二元一次方程组及其解法
- 格式:doc
- 大小:37.50 KB
- 文档页数:12
3.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如 也是二元一次方程组.4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个.题型1:二元一次方程【例1-1】已知下列方程,其中是二元一次方程的有________. (1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6);(7);(8);(9);(10).举一反三:下列各方程中,是二元一次方程的是( ) A .=y+5x B .3x+2y=2x+2y C .x=y 2+1 D .题型2:二元一次方程的解【例2-1】下列数组中,是二元一次方程x+y=7的解的是( ) A .B .C .D .【例2-2】已知二元一次方程. ⎩⎨⎧=-=+52013y x x x ay b =⎧⎨=⎩2526x y x y +=⎧⎨+=⎩1222x y x y +=-⎧⎨+=-⎩102x +=251x y+=132x y +=280x y -=462x y +=3142x y +=(1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ; (3)用适当的数填空,使是方程的解.举一反三:1、若方程的一个解是,则a= .2、已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .题型3:二元一次方程组及方程组的解【例3-1】下列各方程组中,属于二元一次方程组的是( ) A .B .C .D .【例3-2】判断下列各组数是否是二元一次方程组的解.(1) (2)举一反三:2_______x y =-⎧⎨=⎩24ax y -=21x y =⎧⎨=⎩4221x y x y +=⎧⎨+=-⎩①②35x y =⎧⎨=-⎩21x y =-⎧⎨=⎩1、写出解为的二元一次方程组.知识点二:代入消元法1、消元法消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.消元的基本思路:未知数由多变少.消元的基本方法:把二元一次方程组转化为一元一次方程. 2、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便; ③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.题型1:用代入法解二元一次方程组 【例1-1】用代入法解方程组:的解为 .12x y =⎧⎨=-⎩【例1-2】用代入法解二元一次方程组:举一反三:1、若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.2、与方程组有完全相同的解的是( )A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .3、若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .题型2:由解确定方程组中的相关量 【例2-1】已知关于x ,y 的二元一次方程组的解互为相反数,求k 的值.【例2-1】若方程组的解为,试求的值.举一反三:524050x y x y --=⎧⎨+-=⎩①②2020x y x y +-=⎧⎨+=⎩22(2)0x y x y +-++=ax+by=11(5-a)x-2by+14=0⎧⎨⎩14x y =⎧⎨=⎩a b 、1、已知是二元一次方程组的解,则m﹣n的值是.知识点三:加减消元法1、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.2、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.题型1:加减法解二元一次方程组【例1-1】直接加减:已知21xy=⎧⎨=⎩是二元一次方程组21mx nynx my+=⎧⎨-=⎩的解,则3m n+的值为.【例1-2】先变系数后加减:2521 4323x yx y-=-⎧⎨+=⎩①②【例1-3】建立新方程组后巧加减:解方程组2511 524x yx y+=⎧⎨+=-⎩①②【例1-4】先化简再加减:解方程组0.10.3 1.3123x yx y+=⎧⎪⎨-=⎪⎩①②举一反三:1、已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.题型2:用适当方法解二元一次方程组【例2-1】(1)323112x yx y-=⎧⎨=-⎩(2)5(1)2(3)2(1)3(3)m nm n-=+⎧⎨+=-⎩举一反三:1、用两种方法解方程组29(1) 321(2) x yx y+=⎧⎨-=-⎩三、课堂练习一、选择题1.下列方程组是二元一次方程组的是()A.53x yz x+=⎧⎨+=⎩B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩2. 是方程ax﹣y=3的解,则a的取值是()A.5 B.﹣5 C.2 D.13. 方程组233x yx y-=⎧⎨+=⎩的解是()A .12x y =⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .11x y =⎧⎨=⎩ D .23x y =⎧⎨=⎩4.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解5.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( ) A .4和6 B .6和4C .2和8D .8和﹣26.对于方程3x-2y-1=0,用含y 的代数式表示x ,应是( ). A .1(31)2y x =- B .312x y += C .1(21)3x y =- D .213y x += 7.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解.则a-b 的值为( ).A .-1B .1C .2D .38.已知2|21|(27)0x y x y --++-=,则3x y -的值是( ) A .3 B .1 C .﹣6 D .8 9.用加减消元法解二元一次方程组231543x y x y +=⎧⎨-=⎩①②,下列步骤可以消去未知数x 的是( )A .①×4+②×3B .①×2-②×5C .①×5+②×2D .①×5-②×2 10.解方程组①3759y x x y =-⎧⎨+=-⎩,②3512,215 6.x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法 二、填空题11.已知方程2x+y ﹣5=0用含y 的代数式表示x 为:x= .12.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==13.若(a ﹣3)x+y |a|﹣2=1是关于x 、y 的二元一次方程,则a 的值是 .14.解方程组523,61,x y x y +=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.15.若方程3x-13y =12的解也是x-3y =2的解,则x =________,y =_______. 16.方程组的解是 .17.用加减法解方程组3634x y x y -=⎧⎨+=-⎩①②时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________. 18.若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 19.已知关于x ,y 的方程组271x y x y +=⎧⎨-=-⎩满足3x y +=,则k = .三、解答题20.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组. (1)甲数的13比乙数的2倍少7;(2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元.21.