题步骤为:(1)根据已知条件或其变形确定定值(常数);(2)把定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值. 18.已知a >0,b >0,且a +b =1,则( ) A .2212a b +≥B .122a b ->C .22log log 2a b +≥-D 2a b 【答案】ABD 【解析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确; 对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确; 对于D ,因为(21212a bab a b =+≤++=,2a b 12a b ==时,等号成立,故D 正确; 故选:ABD 三、填空题19.已知向量(),1a x =,()1,2b =-,且a b ⊥,则a b -=___________. 10【解析】由垂直的坐标表示求得x ,再由模的坐标运算求解. 【详解】由a b ⊥得20a b x ⋅=-=,2x =,则(1,3)a b -=,所以221310a b -=+= 10.20.已知点(),C x y 在线段():41,AB x y x y ++=∈R 上运动,则xy 的最大值是____________.【答案】116【解析】直接利用基本不等式计算可得; 【详解】解:由题设()41,x y x y ++=∈R 可得:4124x y xy +=≥142xy ≤, ∴144xy ≤,即116xy ≤,当且仅当142x y ==时取“=”, 故答案为:116.21.已知a ,b 为实数,则221214a b ++______2ab a +.(填“>”、“<”、“≥”或“≤”)【答案】≥ 【解析】利用作差法,配方即可比较大小. 【详解】()2222112121042a b ab a a b a ⎛⎫++--=-+-≥ ⎪⎝⎭,当且仅当1a =,2b =取等号. 故答案为:≥22.若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.【答案】8 【解析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x =-,在平面区域内找到一点使得直线1122y x z =-+在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩,因此2z x y =+的最大值为:2238+⨯=. 故答案为:8.23.若02030x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩,则3z x y =-的最大值是___________.【答案】1- 【解析】根据约束条件作出可行域以及直线3z x y =-过点A 时在y 轴上的截距最小,z 有最大值,得出答案. 【详解】根据约束条件02030x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩作出可行域如图所示,由2030x y x y -=⎧⎨+-=⎩解得()2,1A将目标函数3z x y =-化为133z y x =-, z 表示直线133z y x =-在y 轴上的截距的相反数的13故当直线133zy x =-在y 轴上的截距最小时,z 有最大值.当直线133zy x =-过点(2,1)时在y 轴上的截距最小,z 最大,由A (2,1)知z 的最小值为2311-⨯=- 故答案为:1-24.已知向量a ,b 满足3a b +=,0a b ⋅=.若()1c λa λb =+-,且c a c b ⋅=⋅,则c 的最大值为______. 【答案】32【解析】令M a A =,MB b =,利用已知作出以AB 为直径作直角三角形ABM 的外接圆O ,令AN MB =,连接MN .设c AC =,由已知点C 在直线MN 上,【详解】令M a A =,MB b =,则a b AM MB AB =++=,故3AB =,又0a b ⋅=,所以AM MB ⊥.以AB 为直径作直角三角形ABM 的外接圆O ,进而得出当NM AB ⊥时,AC 即c 取得最大值.令AN MB =,连接MN .设c AC =,因为()1c λa λb =+-⋅,所以点C 在直线MN 上,又c a c b ⋅=⋅,所以()0c a b ⋅-=,即0AC NM ⋅=,所以AC NM ⊥.结合图形可知,当NM AB ⊥时,AC 即c 取得最大值,且32c AO ==.故答案为:3225.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22【解析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值. 【详解】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 故答案为:22. 26.设,a b 为单位向量,且||1a b +=,则||a b -=______________. 3【解析】整理已知可得:()2a b a b +=+,再利用,a b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.【详解】因为,a b 为单位向量,所以1a b == 所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a ba ab b -=-=-⋅+=327.平面向量OA 、OB 、OC ,满足24OA OB ==,()()20OC OA OC OB -⋅-=,0OA OB ⋅=,则对任意[]0,2θπ∈,11cos sin 42OC OA OB θθ--⋅的最大值为___________. 【答案】221 【解析】建立平面直角坐标系,可得点C 的轨迹方程为()()22112x y -+-=,然后化简所求式子,转化为两个圆的点之间的最大值问题,简单判断即可. 【详解】由0OA OB ⋅=,24OA OB ==,可设()()()4,0,0,2,,A B C x y由()()20OC OA OC OB -⋅-=,把坐标代入化简可得:()()22112x y -+-= 所以点点C 的轨迹方程为()()22112x y -+-= 又()()11cos sin ,cos ,sin 42OC OA OB x y θθθθ--⋅=-, 所以求11cos sin 42OC OA OB θθ--⋅的最大值即两个圆()()22112x y -+-=、221x y +=上动点最大值,如图所示;当过两圆的圆心时,有最大即221MN = 故答案为:22128.已知向量a ,b ,c 满足22a b c b -+==,b a -与a 的夹角为34π,则c 的最大值为______.【答案】22【解析】根据题意设OA b a =-,OB b =,OC c =,则a AB =,b a c OA OC CA --=-=,1OB =,2CA =由条件可得4OAB π∠=,1OB =后能结合正弦定理得到动点A 的轨迹,利用2CA =C 的轨迹,然后数形结合得到OC 的最大值,即c 的最大值. 【详解】 因为22a b c b -+==,所以2a b c -+=,1b =.设OA b a =-,OB b =,OC c =,则a AB =,b ac OA OC CA --=-=,1OB =,2CA =因为b a -与a 的夹角为34π,所以4OAB π∠=,OAB 的外接圆的直径为:122sin sin4OB R AOB π===∠ 则动点A 2D 中的优弧OB (不含点O ,B ), 由2CA =C 的轨迹是以A 2结合图形可知,当点O ,D ,A ,C四点共线,且C 在线段OA 的延长线上时,OC 最大,且最大值是22 故c 的最大值为22 故答案为:22【点睛】关键点睛:本题考查向量的运算和模长的最值问题,解答本题的关键是在OAB 中,根据题意得到4OAB π∠=,1OB =后能结合正弦定理得到动点A 的轨迹,利用2CA =C 的轨迹,然后数形结合得到OC 的最大值,即c 的最大值.属于中档题.29.李明自主创业,经营一家网店,每售出一件A 商品获利8元.现计划在“五一”期间对A 商品进行广告促销,假设售出A 商品的件数m (单位:万件)与广告费用x (单位:万元)符合函数模型231m x =-+.若要使这次促销活动获利最多,则广告费用x 应投入_______万元. 【答案】3 【解析】设李明获得的利润为()f x 万元,求出()f x 关于x 的表达式,利用基本不等式可求得()f x 的最小值及其对应的x 的值. 【详解】设李明获得的利润为()f x 万元,则0x ≥, 则()()()21616168832425125211111f x m x x x x x x x x x ⎛⎫⎡⎤=-=--=--=-++≤-+ ⎪⎢⎥++++⎝⎭⎣⎦25817=-=,当且仅当1611x x +=+,因为0x ≥,即当3x =时,等号成立. 故答案为:3.30.已知正实数x ,y ,a ,b 满足a bx yxy ==,其中1x >,1y >,则4911a b +--的最小值为______. 【答案】12 【解析】 解法一根据ab x y xy ==可知11()a b xy xy +=,得到a b ab +=,然后变形所求的式子并结合基本不等式可知结果. 解法二对a b x y xy ==取对数可知lg lg lg x y a x +=,lg lg lg x yb y+=,然后代入所求式子并结合基本不等式可知结果. 【详解】解法一 由abxyxy ==得1()a xy x =,1()b xy y =,所以11()a b xy xy +=,所以111a b+=,即a b ab +=,所以4949139413941311(1)(1)()1b a a b a b a b a b ab a b +-+-+===+------++. 因为111a b +=,所以114994(94)1325b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当49b a a b =时等号成立.故491211a b +≥--,所以4911a b +--的最小值为12. 解法二 对a b x y xy ==两边同时取对数,得lg lg lg x y a x +=,lg lg lg x yb y+=,所以494lg 9lg 1211lg lg x y a b y x +=+≥--,当且仅当23x y =时等号成立,所以4911a b +--的最小值为12. 故答案为:12 【点睛】关键点定睛:解法一关键在于得到111a b+=,解法二结合对数,同时两种解法都使用基本不等式. 31.已知数列{}n a 是等差数列,11a ≥-,22a ≤,30a ≥,则153z a a =-的最大值是______. 【答案】16 【解析】由等差数列得通项公式可的1111220a a d a d ≥-⎧⎪+≤⎨⎪+≥⎩设1a x =,d y =,则不等式组等价为1220x x y x y ≥-⎧⎪+≤⎨⎪+≥⎩,15324z a a x y =-=-,利用线性规划知识求最值即可.【详解】设等差数列{}n a 的公差为d ,由题设知,1111220a a d a d ≥-⎧⎪+≤⎨⎪+≥⎩,设1a x =,d y =,则不等式组等价为1220x x y x y ≥-⎧⎪+≤⎨⎪+≥⎩,对应的可行域为如图所示的三角形ABC 及其内部,由15132424a a a d x y -=-=-,由24z x y =-可得124z y x =-, 作12y x =沿着可行域的方向平移,当直线过点A 时,z 取得最大值. 由220x y x y +=⎧⎨+=⎩ 解得()4,2A -, 所以 ()max 244216z =⨯-⨯-=, 故答案为:1632.设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______. 【答案】2829【解析】利用复数模的平方等于复数的平方化简条件得1234e e ⋅≥,再根据向量夹角公式求2cos θ函数关系式,根据函数单调性求最值. 【详解】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 四、双空题33.如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132【解析】可得120BAD ∠=,利用平面向量数量积的定义求得λ的值,然后以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,设点(),0M x ,则点()1,0N x +(其中05x ≤≤),得出DM DN ⋅关于x 的函数表达式,利用二次函数的基本性质求得DM DN ⋅的最小值. 【详解】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC ABλλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭,∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,2DM x ⎛=- ⎝⎭,333,2DN x ⎛=- ⎝⎭,()22253332113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 五、解答题34.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x元.已知这种水果的市场售价大约15元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元)(1)写单株利润()f x (元)关于施用肥料x (千克)的关系式; (2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?【答案】(1)27530225,02()75030,251x x x f x x x x x⎧-+⎪=⎨-<⎪+⎩(2)故当施肥量为4千克时,该水果树的单株利润最大,最大利润为480元. 【解析】(1)用销售额减去成本投入得出利润()f x 的解析式;(2)分段判断()f x 的单调性,及利用基本不等式求出()f x 的最大值即可. 【详解】(1)依题意()15()1020f x W x x x =--,又()253,02()50,251x x W x xx x⎧+≤≤⎪=⎨<≤⎪+⎩ 所以27530225,02()75030,251x x x f x x x x x⎧-+⎪=⎨-<⎪+⎩.(2)当02x 时,2()7530225f x x x =-+,开口向上,对称轴为15x =, ()f x ∴在[0,1]5上单调递减,在1(5,2]上单调递增,()f x ∴在[0,2]上的最大值为()2465f =.当25x <时,2525()78030(1)78030(1)48011f x x x x x=-++-⨯+++, 当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()480max f x =.答:当投入的肥料费用为40元时,种植该果树获得的最大利润是480元.。