用代入法解下列方程组:一、选择题1.下列各方程中,是二元一次方程的是()A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=12. 关于,m n的两个方程23321m n m n-=+=与的公共解是()A.3mn=⎧⎨=-⎩B.11mn=⎧⎨=-⎩C.12mn=⎧⎪⎨=⎪⎩D.122mn⎧=⎪⎨⎪=-⎩3.利用代入消元法解方程组,下列做法正确的是()A.由①得x= B.由①得y=C.由②得y= D.由②得y=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13- C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.用加减消元法解二元一次方程组时,必须使这两个方程中()A.某个未知数的系数是1 B.同一个未知数的系数相等C.同一个未知数的系数互为相反数 D.某一个未知数的系数的绝对值相等7.方程组231498x yx y+=-⎧⎨-=⎩的解是()A.13xy=⎧⎪⎨=-⎪⎩B.2xy=⎧⎨=⎩C.1223xy⎧=⎪⎪⎨⎪=-⎪⎩D.1223xy⎧=-⎪⎪⎨⎪=-⎪⎩8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣二、填空题9.若是二元一次方程的一个解,则的值是__________.10.已知,且,则___________.11.若方程ax-2y=4的一个解是21xy=⎧⎨=⎩,则a的值是 .12.二元一次方程组的解是.13.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.14.已知二元一次方程组2728x yx y+=⎧⎨+=⎩,则x-y=________,x+y=________.三、解答题15.若方程组是二元一次方程组,求a的值.16.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.。
第五章二元一次方程组考点类型大总结【知识点及考点类型梳理】知识点一、二元一次方程(组)考点类型一、二元一次方程(组)考点类型二、用字母表示数考点类型三、二元一次方程(组)的解知识点二、二元一次方程组的求解考点类型一、代入法考点类型二、消元法考点类型三、含参数类型考点类型四、整体思想、换元思想考点类型五、新定义风向知识点一、二元一次方程(组)考点类型一、二元一次方程(组)1.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,则m ,n 的值为()A .,11m n ==-B .1,1m n =-=C .14,33m n ==-D .14,33m n =-=【答案】A根据二元一次方程的定义,得出关于m ,n 的方程组,求出答案.【详解】∵关于x 、y 的方程x 2m﹣n ﹣2+y m +n +1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩,解得11m n =⎧⎨=-⎩.故选:A .【点睛】此题考查了二元一次方程的定义和二元一次方程组的解法,熟练掌握二元一次方程的定义是解本题的关键.2.若1335m n m x y --+=是二元一次方程,那么m 、n 的值分别为()A .2m =,3n =B .2m =,1n =C .1m =-,2n =D .3m =,4n =【答案】B【分析】利用二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程判断即可.【详解】解:∵1335m n m x y --+=是二元一次方程,∴m -1=1,3n -m =1,解得:m =2,n =1,故选:B .此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.3.方程23235,3,3,320,6x y xy x x y z x y y -==+=-+=+=中是二元一次方程的有___个.【答案】1【分析】二元一次方程满足的条件:整式方程;含有2个未知数;未知数的最高次项的次数是1.【详解】解:符合二元一次方程的定义的方程只有2x −3y =5;xy =3,x 2+y =6的未知数的最高次项的次数为2,不符合二元一次方程的定义;x +3y=1不是整式方程,不符合二元一次方程的定义;3x −y +2z =0含有3个未知数,不符合二元一次方程的定义;由上可知是二元一次方程的有1个.故答案为:1.【点睛】主要考查二元一次方程的概念.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.4.如果2120a b x y -++=是二元一次方程,则a =____,b =_____.【答案】3【分析】根据二元一次方程的定义可知21a -=,11b +=,据此可解出a 、b .解:依题意,得:2111a b -=⎧⎨+=⎩,解得:30a b =⎧⎨=⎩.故答案为:3,0.【点睛】此题考查的是对二元一次方程的定义理解,根据未知数的次数为1,可以列出方程组求解.5.下列方程组中,是二元一次方程组的是()A .35233x y x z +=⎧⎨-=⎩B .12163m n m n +=⎧⎪⎨+=⎪⎩C .56m n mn n +=⎧⎨+=⎩D .321026x y x y +=⎧⎪⎨+=⎪⎩【答案】B【分析】本题根据二元一次方程组的基本形式及特点进行求解即可,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A :含有三个未知数,不是;B :符合条件,是;C :mn 项的次数为2,不是;D :存在不是整式的式子,不是.故选:B .本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.6.下列方程组中是二元一次方程组的是()A .141y x x v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩【答案】C【分析】二元一次方程组是由两个未知数且未知数最高次数为一次的两个方程组成;根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组141y x x v ⎧+=⎪⎨⎪-=⎩中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意;B 、方程组中有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、该方程组是二元一次方程组,所以本选项符合题意;D 、方程组中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键.7.已知方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,则()A .2m ≠±B .3m =C .3m =-D .3m ≠【分析】二元一次方程组:由两个整式方程组成,两个方程一共含有两个未知数,且含未知数的项的最高次数是1,这样的方程组是二元一次方程组,根据定义列方程或不等式,从而可得答案.【详解】解: 方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,203021m m m ⎧+≠⎪∴-≠⎨⎪-=⎩解得:233m m m ≠-⎧⎪≠⎨⎪=±⎩3.m ∴=-故选:.C 【点睛】本题考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.考点类型二、用字母表示数8.由132x y -=可以得到用x 表示y 的式子为()A .223x y -=B .223x y =-C .2133x y =-D .223x y =-【分析】先移项,后系数化为1,即可得.【详解】解:132x y -=移项,得123y x =-,系数化为1,得223x y =-,故选B .【点睛】本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.9.在二元一次方程142653x y -=中,用含x 的代数式表示y ,则下面结论正确的是()A .20524xy -=B .52024x y -=C .52024x y +=D .52024x y +=-【答案】B【分析】先把二元一次方程142653x y -=去分母得:52420x y -=,再通过移项合并同类项可得结果.【详解】解:由二元一次方程142653x y -=去分母,得:52420x y -=,移项合并同类项得:52024x y -=,系数化为1得:52024x y -=,故选:B .【点睛】本题考查了二元一次方程的变形,解题的关键是熟练掌握解二元一次方程的基本步骤.10.把方程635x y -=改成用含x 的代数式表示y 为y =__________.【答案】2x -53【分析】把x 看作已知数求出y 即可.【详解】解:6x -3y =5,3y =6x -5,解得:y =2x -53故答案为:y =2x -53【点睛】此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .考点类型三、二元一次方程(组)的解11.已知14x y =-⎧⎨=⎩是方程mx ﹣y =3的解,则m 的值是()A .﹣1B .1C .﹣7D .7【答案】C【分析】把14xy=-⎧⎨=⎩代入mx﹣y=3,得到关于m的方程,进而即可求解.【详解】解:14xy=-⎧⎨=⎩是方程mx﹣y=3的解,∴-m﹣4=3,解得:m=-7,故选C.【点睛】本题主要考查二元一次方程的解,掌握方程的解的定义,是解题的关键.12.如果方程组23759x yx y+=⎧⎨-=⎩的解是方程716x my+=的一个解,则m的值为()A.0B.1C.2D.3【答案】C【分析】求出方程组的解得到x与y的值,代入方程计算即可求出m的值.【详解】解:23759x yx y+=⎧⎨-=⎩①②{,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m =2,故选:C .【点睛】此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.13.二元一次方程210x y +=有______个解,有________个正整数解,它们是___________.【答案】无穷多412348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;【分析】将x 看做已知数求出y ,即可确定出正整数解的个数.【详解】解:由方程210x y +=,得到102y x =-,当x =1时,y =8;当x =2时,y =6;当x =3时,y =4;当x =4时,y =2.则正整数解有4个,故答案为:无穷多;4;12348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;.【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组()求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩【答案】C【分析】根据方程组同解,可知方程组的解同时满足四个方程,将两个已知方程组成方程组即可.【详解】解:∵二元一次方程组51cx ayx y-=⎧⎨+=⎩和23151x yax by-=⎧⎨+=⎩解相同,方程组的解同时满足这四个方程;∴解方程组23151x yx y-=⎧⎨+=⎩即可求出方程组的解,故选:C.【点睛】本题考查了方程组同解问题,解题关键是明确方程组的解的意义,把已知方程组成方程组.15.若关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,则方程组(3)(1)4(3)(1)8a xb ya xb y+--=-⎧⎨++-=⎩的解是()A.14xy=-⎧⎨=⎩B.23xy=⎧⎨=⎩C.14xy=⎧⎨=-⎩D.52xy=⎧⎨=⎩【答案】A 【分析】通过观察所给方程组的关系可得3213xy+=⎧⎨-=⎩,求出x、y即可.【详解】解:∵关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,∴234 238a ba b-=-⎧⎨+=⎩,又∵(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩,∴3213x y +=⎧⎨-=⎩,解得14x y =-⎧⎨=⎩,∴方程组(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩的解为14x y =-⎧⎨=⎩,故选:A .【点睛】本题考查二元一次方程组的解,解题的关键是要知道两个方程组之间的关系.16.已知关于x 、y 的方程组242x y a x y a -=-⎧⎨-=⎩的解x 与y 互为相反数,则a =__________.【答案】2【分析】直接①-②可得42x y a +=-,由题意可得0x y +=,进而可得420a -=,再解即可.【详解】242x y a x y a-=-⎧⎨-=⎩①②,①-②得:42x y a +=-,x y 、互为相反数,0x y ∴+=,420a∴-=,解得:2a=故答案为:2.【点睛】本题主要考查了加减消元法解二元一次方程组,解题的关键是挖掘出内含在题干中的已知条件x=−y.知识点二、二元一次方程组的求解考点类型一、代入法17.用代入法解下列方程组:(1)3 759 y xx y=+⎧⎨+=⎩;(2)35 5215 s ts t-=⎧⎨+=⎩;(3)3416 5633 x yx y+=⎧⎨-=⎩;(4)4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩.【答案】(1)1252xy⎧=-⎪⎪⎨⎪=⎪⎩;(2)25112011st⎧=⎪⎪⎨⎪=⎪⎩;(3)612xy=⎧⎪⎨=-⎪⎩;(4)23xy=⎧⎨=⎩.【分析】根据代入法解二元一次方程组即可,代入消元法是将方程组中的一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,这就消去了一个未知数,代入消元法简称代入法.【详解】(1)3759y x x y =+⎧⎨+=⎩①②将①代入②得:75(3)9x x ++=,解得12x =-,将12x =-代入①得,52y =,∴原方程组的解为:1252x y ⎧=-⎪⎪⎨⎪=⎪⎩;(2)355215s t s t -=⎧⎨+=⎩①②由①得,35t s =-③,将③代入②得,52(35)15s s +-=,解得2511s =,将2511s =代入③,得,2011t =,∴原方程组的解为:25112011s t ⎧=⎪⎪⎨⎪=⎪⎩;(3)34165633x y x y +=⎧⎨-=⎩①②由①得344y x =-③,将③代入②得,56(4)334x x 3--=,解得6x =,将6x =代入③,得,12y =-,∴原方程组的解为:612x y =⎧⎪⎨=-⎪⎩;(4)4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩①②由①得444332x y y --=--,即45y x =-③,由②可得3212x y +=④,将③代入④得32(45)12x x +-=,解得2x =,将2x =代入③,得,3y =,∴原方程组的解为:23x y =⎧⎨=⎩;【点睛】本题考查了代入法解二元一次方程组,掌握代入法是解题的关键.考点类型二、消元法18.用加减法解下列方程组:(1)29321x y x y +=⎧⎨-=-⎩;(2)52253415x y x y +=⎧⎨+=⎩;(3)258325x y x y +=⎧⎨+=⎩;(4)236322x y x y +=⎧⎨-=-⎩.【答案】(1)272x y =⎧⎪⎨=⎪⎩;(2)50x y =⎧⎨=⎩;(3)9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【分析】(1)根据加减消元可直接进行求解方程组;(2)根据加减消元法可直接进行求解方程组;(3)根据加减消元法可直接进行求解方程组;(4)根据加减消元法可直接进行求解方程组.