新数学《不等式》复习知识点一、选择题1.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .3⎛⎫+∞ ⎪ ⎪⎝⎭D .,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得t <或t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.2.在下列函数中,最小值是2的函数是( ) A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()2f x =D .()42xxf x e e =+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误; C. ()2f x ==,故()f x ≥,C 错误; D. ()4222xx f x e e =+-≥=,当4xxe e =,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.3.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.4.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值,所以z 的最小值为min 314z =--=-,则1222yx x y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.5.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.6.已知函数())2log f x x =,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值.【详解】0,x x x x ≥-=所以定义域为R ,因为()2log f x =,所以()f x 为减函数 因为()2log f x =,())2log f x x -=,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=,所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为96b a a b +≥=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.7.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.8.已知x 、y 满足约束条件122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y =+,则实数z 的最小值为( )A.2B .25C .12D .2【答案】C【解析】 【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y +的最小值,进而可得出实数z 的最小值. 【详解】作出不等式组122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min2122x y⎛⎫+== ⎪ ⎪⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.9.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .2B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC及其内部.可得,A(2,0),B(0,2),C(-2,0),显然三角形ABC 的面积为.故选B.考点:求不等式组表示的平面区域的面积.10.若,x y满足4,20,24,x yx yx y+≤⎧⎪-≥⎨⎪+≥⎩则4yx-的最大值为()A.72-B.52-C.32-D.1-【答案】D【解析】【分析】画出平面区域,结合目标函数的几何意义,求解即可.【详解】该不等式组表示的平面区域,如下图所示4yx-表示该平面区域中的点(),x y与(0,4)A确定直线的斜率由斜率的性质得出,当区域内的点为线段AB上任意一点时,取得最大值.不妨取84(,)33B 时,4y x -取最大值443183-=- 故选:D 【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.11.若0a >,0b >,23a b +=,则36a b+的最小值为( ) A .5 B .6C .8D .9【答案】D 【解析】 【分析】把36a b +看成(36a b +)×1的形式,把“1”换成()123a b +,整理后积为定值,然后用基本不等式求最小值. 【详解】∵3613a b +=(36a b +)(a +2b ) =13(366b aa b+++12) ≥13=9 等号成立的条件为66b aa b=,即a=b=1时取等 所以36a b +的最小值为9. 故选:D . 【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换,是基础题12.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.13.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]【答案】B 【解析】 【分析】 作出可行域,1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值. 【详解】作出可行域,如图阴影部分(含边界),1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1yx+表示动点(,)P x y与定点(0,1)Q-连线斜率,由直线与可行域的关系可得结论.14.若变量x,y满足2,{239,0,x yx yx+≤-≤≥则x2+y2的最大值是A.4 B.9 C.10 D.12【答案】C【解析】试题分析:画出可行域如图所示,点A(3,-1)到原点距离最大,所以22max()10x y+=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.15.已知变量,x y满足约束条件121x yx+⎧⎨-⎩剟…,则x yy+的取值范围是( )A.12,23⎡⎤⎢⎥⎣⎦B.20,3⎛⎤⎥⎝⎦C.11,3⎛⎤--⎥⎝⎦D.3,22⎡⎤⎢⎥⎣⎦【答案】B【解析】【分析】作出不等式121x yx+⎧⎨-⎩剟…表示的平面区域,整理得:x yy+1xy=+,利用yx表示点(),x y 与原点的连线斜率,即可求得113xy-<-…,问题得解.【详解】将题中可行域表示如下图,整理得:x y y +1x y =+ 易知y k x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,y k x =取得最小值-3. 且斜率k 小于直线1x y +=的斜率-1,故31k -≤<-,则113x y -<-…, 故203x y y +<…. 故选B【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.16.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r ,则z 的最大值是( )A .2B .3C .4D .5【答案】C【解析】【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可.【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r ,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C.【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.17.在ABC ∆中,22223sin a b c ab C ++=,则ABC ∆的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 【答案】D【解析】【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案.【详解】由余弦定理可知2222cos a b c ab C +-=, 22223sin a b c ab C ++= 两式相加,得到()22cos 32cos 3a b ab C C ab C π⎛⎫+=+=- ⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭ 所以03C π-=,即3C π=,又a b =, 所以ABC ∆是等边三角形,故选D 项.【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.18.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .169πB .89πC .1627πD .827π 【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-, ∴圆柱的体积为23()(3)(02)2V r r r r π=-<<, 则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g …. 当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π,故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.19.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.20.若,,则( ) A . B . C . D . 【答案】C 【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C .【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.。
【最新】《不等式选讲》专题解析一、141.不等式222log 2log x x x x -<+的解集为( ) A .()1,2 B .()0,1C .()1,+∞D .()2,+∞【答案】C 【解析】 【分析】由题意得出0x >,分2log 0x >和2log 0x ≤两种情况讨论,结合222log 2log x x x x -<+可得出2log 0x >,解出该不等式即可.【详解】由题意得出0x >,当2log 0x ≤时,则222log 2log x x x x -=+. 当2log 0x >时,222log 2log x x x x -<+,解不等式2log 0x >得1x >. 因此,不等式222log 2log x x x x -<+的解集为()1,+∞. 故选:C. 【点睛】本题考查绝对值不等式的求解,同时也考查绝对值三角不等式的应用,考查推理能力与运算求解能力,属于中等题.2.若集合{}2540A x x x =-+<,{}1B x x a =-<,则“()2,3a ∈”是“B A ⊆”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又不必要条件【答案】A 【解析】 【分析】解出集合A 、B ,由B A ⊆得出关于a 的不等式组,求出实数a 的取值范围,由此可判断出“()2,3a ∈”是“B A ⊆”的充分非必要条件. 【详解】解不等式2540x x -+<,解得14x <<,{}14A x x ∴=<<. 解不等式1x a -<,即11x a -<-<,解得11a x a -<<+,{}11B x a x a ∴=-<<+.B A ⊆Q ,则有1114a a -≥⎧⎨+≤⎩,解得23a ≤≤.因此,“()2,3a ∈”是“B A ⊆”的充分非必要条件. 故选:A 【点睛】本题考查充分非必要条件的判断,一般将问题转化为集合的包含关系来判断,考查逻辑推理能力,属于中等题.3.已知()f x 是定义域为R 的偶函数,当0x „时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C 【解析】 【分析】根据偶函数以及当0x „时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-. 由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>,∴2|2|4|2|5x x +-+>,所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>, 所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.4.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+,即3223x x a x a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.5.若关于x 的不等式222213x t x t t t +-+++-<无解,则实数t 的取值范围是( ) A .1,15⎡⎤-⎢⎥⎣⎦B .(],0-∞C .(],1-∞D .(],5-∞ 【答案】C 【解析】 【分析】先得到当0t ≤时,满足题意,再当0t >时,根据绝对值三角不等式,得到22221x t x t t +-+++-的最小值,要使不等式无解,则最小值需大于等于3t ,从而得到关于t 的不等式,解得t 的范围 【详解】关于x 的不等式222213x t x t t t +-+++-<无解, 当0t ≤时,可得此时不等式无解, 当0t >时,()2222221221x t x t t x t x t t +-+++-+--++-≥21t =--,所以要使不等式无解,则213t t --≥, 平方整理后得20541t t ≤--, 解得115t ≤≤-, 所以01t <≤,综上可得t 的范围为(],1-∞, 故选:C. 【点睛】本题考查绝对值的三角不等式的应用,根据不等式的解集情况求参数的范围,属于中档题.6.设2sin1sin 2sin 222n n na =++⋅⋅⋅+,对任意正整数m 、n (m >n )都成立的是( ). A .12n m ma a -< B .12n m ma a ->C .12n m na a -<D .12n m na a ->【答案】C 【解析】 【分析】先作差,再根据三角函数有界性放缩,进而根据等比数列求和确定选项. 【详解】212sin1sin 2sin sin(1)sin(2)sin 222222n m n n n n mn n n ma a a ++++=++⋅⋅⋅+∴-=++⋅⋅⋅+Q 12sin(1)sin(2)sin ||||222m n n n mn n ma a ++++∴-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n mn n m ++++≤++⋅⋅⋅+ 11211(1)11111122122222212n m n n n m n m n +-++-≤++⋅⋅⋅+==-<- 故选:C 【点睛】本题考查三角函数有界性、等比数列求和以及放缩法,考查综合分析求解与论证能力,属中档题.7.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6. 则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6rC •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15,故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.8.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p vB .p v的最大值为C .p vD .p v的最大值为【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v柯西不等式即可求得其最小值,问题得解. 【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以pv ==≥==≥= 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p v, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.9.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4B .最小值是-4,最大值是0C .最小值是-4,最大值是4D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.10.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个 B .19个C .20个D .21个【答案】D 【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。