【详解】解:(1)29321x y x y +=⎧⎨-=-⎩①②①+②得:48x =,解得:2x =,把2x =代入①式得:229y +=,解得:72y =,∴原方程组的解为272x y =⎧⎪⎨=⎪⎩;(2)52253415x y x y +=⎧⎨+=⎩①②①×2-②得:735x =,解得:5x =,把5x =代入①得:55225y ⨯+=,解得:0y =,∴原方程组的解为50x y =⎧⎨=⎩;(3)258325x y x y +=⎧⎨+=⎩①②①×3-②×2得:1114=y ,解得:1411y =,把1411y =代入①得:1425811x +⨯=,解得:911x =;∴原方程组的解为9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)236322x y x y +=⎧⎨-=-⎩①②①×2+②×3得:136x =,解得:613x =,把613x =代入①得:623613y ⨯+=,解得:2213y =,∴原方程组的解为6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.考点类型三、含参数类型19.甲、乙两人同解方程组515411ax y x by +=⎧⎨-=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩,试求20202021()a b +-的值.【答案】0【分析】将31x y =-⎧⎨=-⎩代入第二个方程可得b 的值,将54x y =⎧⎨=⎩代入第一个方程得a 的值,即可求出所求式子的值.【详解】解:将31x y =-⎧⎨=-⎩代入411x by -=-得:1211-+=-b ,解得1b =将54x y =⎧⎨=⎩代入方程组中的515ax y +=得:52015a +=,即1a =-20202021()ab ∴+-20202021(1)(1)110=-+-=-=.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.20.若关于x 、y 的二元一次方程组13x y x y -=⎧⎨+=⎩与方程组4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩有相同的解.求m 、n 的值.【答案】m =1,n =3【分析】根据题意列不含m 、n 的方程组求解,求出x ,y 值,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中即可解得m ,n .【详解】解:解方程组13x y x y -=⎧⎨+=⎩得:21x y =⎧⎨=⎩,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中得:21314m n m n +=⎧⎪⎨-=⎪⎩,解得:13m n =⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,解决本题的关键是根据题意重新联立方程组.21.已知关于x 、y 的方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,求代数式2a +b 的平方根.【答案】代数式2a +b 的平方根是±1.【分析】由已知解方程组2333211x y x y -=⎧⎨+=⎩,解得31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,即可求解.【详解】解: 方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩与2331ax by ax by +=⎧⎨+=-⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩①②,①2⨯得,466x y -=③,②3⨯得,9633x y +=④,③+④得,3x =,将3x =代入①得,1y =,∴方程组的解为31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,2a b ∴+的平方根为±1.【点睛】本题考查二元一次方程组的解,理解同解二元一次方程组的含义,将所给方程组重新组合新的方程组,灵活运用加减消元法和代入消元法求方程组的解是解题的关键,也考查了平方根的性质.考点类型四、整体思想、换元思想22.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩【答案】7656x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】观察方程组的特点,把2x y -看作一个整体,得到322x y -=,将之代入②,进行消元,得到33422x ⎛⎫+= ⎪⎝⎭,解得76x =,进一步解得56y =,从而得解.【详解】解:()()423324x y x y x y -=⎧⎪⎨--=⎪⎩①②由①得322x y -=③,把③代入②得33422x ⎛⎫+⨯= ⎪⎝⎭,解得76x =,把76x =代入③,得73262y ⨯-=,解得56y =,故原方程组的解为7656x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.23.阅读材料在解方程组253 4115 x y x y +=⎧⎨+=⎩①②时,明明采用了一种“整体代换”的解法.解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③;把方程①代入③得2×3+y =5,∴y =﹣1,把y =﹣1代入①,得x =4,∴方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题;模仿明明的“整体代换”法解方程组436 8718 x y x y -=⎧⎨-=⎩①②.【答案】36x y =-⎧⎨=-⎩【分析】将方程②变形为()24318x y y --=,再将436x y -=整体代入即可求方程组.【详解】解:4368718x yx y-=⎧⎨-=⎩①②中将②变形,得()24318x y y--=③,将①代入③得,2×6﹣y=18,∴y=﹣6,将y=﹣6代入①得,x=﹣3,∴方程组的解为36 xy=-⎧⎨=-⎩.【点睛】本题考查了整体代换法解二元一次方程组的解法,解题的关键是读懂题意,明确整体思想.24.阅读下列材料:小明同学遇到下列问题:解方程组23237432323832x y x yx y x y+-⎧+=⎪⎪⎨+-⎪+=⎪⎩小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x﹣3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.原方程组化为743832m nm n⎧+=⎪⎪⎨⎪+=⎪⎩,解的6024mn=⎧⎨=-⎩,把6024mn=⎧⎨=-⎩代入m=2x+3y,n=2x﹣3y,得23602324x yx y+=⎧⎨-=-⎩解得914xy=⎧⎨=⎩所以,原方程组的解为914xy=⎧⎨=⎩.请你参考小明同学的做法解方程组:(1)3 6101 610x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩;(2)52113213x y x y⎧+=⎪⎪⎨⎪-=⎪⎩.【答案】(1)137x y =⎧⎨=-⎩;(2)1312x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】认真理解题目中给定的整体代换思路,按照所给的方法求出方程组的解即可.【详解】解:(1)令6x y m +=,10x y n -=,原方程组化为31m n m n +=⎧⎨-=-⎩,解得:12m n =⎧⎨=⎩,∴16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩,解得:137x y =⎧⎨=-⎩.∴原方程组的解为137x y =⎧⎨=-⎩.(2)令1m x =,1n y=,原方程组可化为:52113213m n m n +=⎧⎨-=⎩,解得:32m n =⎧⎨=-⎩,∴1312x y ⎧=⎪⎪⎨⎪=-⎪⎩,经检验,1312x y ⎧=⎪⎪⎨⎪=-⎪⎩是原方程的解.∴原方程组的解为1312x y ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,整体代换是解题的关键.考点类型五、新定义风向25.在平面直角坐标系中,已知点(),A x y ,点()2,2B x my mx y --(其中m 为常数,且0m ≠),则称B 是点A 的“m 系置换点”.例如:点()1,2A 的“3系置换点”B 的坐标为()1232,2312-⨯⨯⨯⨯-,即()11,4B -.(1)点(2,0)的“2系置换点”的坐标为________;(2)若点A 的“3系置换点”B 的坐标是(-4,11),求点A 的坐标.(3)若点(),0A x (其中0x ≠),点A 的“m 系置换点”为点B ,且2AB OA =,求m 的值;【答案】(1)()28,;(2)()21,;(3)1m =±.【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于x 、y 的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B 的坐标,再根据2AB OA =列方程求解即可得出答案.【详解】解:(1)点(2,0)的“2系置换点”的坐标为()22202220-⨯⨯⨯⨯-,,即()28,;(2)由题意得:2342311x y x y -⨯⨯=-⎧⎨⨯⨯-=⎩解得:21x y =⎧⎨=⎩∴点A 的坐标为:()21,;(3) (),0A x ∴点()2,2B x my mx y --为()20,20x m mx -⨯-即点B 坐标为(),2x mx ∴2AB mx =,OA x= 2AB OA =22mx x∴= m 为常数,且0m ≠∴1m =±.【点睛】本题考查了二元一次方程组的解法、绝对值方程,理解“m 系置换点”的定义并能运用是本题的关键.26.对x ,y 定义一种新的运算A ,规定:()()(),ax by x y A x y ay bx x y ⎧+≥⎪=⎨+<⎪⎩(其中0ab ≠).(1)若已知1a =,2b =-,则()4,3A =_________.(2)已知()1,13A =,()1,20A -=.求a ,b 的值;(3)在(2)问的基础上,若关于正数p 的不等式组()()3,21413,2A p p A p p m ⎧->⎪⎨---≥⎪⎩恰好有2个整数解,求m 的取值范围.【答案】(1)2-;(2)12a b =⎧⎨=⎩;(3)2618m -<-≤【分析】(1)根据新定义就是即可;(2)根据题中的新定义列出方程组,求出方程组的解即可得到a 与b 的值;(3)由(2)化简得A (x ,y )的关系式,先判断括号内数的大小,再转化成不等式求解即可.【详解】解:(1)根据题中的新定义得:1×4+3×(-2)=-2,故答案为-2;(2)根据题中的新定义得:320a b a b +=⎧⎨-=⎩,解得:12a b =⎧⎨=⎩;(3)由(2)化简得:A (x ,y )=()()22x y x y y x x y ⎧+≥⎪⎨+<⎪⎩,∴在关于正数p 的不等式组()()3214132A p p A p p m ⎧->⎪⎨---≥⎪⎩,,中,∴A (3p ,2p -1)=7p -2>4,A (-1-3p ,-2p )=-2p +2(-1-3p )=-8p -2≥m ,∴p >67,p ≤m 28+-∵恰好有2个整数解,∴2个整数解为1,2.∴2≤m28+-<3,∴-26<m≤-18.【点睛】本题主要考查新定义的运算,解决本题的关键是要按照定义式子中列出算式进行解方程和不等式组.。
一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式.6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有()①②③④mn+m=7⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k的值为()A.2B.-2C.±2D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b 的值.题设的已知条件是两个方程组有相同的解。
一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想。
即二元一次方程组形如:ax=b(a,b为已知数)的方程。
2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来。
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式。
6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有( )①②③④mn+m=7 ⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k的值为()A.2 B.-2 C.±2D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c 的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x的值。
二元一次方程组及其解法(培优)二元一次方程组及其解法在研究二元一次方程组之前,需要先了解二元一次方程的概念。
二元一次方程必须同时具备三个条件:(1)这个方程中有且只有两个未知数;(2)含未知数的次数是1;(3)对未知数而言,构成方程的代数式是整式。
解二元一次方程的解和二元一次方程组的解的意义是相同的,都是指方程的解集。
熟练掌握二元一次方程组的解法,可以用来解决许多实际问题。
例如,已知下列方程2xm1+3yn3=5是二元一次方程,则m+n=0.根据二元一次方程的概念可知:m-1=1,n+3=1,解得m=2,n=-2,故m+n=0.除了解二元一次方程组的基本方法外,还有加减消元法、代入法等解法。
在解题时需要根据具体情况选择最合适的方法。
变式题组:01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由。
⑴2x+5y=16 - 是二元一次方程,符合三个条件。
⑵2x+y+z=3 - 不是二元一次方程,因为含有三个未知数z。
02.若方程2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x是二元一次方程,则a=,b=。
根据二元一次方程的定义,2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x不是二元一次方程,因为含有x的二次项。
03.在下列四个方程组①{4x+3y=10.2x-4y=9},②{4x+y=12.7xy=29},③{1/x-2y=-45.2x+3y=4},④{7x+8y=5.x-4y=1}中,是二元一次方程组的有()只有①和③是二元一次方程组,因为它们都符合三个条件。
例2:(十堰中考)二元一次方程组{3x-2y=7.x+2y=5}的解是()解法:二元一次方程组的解,就是它的两个方程的公共解。
根据此概念,此类题有两种解法:(1)若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;(2)若方程组较易解,则直接解方程组可得答案。
二元一次方程组及其解法 一、学法指引:本专题主要学习二元一次方程(组)的定义及其解法,理解二元一次方程的解的意义,二元一次方程组的解的意义,以及二元一次方程组的解的三种情况,形如,ax+by=c 的方程叫二元一次方程,它有无数个解,由几个二元一次方程够成,叫二元一次方程组,解有三种情况:1)唯一解,2)无数解,3)无解。