高考数学压轴题:含有参数的方程或不等式含有参数的方程(或不等式)中的“任意性”与“存在性”问题,历来是高考考查的一个热点,也是高考复习中的一个难点.破解的关键在于将它们等价转化为熟悉的基本初等函数的最值或值域问题,而正确区分“任意性”与“存在性”问题也是解题的关键.本专题举例说明辨别“任意性问题”与“存在性问题”的方法、技巧.类型一 “∀x ,使得f(x)>g(x)”与“∃x ,使得f(x)>g(x)”的辨析 (1)∀x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.如图①.(2)∃x ,使得f (x )>g (x ),只需h (x )max =[f (x )-g (x )]max >0.如图②. 【例1】已知函数1()ln (0),()a f x a x a g x x x x=-≠=--. (Ⅰ)求()f x 的单调区间;(Ⅱ)当0a >时,若存在0[1,]x e ∈,使得()()00f x g x <成立,求实数a 的取值范围.【解析】(I )()f x 的定义域为'221(0,),().a a xf x a x x x ++∞=--=- 所以,当0a >时,()'0f x <,()f x 在(0,)+∞上递减;当0a <时,()'0fx >,所以,()f x 在(0,)+∞上递增.(II )在[]1e ,上存在一点0x 使00()()f xg x <成立, 即函数1()ln a h x a x x x x=-++在[]1,e 上的最小值小于0, ()'222(1)1+1()1x x a a a h x x x x x+-⎡⎤⎣⎦=--+-=.①当1+a e ≥,即1a e ≥-时,()h x 在[]1,e 上单调递减, 所以()h x 在[]1,e 上的最小值为()h e ,由()10ah e e a e+=+-<,得222111,1,111e e e a e a e e e +++>>-∴>---; ②当11a +≤,即0a ≤时,0a >,不合乎题意;③当11a e <+<,即01a e <<-时,()h x 的最小值为()1h a +,0ln(1)1,0ln(1),a a a a <+<∴<+<故(1)2ln(1)2h a a a a +=+-+>.此时(1)0h a +<不成立.综上所述,a 的取值范围是211e a >e +-.(1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当x 0≥0时,总有f (x 0)≥g (x 0),即f (x 0)-g (x 0)≥0(注意不是f (x )min ≥g (x )max ),可以转化为当x ≥0时,h (x )=f (x )-g (x )≥0恒成立问题.(2)存在x ≥0,使得f (x )≥g (x ),即至少有一个x 0≥0,满足f (x 0)-g (x 0)不是负数,可以转化为当x ≥0时,h (x )=f (x )-g (x )的函数值至少有一个是非负数.例题:已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-.令()ln 2h x x x =--,则()111x h x x x-'=-= ∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<,()422ln 20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min 0ln 11x x g x g x x +∴==-()000ln 20h x x x =--= 00ln 2x x ∴=- ()()()()0000min0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为3类型二 “若1122x D x D ∃∈∃∈,,,使得()()12f x g x =”与“1122x D x D ∀∈∃∈,,使得()()12f x g x =”的辨析(1) 1122x D x D ∃∈∃∈,,使得()()12f x g x =等价于函数f (x )在D 1上的值域A 与g (x )在D 2上的值域B 的交集不是空集,即A ∩B ≠∅,如图③.其等价转化的目标是两个函数有相等的函数值.(2) 1122x D x D ∀∈∃∈,,使得()()12f x g x =等价于函数f (x )在D 1上的值域A 是g (x )在D 2上的值域B 的子集,即A ⊆B ,如图④.其等价转化的目标是函数y =f (x )的值域都在函数y =g (x )的值域之中.说明:图③,图④中的条形图表示函数在相应定义域上的值域在y 轴上的投影. 【例2】已知函数()()()11ln 1f x a x x =---+,()1xg x xe-=.(1)求()g x 在区间(]0,e 上的值域;(2)是否存在实数a ,对任意给定的(]00,x e ∈,在[]1,e 存在两个不同的()1,2i x i =使得()()0i f x g x =,若存在,求出a 的范围,若不存在,说出理由.【解析】(1)()()1'1xg x x e-=-,()0,1x ∈时,()'0g x >,()g x 单调递增,(]1,x e ∈时,()'0g x <,()g x 单调递减,()00g =,()11g =,()10e g e e e -=⨯>,∴()g x 在(]0,e 上值域为(]0,1. (2)由已知得1()1f x a x='--,且[]1,x e ∈, 当0a ≤时,()'0f x ≥,()f x 在[]1,e 上单调递增,不合题意. 当11a e≥-时,()'0f x ≤,()f x 在[]1,e 上单调递减,不合题意. 当101a e <<-时,()0f x '=得011x a=-. 当1(1,)1x a∈-时()'0f x <,()f x 单调递减, 当1()1x e a ,∈-时,()'0f x >,()f x 单调递增,∴()min 11f x f a ⎛⎫= ⎪-⎝⎭.由(1)知()g x 在(]0,e 上值域为(]0,1,而()11f =,所以对任意(]00,x e ∈,在区间[]1,e 上总有两个不同的()1,2i x i =,使得()()0i f x g x =.当且仅当()1101fe f a ⎧≥⎪⎨⎛⎫≤ ⎪⎪-⎝⎭⎩,即()()()()()1111ln 1102a e a a ⎧--≥⎪⎨+-+≤⎪⎩, 由(1)得111a e ≤--. 设()()ln 11h a a a =+-+,10,1a e ⎛⎫∈- ⎪⎝⎭,()1'111a h a a a =-=--, 当10,1a e ⎛⎫∈- ⎪⎝⎭,()'0h a <,()h a 单调递减,∴()11110h a h e e⎛⎫>-=-> ⎪⎝⎭.∴()0h a ≤无解.综上,满足条件的a 不存在.本例第(2)问等价转化的基本思想是:函数g (x )的任意一个函数值都与函数f (x )的某两个函数值相等,即f (x )的值域都在g (x )的值域中. 例题:已知函数1()ln 1f x x x=+-, 32()324g x x a x a =--+, []0,1x ∈,其中0a ≥. (1)求函数()f x 的单调区间;(2)若对任意[]11,x e ∈,总存在[]20,1x ∈,使得()()12f x g x =成立,求a 的取值范围. 【解析】(1)函数()f x 的定义域为(0,)+∞,22111()x f x x x x-'=-+=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<,∴函数()f x 的减区间为(0,1),增区间为(1,)+∞;(2)依题意,函数()f x 在[]1,e 上的值域包含于函数g x ()在[]0,1上的值域,由(1)可知,函数()f x 在[]1,e 上单调递增,故值域为10,e ⎡⎤⎢⎥⎣⎦, 由32()324g x x a x a =--+得22()333()()g x x a x a x a '=-=+-, ①当0a =时,()0g x '≥恒成立,故函数g()x 在[]0,1上单调递增,此时值域为[]224,3254,5a a a ⎡⎤-+--+=⎣⎦,故0a =不符合题意;②当0a >时,()0g x '>的解集为(,)a +∞,()0g x '<的解集为(0,)a ,∴ 故函数()g x 在(0,)a 上单调递减,在(,)a +∞上单调递增,且2(0)42,(1)325g a g a a =-=--+,()i 当01a <<时,函数g()x 在(0,)a 上单调递减,在(,1)a 上单调递增,此时值域为{}32224,42,325a a max a a a ⎡⎤--+---+⎣⎦,则此时需要32240a a --+≤,即320a a +-≥,当01a <<时,320a a +-≥不可能成立,故01a <<不符合题意; ()ii 当1a ≥时,()0g x '≤在[]0,1上恒成立,则函数g()x 在[]0,1上单调递减,此时值域为2325,42a a a ⎡⎤--+-⎣⎦,则23250142a a a e ⎧--+≤⎪⎨-≥⎪⎩,解得1122a e ≤≤-; 综上所述,实数a 的取值范围为11,22e ⎡⎤-⎢⎥⎣⎦.类型三 f (x ),g (x )是闭区间D 上的连续函数,“∀x 1,x 2∈D ,使得f (x 1)>g (x 2)”与“∃x 1,x 2∈D ,使得f (x 1)>g (x 2)”的辨析(1)f (x ),g (x )是在闭区间D 上的连续函数且∀x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )min >g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值均大于函数y =g (x )的任意一个函数值.如图⑤.(2)存在x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )max >g (x )min .其等价转化的目标是函数y =f (x )的某一个函数值大于函数y =g (x )的某些函数值.如图⑥.【例3】已知函数(1)(1ln )()3x x f x m x++=-,()ln g x mx x =-+(R)m ∈.(1)求函数()g x 的单调区间与极值.(2)当0m >时,是否存在[]12,1,2x x ∈,使得12()()f x g x >成立?若存在,求实数m 的取值范围,若不存在,请说明理由.【解析】(1)1()(0)g x m x x =-+>', 当0m ≤时,1()0g x m x=-+>'恒成立,即函数()g x 的单调增区间为∞(0,+),无单调减区间,所以不存在极值. 当0m >时,令1()0g x m x =-+=',得1x m =,当10x m <<时,()0g x '>,当1x m>时,()0g x '<,故函数()g x 的单调增区间为10m (,),单调减区间为1m+∞(,),此时函数()g x 在1x m =处取得极大值,极大值为111()ln 1ln g m m m m m=-⨯+=--,无极小值. 综上,当0m ≤时,函数()g x 的单调增区间为()0+∞,,无单调减区间,不存在极值.当0m >时,函数()g x 的单调增区间为10m ⎛⎫⎪⎝⎭,,单调减区间为1m ⎛⎫+∞ ⎪⎝⎭,,极大值为1ln m --,无极小值(2)当0m >时,假设存在[]12,1,2x x ∈,使得12()()f x g x >成立,则对[]1,2x ∈,满足max min ()()f x g x >由(1)(1ln )()3x x f x m x++=-[]1,2x ∈()可得,221(1ln 1)(1)(1ln )ln ()x x x x x x x f x x x +++-++-=='. 令[]()ln 1,2h x x x x =-∈(),则1()10h x x'=-≥,所以()h x 在[]1,2上单调递增,所以()(1)1h x h ≥=,所以()0f x '>,所以()f x 在[]1,2上单调递增,所以max (21)(1ln 2)3(1ln 2)()(2)3322f x f m m +++==-=-由(1)可知,①当101m<≤时,即m 1≥时,函数()g x 在[]1,2上单调递减,所以()g x 的最小值是(2)2ln 2g m =-+. ②当12m ≥,即102m <≤时,函数()g x 在[]1,2上单调递增, 所以()g x 的最小值是(1)g m =-.③当112m <<时,即112m <<时,函数()g x 在11,m ⎡⎤⎢⎥⎣⎦上单调递增,在1,2m ⎡⎤⎢⎥⎣⎦上单调递减.又(2)(1)ln 22ln 2g g m m m -=-+=-,所以当1ln 22m <<时,()g x 在[]1,2上的最小值是(1)g m =-.当ln 21m ≤<时,()g x 在[]1,2上的最小值是(2)ln 22g m =- 所以当0ln 2m <<时,()g x 在[]1,2上的最小值是(1)g m =-,故3(1ln 2)32m m +->-,解得3(1ln 2)4m +>,所以ln 20m >>. 当ln 2m ≤时,函数()g x 在[]1,2上的最小值是(2)ln 22g m =-,故3(1ln 2)3ln 222m m +->-, 解得3ln 22m +>,所以3ln 2ln 22m +≤<.故实数m 的取值范围是3ln 20,2+⎛⎫⎪⎝⎭1.本例第(2)问从形的角度看,问题的本质就是函数f (x )图象的最低点低于g (x )图象的最高点.2.题设中,使得成立可转化为,进而求出参数.