解方程组的思想是消元,但在解方程组时,要根据方程组的数据特点来确定解法 二、探究与思考1)探究二元一次方程的有关概念形如ax+by=c (a b ≠0)方程叫二元一次方程,满足方程的解有无数个。
例1、下列方程中,是二元一次方程的是( )(A )1=xy (B )21=+yx (C )13-=x y (D )032=--x x 例2、已知关于x,y 的方程(a -2)x |a -1|+(b+3)y|b+4|=6是二元一次方程,求a ,b讲中练下列各组数中①⎩⎨⎧==22y x ②⎩⎨⎧==12y x ③⎩⎨⎧-==22y x ④⎩⎨⎧==61y x 是方程104=+y x 的解的有( ) A.1个 B.2个 C.3个 D.4个2)探究二元一次方程组的定义及其解法 形如 a 1x+b 1y=c 1的方程组叫二元一次方程组 a 2x+b 2y=c 2①代入消元法例3、用代入法解下列方程组(1)⎩⎨⎧=+-=18050y x y x (2)⎩⎨⎧=-=+173x y y x (3)233511x y x y +=⎧⎨-=⎩归纳:用代入消元法解方程组时,首先将其中一个方程变形,用含一个未知数的代数式来表示另一个未知数,然后代入另一个方程。
讲中练用代入法解下列(1)⎩⎨⎧=+=+7222y x y x (2) (3)②加减消元法例4、用加减法解下列方程组:(1)⎩⎨⎧=-=+534734y x y x (2)3216,31;m n m n +=⎧⎨-=⎩ (3)234,443;x y x y +=⎧⎨-=⎩归纳:用加减法解方程组时,首先将方程组中的某个未知数的系数化相等或互为相反数,然后将两个方程相加或相减。
第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。
二元一次方程组及其解法
二元一次方程组是由两个含有两个未知数的等式组成的方程组,通常的一般式表示为:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f 都是已知数,x、y 都是未知数。
解法有以下几种:
1. 消元法:通过变换方程式将一个未知数消去,再代入另一个方程求解。
2. 代入法:选择其中一个方程,将其中一个未知数表示成另一个未知数的函数,代入另一个方程中求解。
3. 公式法:利用二元一次方程组的公式解法求解。
4. 矩阵法:用矩阵运算的方法求解方程组。
以上四种方法都可以求得二元一次方程组的解,一般解的形式为一个有序二元组 (x, y)。
二元一次方程组及其解法【课时安排】3课时【第一课时】【教学目标】一、知识与技能理解二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解。
二、过程与方法经历认识二元一次方程和二元一次方程组的过程,感受类比的学习方法在数学学习过程中的作用。
三、情感、态度与价值观学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性,感受学习数学的乐趣。
【教学重难点】重点:理解二元一次方程组的解的意义。
难点:求二元一次方程的正整数解。
【教学过程】一、创设情境,引入新课(一)古老的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足。
问鸡、兔各几何?”教师描述:这是我国古代数学著作《孙子算经》中记载的数学名题。
它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣。
怎样来解答这个问题呢?学生思考并自行解答,教师巡视。
最后,在学生动手动脑的基础上,集体讨论并给出各个解决方案。
(二)教师展示幻灯片:方法1:算筹解法。
(孙子算经,用算筹研究代数。
)方法2:图形解法。
(尚不成熟的符号语言,但很直观。
)方法3:算术解法。
兔数:(94÷2)-35=12鸡数:35-12=23方法4:一元一次方程的解法。
解:设鸡有x只,则兔有(35-x)只,则可列方程:2x+4(35-x)=94;解得:x=23。
则鸡有23只,兔有12只。
请同学们自己思考。
教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?二、尝试活动,探索新知(一)讨论二元一次方程、二元一次方程组的概念。
1.教师提问:上面的问题可以用一元一次方程来解,那么还有其他方法吗?方法6:设有x只鸡,y只兔,依题意得:x+y=35①2x+4y=94②针对学生列出的这两个方程,教师提出如下问题:(1)你能给这两个方程起个名字吗?(2)为什么叫二元一次方程呢?(3)什么样的方程叫二元一次方程呢?2.教师结合学生的回答,板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程。
二元一次方程组的常见解法二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.一、代入法即由二元一次方程中的一个方程变形,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算.2x+5y=-21①例1、解方程组x+3y=8 ②解由②得:x=8-3y ③把③代入①得2(8-3y)+5y=-21解得:y=37把y=37代入③得:x=8-3×37=-103x=-103所以这个方程组的解是y=37二、整体代入法当方程组中的两个方程存在整数倍数关系时,用代入法解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入另一个方程.3x-4y=9①例2、解方程组9x-10y=3②解由①得3x=4y+9 ③把③代入②得3(4y+9)-10y=3解得y=-12把y=-12代入③得3x=4×(-12)+9解得x=-13x=-13所以方程组的解是y=-12三、加减消元法即方程组中两个二元一次方程中的同一个未知数的系数相等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方程,这种方法叫加减消元法.2x+3y=14 ①例3、解方程组4x-5y=6②解由①×2得4x+6y=28 ③③-②得:11y=22解得y=2把y=2代入②得4x-5×2=6解得x=4x=4所以方程组的解为y=2四、整体运用加减法即当两个二元一次方程中的某一部分完全相同或符号相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去.3(x+2)+(y-1)=4 ①例4 解方程组3(x+2)+(1-y)=2 ②解①-②得(y-1)-(1-y)=4-2整理得2y=4解得y=2把y=2 代入①得3(x+2)+(2-1)=4整理得3x+7=4解得x=-1x=-1所以方程组的解为y=2解二元一次方程组的主要方法有代入法和消元法,因为方程的形式是多种多样的.所以在解方程中一定要仔细观察方程中各部分以及各个未知数和它们的系数之间的关系的找到最简便的解题方法.。
解法有如下:
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法
二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.
例: 1)x-y=3 2)3x-8y=4 3)x=y+3 代入得3×(y+3)-8y=4
y=1
所以x=4 这个二元一次方程组的解x=4 y=1
以上就是代入消元法,简称代入法。
利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,是方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫作加减消元法,简称加减法。
例题:(1)3x+2y=7 (2)5x-2y=1
解:消元得:8x=8 x=1 3x+2y=7 3*1+2y=7 2y=4 y=2 x=1 y=2
你看下,明白没?没得话,我再解释!
这里说实在的最主要的还是方法,方法掌握了,类似的问题都能解决了!
希望我的回答对你有帮助,祝你好运!像这样的问题自己多尝试下,下次才会的!
祝你学业进步!。
二元一次方程组知识点归纳及解题技巧一、基本定义:二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
二、解的情况:二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
三、二元一次方程的解法:1、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:1、代入消元法2、加减消元法3、教科书中没有的几种解法(一)加减-代入混合使用的方法.例:13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=41y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例3:x:y=1:45x+6y=29令x=t, y=4t 则方程2可写为:5t+6×4t=2929t=29t=1 所以x=1,y=4四、列方程(组)解应用题(一)、其具体步骤是:⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
二元一次方程组及其解法一、二元一次方程的概念1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:ax by c ++=0(,)a b ≠0≠0.【例】x y +2=5,x y 2=3,x y 3=-2,x y 2+3+6=0等都是二元一次方程. 2.二元一次方程的判定: 必须同时满足四个条件:(1)含有两个未知数——“二元”;(2)未知数项的最高次数为1——“一次”; (3)方程两边都是整式——整式方程; (4)未知数的系数不能为0.【例】x y +=1,()y x 1=+82,x y 3-1=2-5,x y 4=3等都是二元一次方程;y x 4+=5,x y z 2+3=,x y 21+=02,x x 2+3=-5等都不是二元一次方程. 3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.【注】任何一个二元一次方程都有无数个解.【例】x y =1⎧⎨=2⎩和x y =3⎧⎨=1⎩是方程x y +2=5的解,可以看出x y +2=5有无数个解.二、二元一次方程组的概念和解法1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.(2)方程可以超过两个.【例】x x y 2=6⎧⎨3-=1⎩,x x y 2=6⎧⎨3-=1⎩,x y x y =2⎧⎪=3⎨⎪+=4⎩等都是二元一次方程组.2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.【例】x x y 2=6⎧⎨3-=1⎩的解是x y =3⎧⎨=8⎩.3.二元一次方程组解的情况:一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.【例】方程组x y x y +=1⎧⎨2+2=2⎩有无数组解,方程组x y x y +=2⎧⎨2+2=2⎩和x y x y =2⎧⎪=3⎨⎪+=4⎩无解.4.二元一次方程组的基本解法(1)代入消元法:①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如y ax b =+;②把y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值; ④把求得的x 的值代回y ax b =+中,求出y 的值,从而得出方程组的解;⑤把这个方程组的解写成x my n =⎧⎨=⎩的形式.解方程组:19,x y x y 3+4=⎧⎨-=4.⎩解:19,x y x y 3+4=⎧⎨-=4.⎩①②由②,得x y =4+,③ 把③代入①,()y y 34++4=19, ∴y y 12+3+4=19,得y =1. 把y =1代入③,得x =4+1=5.∴方程组的解为5x y =⎧⎨=1.⎩,(2)加减消元法:①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;⑤把这个方程组的解写成x my n=⎧⎨=⎩的形式.解方程组:x y x y +2=1⎧⎨3-2=11⎩解:x y x y +2=1⎧⎨3-2=11⎩①②①+②,得x 4=12,解得:x =3.将x =3代入①,得y 3+2=1, 解得y =-1.∴方程组的解是x y =3⎧⎨=-1⎩.5.解方程组的三大解题思想(1)消元思想;(2)整体思想;(3)换元思想.(1)在下列方程中,①x 4+5=1;②x y 3-2=1;③x y1+=1;④xy y +=14;⑤x y =;⑥()y x 1=+82,其中是二元一次方程的是__________.(填序号)(2)已知方程||n m x y m -1-1+2=是关于x 、y 的二元一次方程,则m =_____,n =______.(3)若已知方程()()()k x k x k y k 22-1++1+-7=+2,当k =______时,方程为一元一次方程,当k =_______时,方程为二元一次方程.【解析】(1)②⑤⑥;(2)m =0或2,n =2.(3)-1,1.模块一 二元一次方程的概念例题1(1)已知x y =1⎧⎨=-1⎩是方程x ay 2-=3的一个解,那么a 的值是_________.(2)若x ky k =2⎧⎨=-3⎩是二元一次方程x y 2-=14的解,则k 的值是_________.【解析】(1)1;(2)2.(1)下列方程组中,是二元一次方程组的是( )A .x y y 2+=1⎧⎪1⎨=-1⎪⎩ B .x xy 2=1⎧⎨=-1⎩ C .x y y z 2+=1⎧⎨-=-1⎩D .x y =1⎧⎨=-1⎩(2)已知x y =-4⎧⎨=3⎩是方程组ax y x by +=-1⎧⎨-=2⎩的解,则()a b 6+=______.(3)已知x y =2⎧⎨=1⎩是二元一次方程组ax by bx ay +=1⎧⎨+=2⎩的解,则a b -的值为______.【解析】(1)D ;(2)由题意得a =1,b =-2,a b +=1,∴()a b 6+=1.(3)把解代入方程组得a b b a 2+=1⎧⎨2+=2⎩①②,①-②得a b -=-1.(1)用代入消元法解方程组:x y x y 3+4=2⎧⎨2-=5⎩.(2)用加减消元法解方程组:x y x y 4+3=5⎧⎨-2=4⎩.例题2模块二二元一次方程组的概念和解法例题3例题4【解析】(1)由题意得,x yx y3+4=2⎧⎨2-=5⎩①②由②,得y x=2-5,③把③代入①,得()x x3+42-5=2,∴x x3+8-20=2,得x11=22,解得x=2.把x=2代入③,得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩(2)由题意得,x yx y4+3=5⎧⎨-2=4⎩①②①×2+②×3,得x x8+3=10+12,∴x11=22,解得x=2.将x=2代入①,得y8+3=5,解得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩【提示】展示解二元一次方程组的基本解法.用合适的方法解下列二元一次方程组:(1)()()()x yy x3-1=+5⎧⎨5-1=3+5⎩(2)()()()x yx y+1=5+2⎧⎨32-5-43+4=5⎩(3)()()x y yx y4--1=31--2⎧⎪⎨+=2⎪23⎩(4)m n n mnm+-⎧-=2⎪⎪34⎨⎪4+=14⎪3⎩(5)x yx y3-22-1⎧+=2⎪⎪45⎨3+23+1⎪-=0⎪45⎩(6)...x yx y112⎧+=⎪535⎨⎪05-03=02⎩【解析】(1)由题意得,x yx y3-=8⎧⎨3-5=-20⎩①②①-②,得y4=28,解得y=7.将y=7代入①,得x3-7=8,解得x=5.∴方程组的解为xy=5⎧⎨=7⎩.(2)由题意得,x yx y-5=9⎧⎨-2=6⎩①②②-①,得y3=-3,解得y=-1.将y=-1代入①,得x+5=9,解得x=4.∴方程组的解为xy=4⎧⎨=-1⎩.