例题:已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;②若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,∴()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ∴函数()f x 的最大值为(1)1f =-; (2)∵()a g x x x=+,∴2()1a g x x =-',(Ⅰ)由(1)知,1x =是函数()f x 的极值点,又∵函数()f x 与()ag x x x=+有相同极值点,∴1x =是函数()g x 的极值点,∴(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(ⅱ)∵211()2f ee =--,(1)1f =-,(3)92ln 3f =-+, ∵2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,∴1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(ⅰ)知1()g x x x =+,∴21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e为减函数,在(1,3]上为增函数,∵11110(),(1)2,(3)333g e g g e e =+==+=, 而11023e e <+<,∴1(1)()(3)g g g e <<,∴1[,3]x e∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立 12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,∵12()()(1)(1)123f x g x f g -≤-=--=-,∴312k ≥-+=-,又∵1k >,∴1k >, ②当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,∵121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,∴342ln 33k ≤-+,又∵1k <, ∴342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 类型四 “∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2)”与“∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2)”的辨析(1)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的目标是函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于g (x )在D 2上的最大值,即f (x )max <g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值.如图⑧.【例4】已知函数()42ln af x a x x x-=-++. (1)当4a ≥时,求函数()f x 的单调区间;(2)设()26xg x e mx =+-,当22a e =+时,对任意[)12,x ∈+∞,存在[)21x ∈+∞,,使得()()2122f x e g x +≥,求实数m 的取值范围.【解析】(1)函数()f x 的定义域为(0,)+∞,224()1a a f x x x -'=-++2(2)[(2)]x x a x ---=, 由()0f x '=,得2x =或2=-x a .当4a >即22a ->时,由()0f x '<得22x a <<-, 由()0f x '>得02x <<或2x a >-;当4a =即22a -=时,当0x >时都有()0f x '≥;∴当4a >时,单调减区间是(2,2)a -,单调增区间是(0,2),(2,)a -+∞;当4a =时,单调增区间是()0,∞+,没有单调减区间.(2)当22a e =+时,由(1)知()f x 在()22,e 上单调递减,在()2,e +∞上单调递增, 从而()f x 在[)2,+∞上的最小值为22()6f e e =--.对任意[)12,x ∈+∞,存在[)21x ∈+∞,,使得()()2212g x f x e ≤+,即存在[)21x ∈+∞,,使()g x 的值不超过()22e f x +在区间[)2,+∞上的最小值26e -.由2266xe e mx ≥+--,22e e xm x -∴≤.令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()22222()x x e x e xh x e x ---'=()232x x e xe e x+-=-,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22xxe xe e +-20xx xee >-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-,从而2m e e ≤-.“对任意x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2)”等价于“f (x )在(0,2)上的最小值大于或等于g (x )在[1,2]上的最小值”.例题:已知函数()()()11ln x x f x x++=,()()ln g x x mx m R =-∈ .(1)求函数()g x 的单调区间;(2)当0m >时,对任意的[]11,2x ∈,存在[]21,2x ∈,使得()()123f x m g x ->成立,试确定实数m 的取值范围.【解析】(1)由()()ln 0g x x mx x =->,得()'1g x m x=-.当0m ≤时,()'0g x >,所以()g x 的单调递增区间是()0,∞+,没有减区间.当0m >时,由()'0g x >,解得10x m <<;由()'0g x <,解得1x m >,所以()g x 的单调递增区间是10,m ⎛⎫ ⎪⎝⎭,递减区间是1,m ⎛⎫+∞⎪⎝⎭.综上所述,当0m ≤时,()g x 的单调递增区间是()0,∞+,无递减区间;当0m >时,()g x 的单调递增区间是10,m ⎛⎫ ⎪⎝⎭,递减区间是1,m ⎛⎫+∞ ⎪⎝⎭.(2)当0m >时,对任意[]11,2x ∈,存在[]21,2x ∈,使得()()123f x m g x ->成立,只需()()min min 3f x m g x ->成立. 由()()()11ln ln 1ln 1x x x f x x xxx++==+++,得()'2221ln 11ln x x x f x x xx x --=+-=.令()()ln 0h x x x x =->,则()'1x h x x-=.所以当()0,1x ∈时,()'0h x <,当()1,x ∈+∞时,()'0h x >.所以()h x 在()0,1上递减,在()1,+∞上递增,且()11h =,所以()()()min 110h x h x h ≥==>.所以()'0f x >,即()f x 在()0,∞+上递增,所以()f x 在[]1,2上递增,所以()()min 12f x f ==.由(1)知,当0m >时,()g x 在10,m ⎛⎫ ⎪⎝⎭上递增,在1,m ⎛⎫+∞ ⎪⎝⎭上递减, ①当101m<≤即m 1≥时,()g x 在[]1,2上递减,()()min 2ln22g x g m ==-; ②当112m <<即112m <<时,()g x 在11,m ⎡⎫⎪⎢⎣⎭上递增,在1,2m ⎛⎤⎥⎝⎦上递减,()()(){}min min 1,2g x g g =,由()()()21ln22ln2g g m m m -=---=-,当1ln22m <≤时,()()21g g ≥,此时()()min 1g x g m ==-, 当ln21m <<时,()()21g g <,此时()()min 2ln22g x g m ==-, ③当12m ≥即102m <≤时,()g x 在[]1,2上递增,()()min 1g x g m ==-, 所以当0ln2m <≤时,()()min 1g x g m ==-,由0ln223m m m<≤⎧⎨->-⎩,得0ln2.m <≤当ln2m >时,()()min 2ln22g x g m ==-,由ln223ln22m m m>⎧⎨->-⎩,得 ln22ln2m <<-.∴ 02ln2m <<-.综上,所求实数m 的取值范围是()0,2ln2-.练习:1.已知函数ln ()xx af x e +=. (1)当1a =时,求()f x 的极值; (2)设()xg x xea -=-,对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,求实数a 的取值范围.【解析】(1)当1a =时,ln 1()xx f x e+=,所以函数()f x 的定义域为(0,)+∞, 所以1ln ()xx x xf x xe--'=,且0x xe >, 令()1ln h x x x x =--,所以当01x <<时,10,ln 0x x x -><, 所以()1ln 0h x x x x =-->. 又()2ln h x x '=--,所以当1x >时,()2ln 0h x x '=--<,所以()h x 在(1,)+∞上单调递减,故()(1)0h x h <=. 同理当01x <<时,()0f x '>; 当1x >时,()0f x '<,所以()f x 在(0,1)是单调递增,在(1,)+∞单调递减, 所以当1x =时,()f x 的极大值为1(1)f e=,无极小值. (2)令()()xm x xe f x ax =-,因为对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,所以()()12min max m x g x >.因为()()ln xm x xe f x ax x x =-=, 所以()1ln m x x '=+.令()0m x '>,即1ln 0x +>,解得1x e>;令()0m x '<,即1ln 0x +<,解得10x e<<. 所以()m x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以min 11()m x m e e⎛⎫==- ⎪⎝⎭. 因为()xg x xea -=-,所以()(1)xg x x e -'=-,当0x >时0x e ->,令()0g x '>,即10x ->,解得01x <<;令()0g x '<,即10x -<,解得1x >. 所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以max 1()(1)g x g a e==-, 所以11a e e->-, 所以2a e >,即实数a 的取值范围为2,e ⎛⎫+∞ ⎪⎝⎭. 2.已知函数()f x 满足:①定义为R ;②2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解. 【解析】(1)2()2()9x xf x f x e e +-=+-,…① 所以2()2()9xx f x f x e e ---+=+-即1()2()29xxf x f x e e -+=+-…② 由①②联立解得:()3xf x e =-. (2)设2()(2)6x x a x ϕ=-+-+,()()()1333x x x F x x e e xe x =--=+--,依题意知:当11x -≤≤时,min max ()()x F x ϕ≥()()33x x x x F x e e xe xe '+=-+=-+又()(1)0x F x x e ''=-+<在(1,1)-上恒成立,所以()F x '在[1,1]-上单调递减()(1)30min F x F e ∴'='=-> ()F x ∴在[1,1]-上单调递增,max ()(1)0F x F ∴==(1)70(1)30a a ϕϕ-=-≥⎧∴⎨=+≥⎩,解得:37a -≤≤实数a 的取值范围为[3,7]-. (3)()g x 的图象如图所示:令()T g x =,则()1g T =1232,0,ln 4T T T ∴=-==当()2g x =-时有1个解3-,当()0g x =时有2个解:(1-、ln3,当()ln 4g x =时有3个解:ln(3ln 4)+、1-. 故方程[()]10g g x -=的解分别为:3-,(1-、ln3,ln(3ln 4)+、1-3.已知函数()2ln h x ax x =-+.(1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=-- 化简得:322ln 220x y +-+=()2对函数求导可得,()()221'0ax ax f x x x-+=>令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得121,1x x a a=-=+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<2112x ∴=+<+()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在122⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+0122x ⎡⎤∴∃∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意②当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦4.已知函数()321(1)32a x x ax f x +=-+.(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)对于任意1x ,2[02]x ∈,,都有122()()3f x f x -≤,求实数a 的取值范围.【解析】(Ⅰ)当1a =时,因为()3213x x x f x =-+所以()221x x f x =-+',(0)1f '=.又因为(0)0f =,所以曲线()y f x =在点()0,(0)f 处的切线方程为y x =. (Ⅱ)因为()321(1)32a x x ax f x +=-+,所以2()(1)0f x x a x a '=-++=.令()0f x '=,解得x a =或1x =. 若1a >,当()0f x '>即1x <或x a >时, 故函数()f x 的单调递增区间为()(),1,,a -∞+∞;当()0f x '<即1x a <<时,故函数()f x 的单调递减区间为()1,a . 若1a =,则22()21(1)0f x x x x '=-+=-≥,当且仅当1x =时取等号,故函数()f x 在(),-∞+∞上是增函数. 若1a <,当()0f x '>即x a <或1x >时, 故函数()f x 的单调递增区间为()(),,1,a -∞+∞;当()0f x '<即1<<a x 时,故函数()f x 的单调递减区间为(),1a .综上,1a >时,函数()f x 单调递增区间为(1)()a -∞∞,,,+,单调递减区间为(1,)a ; 1a =时,函数()f x 单调递增区间为(,)-∞+∞;1a <时,函数()f x 单调递增区间为()(1)a -∞∞,,,+,单调递减区间为(,1)a .(Ⅲ) 由题设,只要()()max min 23f x f x -≤即可. 令2()(1)0f x x a x a '=-++=,解得x a =或1x =.当0a ≤时,随x 变化,(),()f x f x ' 变化情况如下表:由表可知(0)0(1)f f =>,此时(2)(1)3f f ->,不符合题意.当01a <<时,随x 变化,()()'f x f x , 变化情况如下表:由表可得32(0)0()(1)(2)62263f f a a a f a f ==-+=-=,,,,且(0)()f f a <,(1)(2)f f <,因()()2203f f -=,所以只需()(2)(1)(0)f a f f f ≤⎧⎨≥⎩,即3211262311026a a a ⎧-+≤⎪⎪⎨⎪-≥⎪⎩ ,解得113a ≤<.当1a =时,由(Ⅱ)知()f x 在[]0,2为增函数, 此时()()()()max min 2203f x f x f f -=-=,符合题意. 当12a <<时,同理只需(1)(2)()(0)f f f a f ≤⎧⎨≥⎩,即3211226311062a a a ⎧-≤⎪⎪⎨⎪-+≥⎪⎩ ,解得513a <≤.当2a ≥时,2()(1)32f f >=,()2()0(311)f f f =->,不符合题意. 综上,实数a 的取值范围是15,33⎡⎤⎢⎥⎣⎦.5.已知函数()ln f x x x x =+,()x x g x e=. (1)若不等式()()2f xg x ax ≤对[)1,x ∈+∞恒成立,求a 的最小值; (2)证明:()()1f x x g x +->.(3)设方程()()f x g x x -=的实根为0x .令()()()00,1,,,f x x x x F x g x x x ⎧-<≤⎪=⎨>⎪⎩若存在1x ,()21,x ∈+∞,12x x <,使得()()12F x F x =,证明:()()2012F x F x x <-.【解析】(1)()()2f xg x ax ≥,即()2ln x x x x x ax e +⋅≥,化简可得ln 1x x a e+≤. 令()ln 1x x k x e+=,()()1ln 1xx x k x e -+'=,因为1x ≥,所以11x ≤,ln 11x +≥. 所以()0k x '≤,()k x 在[)1,+∞上单调递减,()()11k x k e≤=. 所以a 的最小值为1e. (2)要证()()1f x x g x +->,即()ln 10xxx x x e +>>. 两边同除以x 可得11ln x x x e+>. 设()1ln t x x x =+,则()22111x t x x x x-'=-=. 在()0,1上,()0t x '<,所以()t x 在()0,1上单调递减.在()1,+∞上,()0t x '>,所以()t x 在()1,+∞上单调递增,所以()()11t x t ≥=.设()1x h x e=,因为()h x 在()0,∞+上是减函数,所以()()01h x h <=. 所以()()t x h x >,即()()1f x x g x +->.(3)证明:方程()()f x g x x -=在区间()1,+∞上的实根为0x ,即001ln x x e =,要证 ()()2012F x F x x <-,由()()12F x F x =可知,即要证()()1012F x F x x <-.当01x x <<时,()ln F x x x =,()1ln 0F x x '=+>,因而()F x 在()01,x 上单调递增. 当0x x >时,()x x F x e =,()10xxF x e -'=<,因而()F x 在()0,x +∞上单调递减. 因为()101,x x ∈,所以0102x x x ->,要证()()1012F x F x x <-. 即要证01011122ln x x x x x x e --<.记()0022ln x xx xm x x x e --=-,01x x <<.因为001ln x x e =,所以0000ln x x x x e =,则()00000ln 0x x m x x x e=-=. ()0000022212121ln 1ln x x x x x xx x x x m x x x e e e ---+--'=++=++-.设()t t n t e =,()1tt n t e-'=,当()0,1t ∈时,()0n t '>. ()1,t ∈+∞时,()0n t '<,故()max 1n t e=. 且()0n t >,故()10n t e <<,因为021x x ->,所以002120x x x xe e ---<<. 因此()0m x '>,即()m x 在()01,x 上单调递增. 所以()()00m x m x <=,即01011122ln x x x x x x e --<.故()()2012F x F x x <-得证.6.已知函数()()sin ,ln f x x a x g x x m x =-=+.(1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立; (2)求函数()g x 的极值;(3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <.【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤,()11cos 0a f x a x '∴≤=-≥,, ()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立; (2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=> 当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值 当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值. (3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数, 由(2)知,当0m ≥,()g x 在()0+∞,上为增函数, 这时,()()f x g x +在()0+∞,上为增函数, 所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠ 所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--② 由①②式可得:()()()2121211ln ln 22m x x x x x x -->--- 即()()21213ln ln 02m x x x x -->-> 又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③ 又要证12249x x m <,即证21294m x x > 120,0m x x <<<即证m ->所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x xx x -> 设211x t x =>,只需证1ln t t->即证()ln 01t t ->> 令()()ln 1h t t t => 由()()()2101h t t h t '=>>,在()1+∞,上为增函数, ()()10h t h∴>=2121ln ln x x x x -∴>-,所以由③知,0m ->>成立, 所以12249x x m <成立.7.已知函数21()ln 1()2f x x a x a R =-+∈. (1)讨论函数()f x 的单调性;(2)若20a -≤<,对任意[]12,1,2x x ∈,不等式121211()()f x f x m x x -≤-恒成立,求实数m 的取值范围.【解析】(1)∵依题意可知:函数()f x 的定义域为()0,∞+,∴2()a x af x x x x-'=-=,当0a ≤时,()0f x '>在()0,∞+恒成立,所以()f x 在()0,∞+上单调递增. 当0a >时,由()0f x '>得x ()0f x '<得0x <<综上可得当0a ≤时,()f x 在()0,∞+上单调递增; 当0a >时,()f x在(上单调递减;在)+∞上单调递增.(2)因为20a -≤<,由(1)知,函数()f x 在[]1,2上单调递增, 不妨设1212x x ≤≤≤,则121211()()f x f x mx x -≤-, 可化为2121()()m m f x f x x x +≤+, 设21()()ln 12m mh x f x x a x x x=+=-++,则12()()h x h x ≥, 所以()h x 为[]1,2上的减函数, 即2()0a mh x x x x=--≤'在[]1,2上恒成立,等价于3m x ax ≥-在[]1,2上恒成立, 设3()g x x ax =-,所以max ()m g x ≥,因20a -≤<,所以2()30>'=-g x x a ,所以函数()g x 在[]1,2上是增函数,所以max ()(2)8212g x g a ==-≤(当且仅当2a =-时等号成立) 所以12m ≥.8.已知函数()()2log ln a f x x x x =+-,1a >.(1)求证:()f x 在()1,+∞上单调递增;(2)若关于x 的方程()1f x t -=在区间()0,∞+上有三个零点,求实数t 的值; (3)若对任意的112,,x x a a -⎡⎤∈⎣⎦,()()121f x f x e -≤-恒成立(e 为自然对数的底数),求实数a 的取值范围. 【解析】(1)()()2ln 1'21ln x f x xx a =⋅+-,∵1x >,∴()'0f x >,故()f x 在()1,+∞上单调递增. (2)()()()()2222ln ln ln 'ln x x a a f x x a +-=,令()()()222ln ln ln g x x x a a =+-,()()22'ln 0g x a x=+>,()10g =, 故当()0,1x ∈,()'0g x <,()1,x ∈+∞,()'0g x >,即()f x 在()0,1x ∈上单调递减;在()1,x ∈+∞上单调递增.()11f =,若()()11f x t f x t -=⇔=±在区间()0,∞+上有三个零点,则11t -=,2t =. (3)()f x 在1,1x a -⎡⎤∈⎣⎦上单调递减;在(]1,x a ∈上单调递增.故()()min 11f x f ==,()()max 1max ,f x f f a a ⎧⎫⎛⎫=⎨⎬⎪⎝⎭⎩⎭, 令()()112ln h a f f a a a a a ⎛⎫=-=+-⎪⎝⎭,∴()0h a <, 故()max 1ln f x a a =+-,∴ln 1ln 1a a e a a e -≤-⇒-≤-, 因为1a >,设()ln a a a ϕ=-则1'()10a aϕ=->,故()ln a a a ϕ=-为增函数, 又()ln 1e e e e ϕ=-=-. ∴(]1,a e ∈.9.已知函数()ln f x a x x b =-+,其中,a b ∈R . (1)求函数()f x 的单调区间;(2)使不等式()ln f x kx x x a ≥--对任意[]1,2a ∈,[]1,x e ∈恒成立时最大的k 记为c ,求当[]1,2b ∈时,b c +的取值范围.【解析】(1)因()f x 的定义域为()0,∞+,()()'10af x x x=->, 当0a ≤时,()'0f x <,∴()f x 在()0,∞+上单调递减; 当0a >时,()'f x 在()0,∞+上单调递减,()'0f a =, ∴()f x 在()0,a 上单调递增,在(),a +∞单调递减; (2)()()l ln n f x kx x x f x x x a k x a ++⇒≤≥--()1ln ln a x x x x bx+-++=. ∵[]1,2a ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln 'x x x x b x x b g g x x x x +-++-+-=⇒=,由(1)()ln p x x x b ⇒=-+-在()1,+∞上递增;(1)当()10p ≥,即1b =时[]1,x e ∈,()()0'0p x g x ≥⇒≥,∴()g x 在[]1,e 上递增; ∴()()min 122c g x g b b c b ===⇒+==.(2)当()0p e ≤,即[]1,2b e ∈-时[]1,x e ∈,()()0'0p x g x ≤⇒≤,∴()g x 在[]1,e 上递减;∴()()min 22b b c g x g e b c b e e ++===⇒+=+14,2e ee ⎡⎤∈++⎢⎥⎣⎦.(3)当()()10p p e <时,()ln p x x x b =-+-在上递增; 存在唯一实数()01,x e ∈,使得()00p x =,则当()01,x x ∈时()()0'0p x g x ⇒<⇒<.当()0,x x e ∈时()()0'0p x g x ⇒>⇒>. ∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+.此时00ln b x x =-. 令()()()11ln '10x h x x x h x h x x x-=-⇒=-=>⇒在[]1,e 上递增, ()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,42,2b c e ⎡⎤+∈+⎢⎥⎣⎦. 10.设函数()212ln 222a f x ax x x -=+++,a R ∈. (1)当2a =时,求函数()f x 在点()()1,1f 处的切线方程; (2)2x =是函数()f x 的极值点,求函数()f x 的单调区间; (3)在(2)的条件下,()217ln 422g x x x x ⎛⎫=-++-⎪⎝⎭,若[)11,x ∀∈+∞,()20,x ∃∈+∞,使不等式()()1122mf xg x x x -≥+恒成立,求m 的取值范围. 【解析】(1)()f x 的定义域为()0,∞+,2a =时,()2ln 2f x x x =++,()12f x x x'=+, ()13f '=,()13f =,所以切线方程为()331y x -=-,即30x y -=.(2)()()22221222ax a x a f x ax x x+-+-'=++=, 2x =是函数的极值点,()8422204a a f +-+'==,可得1a =-,所以()2232(0)2x x f x x x-++'=>,令()0f x '>,即22320x x --<,解得1,22x ⎛⎫∈-⎪⎝⎭,结合定义域可知()f x 在()0,2上单调递增,在()2,+∞上单调递减. (3)令()()()2ln ln 26h x f x g x x x x x =-=+++,[)11,x ∀∈+∞,[)20,x ∃∈+∞, 使得()()1122m f x g x x x -≥+恒成立,等价于()()2min21mh x x x x ≥+≥⎡⎤⎣⎦,()12ln 2h x x x x x'=++-,因为1x ≥,所以2ln 0x x ≥,12x x+≥,即()'0h x ≥, 所以()h x 在[)1,+∞上单调递增,()()14h x h ≥=, 即()20,x ∃∈+∞使得函数4mx x+≤,即转化为240x x m -+≤在()0,∞+有解, ()22424x x m x m -+=--+,所以40m -+≤,4m ≤.。
7.3基本不等式及其应用基础篇考点基本不等式及其应用1.(2023届安徽示范高中联考二,7)下列几个不等式中,不能取到等号的是()A.√x1√x≥2(x>0)B.|x|+2|x|≥2√2(x≠0)C.-4x −x16≥1(x<0)D.√x2+5√x2+5≥2(x∈R)答案D2.(2021云南曲靖第二中学二模,3)已知a,b,c∈(0,+∞),3a-2b+c=0,则√acb的()A.最大值是√3B.最大值是√33C.最小值是√3D.最小值是√33答案B3.(2021昆明一中模拟,9)函数y=ln x+1lnx的值域为()A.(-∞,-2]B.[2,+∞)C.(-∞,-2]∪[2,+∞)D.[-2,2]答案C4.(2021新疆巴州第二中学模拟,11)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示,点F在半圆O上,点C在直径AB 上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为()A.a+b2≥√ab(a>0,b>0)B.a2+b2≥2√ab(a>0,b>0)C.2aba+b≤√ab(a>0,b>0)D.a+b2≤√a2+b22(a>0,b>0)答案D5.(2022陕西省西安中学一模,8)下列结论正确的是()A.当x>0且x≠1时,lg x+1lgx≥2B.x<0时,6+x+4x的最小值是10C.2√x2+45 2D.当x∈(0,π)时,sin x+4sinx的最小值为4答案C6.(2018天津,13,5分)已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为.答案147.(2019江苏,10,5分)在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P 到直线x+y=0的距离的最小值是.答案 48.(2019天津,13,5分)设x>0,y>0,x+2y=5,则√xy的最小值为.答案4√3综合篇考法利用基本不等式求最值考向一配凑法求最值1.(2022山西怀仁一中二模,6)函数y=3x+43x−1(x>13)的最小值为()A.8B.7C.6D.5 答案D2.(2022江西十七校期中,8)函数f(x)=4x+2x+1+52x+1的值域为()A.[5,+∞)B.[4,+∞)C.(5,+∞)D.(4,+∞)答案B3.(2022南昌八一中学三模,8)已知实数a,b满足aa+1+bb+1=1,且a>2b,则a2+4b2a−2b的最小值为()A.1B.2√2C.4D.4√2答案C4.(2022陕西咸阳模拟,9)已知3a=5b=√15,则下列选项错误的是()A.a+b=2abB.ab>1C.log2a+log2b>0D.(a−12)2+(b−12)2<12答案D5.(2020天津,14,5分)已知a>0,b>0,且ab=1,则12a +12b+8a+b的最小值为.答案 46.(2020江苏,12,5分)已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是.答案457.(2023届鄂西北六校期中,15)已知-3<x<0,则f(x)=x√9−x2的最小值为.答案-92考向二常数代换法求最值1.(2023届山西临汾期中,6)已知a>0,b>0,a+1b =2,则4a+b的最小值是()A.72B.4 C.92D.5答案C2.(2022哈尔滨尚志中学月考二,8)若实数x+3y=3(x>1,y>13),则xx−1+3y3y−1的最小值为()A.6B.4C.3D.2答案A3.(2022江西赣州期末,8)已知函数y=a x-1+2(a>0,且a≠1)的图象恒过点A,且点A在直线mx-y+n=0(m>0,n>0)上,则1m +1n+1的最小值为()A.4B.3C.2D.1 答案D4.(2022天津河北一模,14)已知a>0,b>0,且a+b=1,则aa+1+bb+1的最大值为.答案23考向三两次及以上使用基本不等式求最值1.(2021天津,13,5分)若a>0,b>0,则1a +ab2+b的最小值为.答案2√22.(2017天津,12,5分)若a,b∈R,ab>0,则a 4+4b4+1ab的最小值为.答案 4专题综合检测一、选择题1.(2023届安徽蚌埠质检一,2)若a,b∈R且ab≠0,则“ab<1”是“a<b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案D2.(2020浙江,3,4分)若实数x,y满足约束条件{x−3y+1≤0,x+y−3≥0,则z=x+2y的取值范围是()A.(-∞,4]B.[4,+∞)C.[5,+∞)D.(-∞,+∞)答案B3.(2023届皖优联盟阶段测试一,6)下列说法正确的是()A.若a>b,c<0,则a2c<b2cB.若a>b,则a3c2>b3c2C.若a<b<0,则a2>ab>b2D.函数y=2√x2+42√2答案C4.(2023届江西贵溪实验中学月考一,6)已知关于x的不等式mx−1x+3>0的解集为(m,n),则m+n的值为()A.-5B.-103C.-4D.-5或-103答案B5.(2022河南开封模拟,6)一家黄金店铺使用一架两臂不等长的天平称黄金.一位顾客到店里购买10 g黄金,售货员先将5 g的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5 g的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客,若顾客实际购得的黄金为m g,则() A.m>10 B.m=10C.m<10D.以上都有可能答案A6.(2022安徽一模,8)曲线y =2x上存在点(x ,y )满足约束条件{x −y −3≤0,x +y −3≥0,y ≤m,则m 的最小值为( )A.1B.2C.3D.4 答案 B7.(2023届山西晋中平遥二中月考,8)已知a ,b ,c ∈R 且a +b +c =0,a >b >c ,则a 2+c 2ac 的取值范围是( )A.[2,+∞)B.(-∞,-2]C.(−52,−2] D.(2,52] 答案 C8.(2022安徽协作体联考,9)若a >0,b >0,4ab +b -1=0,则a +b 的最小值为 ( )A.34 B.1 C.√17−18 D.√17+18答案 A9.(2022河南商丘模拟,9)若正实数a ,b 满足a >b ,且ln a ·ln b >0,则下列不等式一定成立的是( )A.log a b <0B.a -1b >b −1a C.2ab +1<2a +b D.a b -1<b a -1 答案 D10.(2022陕西咸阳二模,11)若x >0,y >0且x +y =2,则下列结论中正确的是 ( )A.x 2+y 2的最小值是1B.xy 的最大值是14C.2x +1y 的最小值是4√2 D.√x +√y 的最大值是2 答案 D11.(2022兰州西北师大附中期中,11)若关于x 的不等式(ax -1)2<x 2恰有2个整数解,则实数a 的取值范围是( )A.{a|−32<a ≤−43或43<a ≤32} B.{a|−32<a ≤−43或43≤a <32} C.{a|−32≤a <−43或43<a ≤32} D.{a|−32≤a <−43或43≤a <32} 答案 B12.(2022全国甲,12,5分)已知a =3132,b =cos 14,c =4sin 14,则 ( )A.c >b >aB.b >a >cC.a >b >cD.a >c >b 答案 A 二、填空题13.(2017江苏,10,5分)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 答案 3014.(2022江西新余月考,13)设0<m <12,若2m +21−2m ≥k 恒成立,则k 的最大值为 . 答案 6+4√215.(2022豫北名校联盟期中联考,15)在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为 . 答案 116. (2022河南名校联盟11月月考,16)已知a >0,b ≠0,且a +|b |=3,则9a +b+3|b|的最小值为 . 答案 3+2√3。
高考数学复习考点知识归纳专题解析专题20基本不等式考点知识归纳常考点01 不等式性质及其应用 (1)【典例1】 ................................................................................................................................................ 1 【考点总结与提高】 ............................................................................................................................... 2 【变式演练1】 ........................................................................................................................................ 2 常考点02不等式解法 . (3)【典例2】 ................................................................................................................................................ 3 【考点总结与提高】 ............................................................................................................................... 4 【变式演练2】 ........................................................................................................................................ 4 常考点03 含参不等式恒成立问题的求解策略 .. (4)【典例3】 ................................................................................................................................................ 5 【考点总结与提高】 ............................................................................................................................... 6 【变式演练3】 ........................................................................................................................................ 7 常考点04基本不等式应用 .. (8)【典例4】 ................................................................................................................................................ 8 【考点总结与提高】 ............................................................................................................................... 9 【变式演练4】 ........................................................................................................................................ 9 常考点05线性目标函数的最值问题 .. (10)【典例5】 .............................................................................................................................................. 10 【考点总结与提高】 ............................................................................................................................. 11 【变式演练5】 ...................................................................................................................................... 11 【冲关突破训练】 .. (12)常考点01 不等式性质及其应用【典例1】1.(2021年天津卷)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为A.a b c <<B.c a b <<C.b c a <<D.a c b <<【答案】D【解析】22log 0.3log 10<=,0a ∴<,122225log 0.4log 0.4log log 212=-=>=,1b ∴>,0.3000.40.41<<=,01c ∴<<,a c b ∴<<.故选:D.2.(2021年新高考2卷)已知,,,则下列判断正确的是() A. B.C.D.【答案】C【解析】,即.故选:C.【考点总结与提高】比较大小的常用方法:(1)作差法的一般步骤是:作差,变形,定号,得出结论.注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论. 注意:作商时各式的符号为正,若都为负,则结果相反. (3)介值比较法:①介值比较法的理论根据是:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值. ②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值. (4)利用单调性比较大小.(5)函数法,即把要比较的数值通过构造函数转化为该函数的函数值,然后利用函数的单调性将其进一步转化为自变量的大小问题来解决.【变式演练1】1.已知2log 0.2a =,0.22b =,0.30.2c =,则()5log 2a =8log 3b =12c =c b a<<b a c <<a cb <<a bc <<55881log 2log log log 32a b =<==<=a c b <<A .a b c <<B .a c b <<C .c a b <<D .b c a << 【答案】B 【解析】依题意, , 因为, 所以, 所以.故选B .2.(设3.0log 3.0log 22.0==b a ,,则( )A .0<<+ab b aB .0<+<b a abC .ab b a <<+0D .b a ab +<<0 【答案】B【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a bab+<<. 又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .常考点02不等式解法【典例2】1.(2021年浙江卷)设集合{}|1A x x =≥,{}|12B x x =-<<则A B =().A .{}|1x x >-B .{}|1x x ≥C .{}|11x x -<<D .{}|12x x <【答案】D【解析】由交集运算,得{|12}AB x x =≤<,故选D .2.设全集U =R ,集合{}2{1},230A xx B x x x =<=--<∣∣,则()U A B =() A .{31}xx -<∣ B .{11}x x -<∣ C .{13}x x -<<∣ D .{13}xx <∣ 【答案】D【解析】因为集合{1}A xx =<∣,所以{1}U A x x =∣C . 因为{()(){}2230}310{13}B xx x x x x x x =--<=-+<=-<<∣∣∣,所以(){13}U A B x x ⋂=<∣. 故选:D .22log 0.2log 10a ==<0.20221b ==>0.3000.20.21=<<0.30.201c =∈(,)a c b <<【考点总结与提高】由一元二次不等式与相应的方程、函数之间的关系可知,求一元二次不等式的解集的步骤如下: (1)变形:将不等式的右边化为零,左边化为二次项系数大于零的不等式,即20(0)ax bx c a ++>>或20(0)ax bx c a ++<>;(2)计算:求出相应的一元二次方程(20(0)ax bx c a ++=>)的根,有三种情况:0,0∆,∆∆=0<>;(3)画图:画出对应二次函数的图象的草图;(4)求解:利用二次函数的图象与x 轴的交点确定一元二次不等式的解集.【变式演练2】1.已知集合{}2|log 2A x x =≤,{}2|60B x x x =--≤,则A B =()A .{}|04x x <≤B .{}|24x x -≤≤C .{}|03x x <≤D .{}|03x x x <≤或 【答案】C【解析】∵{}{}2|log 2|04A x x x x =≤=<≤,{}{}2|60|23B x x x x x =--≤=-≤≤,∴{}|03A B x x =<≤, 故选:C .2.记全集U =R ,集合{}260A x x x =--≤,集合401x B xx -⎧⎫=≥⎨⎬-⎩⎭,则()UA B =()A .()1,4B .[]0,2C .()1,3D .[]1,3【答案】D【解析】由260x x --≤得()()3+20x x -≤,即23x -≤≤,所以集合[]2,3A =-, 由401x x -≥-得4x ≥或1x <,所以集合()[),14,B =-∞+∞,所以[)U14B =,,所以()[]U13AB =,,故选:D.常考点03 含参不等式恒成立问题的求解策略【典例3】1.已知函数222,0,()ln(1),0,x x x f x x x ⎧---≤=⎨+>⎩若关于x 的不等式1()2f x ax a ≤+-在R 上恒成立,则实数a 的取值范围是()A.12e -⎡⎢⎣B .122,e ⎤⎥⎦C.12e -⎡⎢⎣D.12e ⎡⎢⎣【答案】A【解析】画出函数()f x 的图像如图所示.1()2f x ax a ≤+-在R 上恒成立即函数()y f x =的图像恒在直线12y ax a =+-的图像的下方, 且直线12y ax a =+-过定点11,2⎛⎫-- ⎪⎝⎭,当直线与ln(1)(0)=+>y x x 相切时,设切点()()00,ln 1P x x +,11y x '=+, 可得()0001ln 11211x x x ++=++,解得120e 1x =-,则直线斜率为12e -,即12e a -=; 当直线与222(0)y x x x =---≤相切时,此时由21222ax a x x +-=---, 得23(2)02x a x a ++++=,令2(2)460a a ∆=+--=,得a =a =,所以由图像可知12e a -≤≤2.已知不等式()22log 251ax x -+>的解集为R ,则a 的取值范围是________【答案】103a <<【解析】所给条件等价于22252250ax x ax x ⎧-+>⎪⎨-+>⎪⎩的解集为R ,即2230ax x -+>的解集为R ,由此可得:4120a a >⎧⎨∆=->⎩解得:103a << 答案:103a <<【考点总结与提高】解决含参不等式恒成立问题的关键是转化与化归思想的运用,从解题策略的角度看,一般而言,针对不等式的表现形式,有如下四种策略:(1)变换主元,转化为一次函数问题.解决恒成立问题一定要搞清谁是主元,谁是参数.参数和未知数是相互牵制、相互依赖的关系,有时候变换主元,可以起到事半功倍的效果. (2)联系不等式、函数、方程,转化为方程根的分布问题.(3)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.常转化为求二次函数的最值或用分离参数法求最值.即①若()f x 在定义域内存在最大值m ,则()f x a < (或()f x a ≤)恒成立⇔a m >(或a m ≥); ②若()f x 在定义域内存在最小值m ,则()f x a > (或()f x a ≥)恒成立⇔a m <(或a m ≤); ③若()f x 在其定义域内不存在最值,只需找到()f x 在定义域内的最大上界(或最小下界)m ,即()f x 在定义域内增大(或减小)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可以取到.(4)转化为两个函数图象之间的关系,数形结合求参数.在不等式恒成立问题的处理中,若能画出不等式两边相应的函数图象,恒成立的代数问题立即变得直观化,等价的数量关系式随之获得,数形结合可使求解过程简单、快捷.【变式演练3】1已知不等式()22log 362ax x -+>的解集为()(),1,+b -∞∞,则a =___,b =____【答案】1,2a b ==【解析】所解不等式()22222360log 36log 4364ax x ax x ax x ⎧-+>⎪⎨-+>⇒-+>⎪⎩,即22360320ax x ax x ⎧-+>⎪⎨-+>⎪⎩,观察可得只要x 让第二个不等式成立,则第一个一定成立。
第2讲基本不等式组基础关1.设非零实数a,b,则“a2+b2≥2ab”是“错误!+错误!≥2”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析因为a,b∈R时,都有a2+b2-2ab=(a-b)2≥0,即a2+b2≥2ab,而错误!+错误!≥2成立的条件是ab>0,所以“a2+b2≥2ab”是“错误!+错误!≥2"成立的必要不充分条件.2.已知a>0,b〉0,a,b的等比中项是1,且m=b+错误!,n=a+错误!,则m+n的最小值是()A.3 B.4C.5 D.6答案B解析由题意知ab=1,∴m=b+1a=2b,n=a+错误!=2a,∴m+n=2(a+b)≥4错误!=4,当且仅当a=b=1时取等号,故m +n的最小值为4.3.已知p=a+错误!,q=错误!x2-2,其中a>2,x∈R,则p,q的大小关系是()A.p≥q B.p>qC.p<q D.p≤q答案A解析由a>2,故p=a+错误!=(a-2)+错误!+2≥2+2=4,当且仅当a=3时取等号.因为x2-2≥-2,所以q =错误!x2-2≤错误!-2=4,当且仅当x=0时取等号,所以p≥q.故选A。
4.(2019·郑州外国语学校月考)若a>b>1,P=错误!,Q=错误!(lg a+lg b),R=lg 错误!,则()A.R<P<Q B.Q<P<RC.P<Q<R D.P<R<Q答案C解析因为a>b>1,所以lg a>0,lg b>0,且lg a≠lg b,所以错误!<错误!(lg a+lg b),由错误!<错误!,得lg错误!<lg 错误!.所以错误!(lg a+lg b)<lg 错误!,综上知P<Q<R.5.若正数x,y满足4x2+9y2+3xy=30,则xy的最大值是()A.错误!B.错误!C.2 D.错误!答案C解析由x>0,y〉0,得4x2+9y2+3xy≥2·(2x)·(3y)+3xy(当且仅当2x=3y时等号成立),∴12xy+3xy≤30,即xy≤2,∴xy的最大值为2.6.《几何原本》第二卷的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F在半圆O上,点C在半径OB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为()A.错误!≥错误!(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)C.错误!≤错误!(a>0,b>0)D。
专题2.2 基本不等式及其应用1.(2021·曲靖市第二中学高三二模(文))已知(),,0,a b c ∈+∞,320a b c -+=的( ) AB C D .最小值是3【答案】B 【解析】 由题意得32a cb +=,再代入所求式子利用基本不等式,即可得到答案; 【详解】因为320a b c -+=,所以32a cb +=, =≤3a c =. 故选:B.2.(2021·山东高三其他模拟)已知a b ,均为正实数,则“2aba b≤+”是“16ab ≤”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】取100,2a b ==可得由2ab a b ≤+推不出16ab ≤,反过来,由基本不等式可得由16ab ≤能推出2aba b≤+,然后可选出答案. 【详解】取100,2a b ==,则2002102ab a b =<+,但20016ab =>,所以由2ab a b≤+推不出16ab ≤, 练基础反过来,若16ab ≤,则2ab a b ≤=≤+,当且仅当4a b ==时取等号, 所以由16ab ≤能推出2ab a b ≤+,所以“2ab a b≤+”是“16ab ≤”的必要不充分条件, 故选:C3.(2021·吉林长春市·东北师大附中高三其他模拟(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的面积是()2214S b c =+ ,则ABC 的三个内角大小为( ) A .60A B C === B .90,45A B C === C .120,30A B C === D .90,30,60A B C ===【答案】B 【解析】由ABC 的面积是()2214S b c =+,利用面积公式及基本不等式判断出90A =︒,由b=c 得45B C ==. 【详解】因为222b c bc +≥,所以()221142S b c bc =+≥(当且仅当b=c 时取等号). 而ABC 的面积是1sin 2S bc A =, 所以11sin 22S bc A bc =≥,即sin 1A ≥,所以sin =1A , 因为A 为三角形内角,所以90A =︒. 又因为b=c ,所以90,45A B C ===. 故选:B4.(2021·浙江高三月考)已知实数x ,y 满足2244x y +=,则xy 的最小值是( )A .2-B .C .D .1-【答案】D 【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值性质进行求解即可. 【详解】由22224414x x y y +=⇒+=,令2cos sin x y θθ=⎧⎨=⎩, 因此2cos sin sin 2xy θθθ==,因为1sin 21θ-≤≤,所以11xy -≤≤, 因此xy 的最小值是1-, 故选:D5.(2021·北京高三二模)某公司购买一批机器投入生产,若每台机器生产的产品可获得的总利润s (万元)与机器运转时间t (年数,*t ∈N )的关系为22364s t t =-+-,要使年平均利润最大,则每台机器运转的年数t 为( ) A .5 B .6C .7D .8【答案】D 【解析】根据题意求出年平均利润函数。
基本不等式一、单选题解:(法一)11112x x y +=++可变形为311332x x y+=++, 所以11313132(42)[(33)(2)][(33)(2)]()22223322x y x y x x y x x y x x y +=+=+++-=++++-++ 13(2)333131[4](4223322222x y x x x y ++=++-+-=++,当且仅当233x y x +=+即x =,12y =- (法二)原式可得212x x y x+-=,则2131131122222222222x x x y x x x x x +-+=+=++⨯=,当且仅当3122x x=,即x ==”故选:C .解:a ,b R ∈,2a b +=. 则2222222112111()a b a b a b ab +++=+++++ 22222()226242(1)1()2()52()(1)4a b ab ab ab a b ab ab ab ab ab +-+---===++-+-+-+,令21(2)1(1)0t ab a a a =-=--=--, 则2242(1)42(1)44ab tab t ---=-++,令42(4)t s s -=,即42st -=, 可得2242432(4)4844ts s t s s -==-++-+, 由3232282s s s s+=当且仅当s =2t =-可得44328288s s-+- 则221111a b +++, 故选:C .解:设2x s +=,4y t +=,则67s t x y +=++=,即7s t +=,且1x y +=. 则222222(2)(4)448164164824x y s t s s t t s t x y s t s t s t---+-++=+=+=+-++-++ 41641641641612127125s t s t s t s t s t s t=+++-=+++-=++-=+- (7s t +=41611641164151164151)5(416)5()2777777s t s t s t s t t s t s t s +-=+++-=+--=, 当且仅当164s t t s =时,即73s =,143t =时,等号成立, 故选:B .解:2m n +=,0m >,0n >, (1)(2)5m n ∴+++=,即(1)(2)15m n +++=,∴23(1)1(2)11111121212m n m n m n m n m n +++++++=+=+++++++++ 11(1)(2)2()125m n m n +++=++⨯++ 21212()5512n m m n++=+++++ 1212112112214()551255555n m m n ++=+++⨯=+=++, 当且仅当2112n m m n ++=++,即3212m n ⎧=⎪⎪⎨⎪=⎪⎩时等号成立, ∴当3212m n ⎧=⎪⎪⎨⎪=⎪⎩时,2312m n m n +++++取得最小值145. 故选:B .的最小值为( ) 解:224240a ab b c -+-=, ∴2215()4416c b a b =-+,由柯西不等式得,222222156[()][2][2()]|2|416415b ba b a b a b-++-=+故当|2|a b+最大时,有4462ba-=,32a b∴=,210c b=,∴22234534511211()(2)2310222a b c b b b b bb-+=-+=-=--,12b=时,取得最小值为2-.故选:C.A.2 B.4 C.6 D.16 解:令2x b=-,2y a=-,则原式2222(2)(2)(2)(2)2y x y xxy x y++++=+=(2xy+(22216xy=.当且仅当2x y==时取等号.故选:D.的最小值为()解:直线l 的方程为235x y +=,点(,)P a b 在l 上位于第一象限内的点, 可得235a b +=,a ,0b >,可得4106a b =-,(35)b <, 则1216412311696a b b b+=+++-+ 116[(116)(96)]()2011696b b b b =-+++-+ 1966(116)726(7)201169620b b b b +-+=++-+,当且仅当966(116)11696b b b b+-=-+时,即b =,a =, 故选:C .解:由1x y +=,0y >得10y x =->, 解得1x <且0x ≠, ①当01x <<时,1||12||121x xx y x y +=+++, 122242x x x xx x x x +-=+=+--, 12115()2442424x x x x -=+++⨯=-, 当且仅当242x xx x-=-即23x =时取等号; ②当0x <时,1||1()2||121x xx y x y +=-+++, 121213()()1224244244x x x x x x x x x x x x -+---=-+=+=-++-+=-----,当且仅当242x xx x--=--即2x =-时取等号. 综上可得,最小值34故选:C .最大值为( )解:由22290a b b c -+-=,可得2229c a ab b =-+, ∴222211119922949222ab ab a b a b ab c a ab ba bb a abb a====+--++--, 当且仅当9a bb a=时,即当3a b =时,等号成立, 此时2222229(3)23912c a ab b b b b b b =-+=-⨯⨯+=,所以,22231123112121(1)11312a b c b b b b b b+-=+-=-+=--+, 当且仅当1b =时,等号成立,所以,3112a b c+-的最大值为1. 故选:C .10.若0a >,0b >,1ab a b =++,则2a b +的最小值为( )解:由1ab a b =++,可得(1)1a b b -=+,得11b a b +=-,由于0a >,0b >,则1b >, 所以,1(1)2222222212(1)322(3711111b b a b b b b b b b b b b +-++=+=+=++=+-+=-----,当且仅当22(1)11b b b ⎧-=⎪-⎨⎪>⎩时,即当2b =时,等号成立,因此,2a b +的最小值为7,故选:D .解法一:0a >,1b >-,且1a b +=,∴2221a b a b +++ 22111b a a b -+=+++ 2111a b a b =++-++ 212f a a=+=-(a ),02a <<, f ∴(a )121142[(2)]()(21)2222a aa a a a a a -=+-+=+++--142(3)22a aa a -=++- 14(23)2a -=. 当且仅当422a aa a-=-时取等号, 故2221a b a b +++. 故选:A .解法二:0a >,1b >-,且1a b +=,∴2221a b a b +++ 22111b a a b -+=+++ 2111a b a b =++-++ 212f a a=+=-(a ),02a <<,f ∴'(a )2221(2)a a =-+=-令f '(a )0>,得42a -<,f (a )单调递增,令f '(a )0<,得04a <<-f (a )单调递减,∴当且仅当4a =-f (a )取得极小值即最小值,(4f -==.ξ 故选:A .解:根据题意,148x y x y +=++,则2144()(8)()58()x y x y x y x y x y y x+=+++=++++, 变形可得:24()8()5x yx y x y y x+-+-=+, 又由4424x y x y y x y x+⨯,则有:2()8()90x y x y +-+-,设t x y =+,又由x ,0y >,则0t >,则有2890t t --, 解可得9t 或1t -, 又由0t >,则9t , 则x y +的最小值为9; 故选:B .)A .2B .4C .6D .8解:m ,(0,)n ∈+∞.若2m m n =+.则201n m n =>-,解得1n >. 则22222224222(1)242222()2(1)(1)m n n n n n n f n m n n n n n --+--=+--=+=--. 322334(332)4(2)(1)()(1)(1)n n n n n n n n f n n n -+---+'==--,令()0f n ',解得2n ,可得2n =,4m =时,()f n 取得最小值时,6m n +=. 故选:C .14.已知a ,(0,1)b ∈,不等式20ax x b ++对于一切实数x 恒成立,又存在0x R ∈,使解:由题意,不等式20ax x b ++对于一切实数x 恒成立,可得△0,即140ab -;存在0x R ∈,使2000bx x a ++=成立,则△0,即140ab -,41ab ∴=,消去b ,即1218422111414441a y ab a a a a =+=+=++------ 4121(4441)(4144)2443413a a a a a a =-+-⨯+-+-⨯+-- 14(41)2(44)142(6)242843444133a a a a --=++++⨯=+--. 当且仅当4(41)2(44)4441a a a a --=--取等号. 故选:B .15.设0a b c >>>,则2244269()a ac c ab a a b ++-+-的最小值是( ) A .4 B .5C .25D .8解:2244269()a ac c ab a a b ++-+- 2244(3)()a c a ab ab ab a a b =-+-+++- 244(3)()()a c ab a a b ab a a b =-+++-+- 0448++=,当且仅当30a c -=,2ab =,()2a a b -=时等号成立, 故选:D .16.已知实数a ,b ,c 满足222231a b c ++=,则2a b +的最大值是( )A .3B .2C .5D .3解:实数a ,b ,c 满足222231a b c ++=,22021a b ∴+,令cos a r θ=,sin b θ=,[0θ∈,2)π,01r .则2cos sin )sin()3a b r θθθθθϕ+=+=++,∴故选:A . 二、多选题17.在ABC ∆中,三边长分别为a ,b ,c ,且4abc =,则下列结论正确的是( ) A .224a b ab <+B .4ab a b ++>C .224a b c ++>D .4a b c ++<解:对于A ,224a b ab <+,即224a b ab -<,也就是()4ab a b abc -<=,ABC ∆中,0ab >,a b c -<,则()ab a b abc -<成立,故A 正确;对于B ,2221)11)1ab a b ab ab+++-=+-,当a b =时,不等式取“=”,此时244c ab a ==,a b c +>,即242a a>,得a >,22222ab a b ab a a a ++=+=++>+3232)(1.25) 2.5 4.06254>+=+=>,故B 正确;对于C ,222224a b c a bc abc +++=>,故C 正确;对于D ,边长为1,2,2的三角形,满足4abc =,当54a b c ++=>,故D 错误. 故选:ABC .A .7B .8C .9D .10解:因为a ,0b >且21a b +=, 所以193a b a b +++29(2)3a b a b a b a b ++=+++6(3)33a b a a b ba b a b++++=+++ 3163a b a b a b =+++++373a ba b a b =++++2222343734a ab b a ab b ++=+++ 22222342734a ab b b a ab b +++=+++2222834b a ab b =+++ 因为0a >,0b >,所以2222034b a ab b >++,所以22228834b a ab b +>++,因为2222222222222(34)6868881010343434b a ab b a ab a aba ab b a ab b a ab b++--++=+=-<++++++, 综上,198103a b a b<+<++, 所以193a b a b+++的值不可能是7,8,10. 故选:ABD .19.已知a ,b ,c R ∈,若2221a b c ++=,且(1)(1)(1)a b c abc ---=,则下列结论正确的是( ) A .1a b c ++= B .1ab bc ca ++< C .c 的最大值为1D .a 的最小值为1-解:由2221a b c ++=,可得:2221b c a +=-, 即22()21b c bc a +-=-.由(1)(1)(1)a b c abc ---=,得(1)(1)a bc b c abc ---+=, 化为:1a b c ab ac bc ++=+++,(1)(1)bc a b c ∴=-+-,代入22()2(1)(1)1b c a b c a +--+-=-,即22()2(1)()2(1)10b c a b c a a +--++--+=即22()2(1)()(1)0b c a b c a ++-++-=2(1)0b c a ∴++-=,1a b c ∴++=,1b c a ∴+=-,222()2b c b c+∴+, 22(1)12a a-∴-化为:23210a a --,解得113a -.a ∴的最小值为13-,同理可得c 的最大值为1,1a b c ++=,1a b c ab ac bc ++=+++,0ab ac bc ∴++=,故选项ABC 正确,D 错误, 故选:ABC .20.已知a ,b R +∈且1a b +=,那么下列不等式中,恒成立的有( )14ab 2ab32ab2b解:对于A ,a ,b R +∈且1a b +=,2()144a b ab +∴=,当且仅当12a b ==时,等号成立,即选项A 正确;对于B ,令t ab =,则104t<, 11y ab t ab t ∴=+=+在(0,1]4上单调递减, 111721444y∴+=>,即选项B 错误; 对于C ,1a b +=,∴111212122()()21323a b b a b a b a ab a ab a b a b a b a ++=+=+=+⋅+=+++++当且仅当2b aa b=,即a 时,等号成立, ∴11322a ab++,即选项C 错误;对于D ,21(11224a b a b ab +=++=++⨯=,∴2b ,即选项D 正确.故选:AD . 三、填空题解:2=,0a b ∴+>且22()a b +=,即0a b +>且2()84()11a b a b b +=++++,211112a b a b a b +++++=++,当且仅当a b =时取“= “,2()84()4(2)a b a b a b ∴++++++,当且仅当a b =时取“= “,即2()8()160a b a b +-+-,解得:442a b ++,当且仅当2a b ==+= “,又8110a b ++,2()84()11a b a b b +=++++,2()84()a b a b ∴+++,当11a b =-⎧⎨>⎩或11b a =-⎧⎨>⎩时取“= “,解得:223a b ++,当且仅当13a b =-⎧⎪⎨=+⎪⎩13b a =-⎧⎪⎨=+⎪⎩= “,()4max a b ∴+=+()2min a b +=+故答案为:4+2+解:2bca b c a++=, 22a ab ac bc ∴++=,22a abc b a+∴=-, 0c >,20b a ∴->,解法一:设2b a t -=,则0t >,2b t a =+;∴23939393939333(2)32373373(2)27aa t a a a t ab ct at a a t ta t====+++⨯++++++,当且仅当t a =时成立; ∴393ab c+的最大值为3. 解法二:由20b a ->,得2ba>, ∴393939393331232a b c b a b b b c b a a a b a ab a a===+++++-+-;设bx a=,则2x >, 所以1333()3313(2)723(2)767132222x f x x x x x x x x x +=+=++=-++-+=+=----, 当且仅当3x =时取等号,∴39393313a b c =+,即393ab c+的最大值为3. 故答案为:3.0)a b ,则a 解:若2312(0)ab a b +=,则0a ,0b ,有基本不等式1223223a b a b =+,(当且仅当3a =,2b =时“=”成立),得06ab , 又由22(23)12a b +=,得224914412a b ab +=-,令229494y a b =+++, 则222222222229(4)4(9)497212(18)(9)(4)4936(18)24(18)288b a a b ab y a b a b a b ab ab +++++-===+++++---+, 令18t ab =-,则,121818ab -,21224288ty t t =-+,(1218)t ,则22212(288)(24288)t y t t -'=-+,令0y '=,得t =t =-(舍去),∴当[12t ∈,时,0y '>,当t ∈18],0y '<∴函数21224288ty t t =-+,在区间当[12,上单调递增,在区间当,18]上单调递减,∴当t =y , 又因为,当12t =时,1y =,当18t =时,65y =,615<, 所以,y 的最小值为:1故答案为:1.13b a,则解:由13b ,13a ,可得13ab ,由13b,13a ,b a ,11a ,1b a ,1ba, 则2211211a b a b a bab b a ab b a+-=+--=,当且仅当1a b ==取得最小值1;设f (a )221a b =+-,13b a,可得f (a )的对称轴为a =,b <,f (a )在3b a 递增,1时,可得f 取得最大值;当13a ,且1<时,由f (1)22(32)(3220f b b b b -=---+=-<-<,则f 取得最大值232b b -+,由13b a ,可得1b =时,g (b )取得最大值0,则f (a )0,所以2213a b ab+-,综上可得,221a b ab+-的取值范围是[1.故答案为:[1.解:0x >,0y >,则3322224224628249109xy xy x y xy x y x y x x y y ++=++++22222338()8()39()410x y x y y x y x x y x y y x y x++==++++,可令3x yt y x=+,可得23t , 则222226288494xy xy t x y x y t t t+==++++,由4y t t=+在23t 递增,可得44232t t ++=, 可得838483t t⨯=+当且仅当x =时,上式取得等号, 则2222629xy xyx y x y +++解:令3b c x +=,84c a y +=,32a b z +=,则111386a x y z =-++,1312164b x y z =-+,11161612c x y z =+-,所以代数式961936113147()()()222384324882164264848248a b c y x y z x z b c c a a b x y z y z x ++=-++++++-+⨯+⨯+⨯=+++.当且仅当::1:2:3x y z =,即::10:21:1a b c =时,等号成立.故答案为:4748.解:根据题意,21(2)(2)55x x y x y =-++,21(2)(2)55y x y x y =+--,则222222212111[(2)(2)][(2)(2)](2)(2)555555x y x y x y x y x y x y x y +=-++++--=-++,又由221691(2)(2)x y x y +=-+,则22222222221169116(2)9(2)149[(2)(2)]()[25](255(2)(2)5(2)(2)55x y x y x y x y x y x y x y x y x y +-+=-++⨯+=⨯++⨯+=-+-+,当且仅当222216(2)9(2)(2)(2)x y x y x y x y +-=-+时等号成立,即22x y +的最小值为495; 故答案为:495.。