(3)xy=2⎧⎨=3⎩.(4)mn18⎧=⎪⎪5⎨6⎪=-⎪5⎩.(5)xy=2⎧⎨=3⎩.(6)xy14⎧=⎪⎪17⎨12⎪=⎪17⎩.例题5【提示】练习解二元一次方程组的一般步骤:(1)去分母,去括号,最好转化为各项系数为整数的二元一次方程组; (2)多观察,系数为1±时优先使用代入消元法,其次才是加减消元法.解方程组:(1)x y x y 23+17=63⎧⎨17+23=57⎩(2)x y x y 2011-2013=4023⎧⎨2013-2011=4025⎩【解析】(1)两方程相加,得:x y 40+40=120,即x y +=3 ①两方程相减,得:x y 6-6=6,即x y -=1 ② ①+②得:x 2=4,解得x =2,①-②得:y 2=2,解得y =1,∴方程组的解为:x y =2⎧⎨=1⎩.(2)x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】系数对称的二元一次方程组的特殊解法.(1)若方程组.a b a b 2-3=13⎧⎨3+5=309⎩的解是..a b =83⎧⎨=12⎩,则方程组()()()().x y x y 2+2-3-1=13⎧⎨3+2+5-1=309⎩的解是( )A ...x y =63⎧⎨=22⎩B ...x y =83⎧⎨=12⎩C ...x y =103⎧⎨=22⎩D ...x y =103⎧⎨=02⎩(2)用适当的方法解下列方程组:()()x y x y x y x y 3+-2-=-1⎧⎪⎨+-+=1⎪⎩24.【解析】(1)A .比较两个方程组可知..x a y b +2==83⎧⎨-1==12⎩,解得..x y =63⎧⎨=22⎩.(2)令x y u +=,x y v -=,则u v u v 3-2=-1⎧⎪⎨+=1⎪⎩24,解得u v =1⎧⎨=2⎩,即x y x y +=1⎧⎨-=2⎩,解得x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】整体换元法.例题6例题7解方程组:(1)x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩ (2)x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩【解析】(1)由题意得,x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩①②③由①,得y z x =-,④把④代入②和③, 得x z x z 5-=5⎧⎨-+3=13⎩,解得x z =2⎧⎨=5⎩. 把x z =2⎧⎨=5⎩代入④得,y =3.∴方程组的解为x y z =2⎧⎪=3⎨⎪=5⎩.(2)由题意得,x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩①②③③①+得,④x y 3+5=21, 2③②⨯+得,⑤x y 3+3=9,④﹣⑤得y 2=12,y =6,将y =6代入⑤得,x 3=-9,x =-3,将x =-3,y =6代入①得,()z =16-2⨯-3-3⨯6=4, ∴方程组的解为x y z =-3⎧⎪=6⎨⎪=4⎩.【提示】三元一次方程组的基本解法:(1)通过消元把三元一次方程组转化为二元一次方程组; (2)解二元一次方程组.模块三 多元一次方程组的解法例题8(1) x y zx y z ⎧==⎪234⎨⎪5+2-3=8⎩ (2) x y z x y z x y z 2++=2⎧⎪+2+=4⎨⎪++2=6⎩【解析】(1)令x y zk ===234,即x k =2,y k =3,z k =4, 代入②可求得k =2,所以x y z =4⎧⎪=6⎨⎪=8⎩.(2)①+②+③得x y z ++=3,用①、②、③分别减去此式得x y z =-1⎧⎪=1⎨⎪=3⎩.【提示】三元一次方程组的特殊解法:(1)连比设k 型;(2)对称轮换型,整体相加.解方程组:(1)pq p q pq p q1⎧=⎪+5⎪⎨1⎪=⎪-3⎩ (2)xyx y yz y z zx z x ⎧=1⎪+⎪⎪=2⎨+⎪⎪=3⎪+⎩【解析】(1)原方程组可化为p q q p 11⎧+=5⎪⎪⎨11⎪-=3⎪⎩,解得q p 1⎧=4⎪⎪⎨1⎪=1⎪⎩,∴q p 1⎧=⎪4⎨⎪=1⎩.(2)原方程组可化为,解得,∴.【提示】均为可以转化为二元一次方程组或者三元一次方程组的分式方程.11111121113x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩151217121112x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩12512712x y z ⎧=⎪⎪⎪=⎨⎪⎪⎪=-⎩例题9非常挑战(1)已知二元一次方程x y--1=023,下列用含x 的代数式表示y 正确的是( ). A .y x 3=-12 B .y x 3=+12 C .y x 3=-32 D .y x 3=+32(2)下列方程属于二元一次方程的是( )A .x y +=1B .xy +5=4C .y x 23-8=D .x y1+=2(3)已知方程||||()()a b a x b y -1-4-2-+5=3是关于x 、y 的二元一次方程,则a =________,b =__________.【解析】(1)C ;(2)A ;(3)根据题意可得:a -2≠0,b +5≠0,||a -1=1,||b -4=1,所以a =-2,b =5.(1)下列不是二元一次方程组的是( )A .x y =2⎧⎨=-1⎩B .m n n m =2+3⎧⎨3-=4⎩C .x y y z +=2⎧⎨+=3⎩D .(())a a b a b 4+2=5⎧⎨2-+1=2+-3⎩(2)二元一次方程ax by +=6有两组解是x y =2⎧⎨=-2⎩与x y =-1⎧⎨=-8⎩,求a 、b 的值.【解析】(1)C .(2)将两组解分别代入ax by +=6,可得a b a b 2-2=6⎧⎨--8=6⎩,解得a b =2⎧⎨=-1⎩.复习巩固演练1演练2解方程组:(1)m n m n 3+2=2⎧⎨5-4=7⎩(2)()()()()y x x y 3-1=4-4⎧⎨5-1=3+5⎩(3)()()y x x y y x -1⎧-=3⎪2⎨⎪2-+32-=-6⎩ (4)x y x y +1+2⎧=⎪⎪34⎨-3-31⎪-=⎪4312⎩【解析】(1)m n =1⎧⎪⎨1=-⎪⎩2. (2)x y =7⎧⎨=5⎩. (3)x y =2⎧⎨=-1⎩. (4)x y =2⎧⎨=2⎩.解下列方程组:(1)x y x y 21+23=243⎧⎨23+21=241⎩ (2)x y x y 2014+2013=2012⎧⎨2012+2011=2010⎩(3)x y x yx y x y 2+32-3⎧+=7⎪⎪43⎨2+32-3⎪+=8⎪32⎩【解析】(1)x y =5⎧⎨=6⎩.(2)x y =-1⎧⎨=2⎩.(3)设x y a 2+3=,x y b 2-3=,则原方程组可变为,,a ba b ⎧+=7⎪⎪43⎨⎪+=8⎪32⎩整理,得,,a b a b 3+4=84⎧⎨2+3=48⎩解得,.a b =60⎧⎨=-24⎩∴,,x y x y 2+3=60⎧⎨2-3=-24⎩解得,,x y =9⎧⎨=14⎩ ∴原方程组的解为,.x y =9⎧⎨=14⎩演练3演练4解方程组:(1)x z z y x y z -=4⎧⎪-2=-1⎨⎪+-=-1⎩(2)::::::x y z u x y z u =1234⎧⎨9+7+3+2=200⎩(3) x y z y z x z x y +-=11⎧⎪+-=3⎨⎪+-=1⎩(4)mn m n mn m n 1⎧=⎪⎪3+213⎨1⎪=⎪2+312⎩【解析】(1)x y z =-7⎧⎪=-5⎨⎪=-11⎩.(2)设x k =,y k =2,z k =3,u k =4,所以有k k k k 9+14+9+8=200, 即k =5,故x y z u =5⎧⎪=10⎪⎨=15⎪⎪=20⎩.(3)①+②+③得:x y z ++=15,分别去减①、②、③式可得:x y z =6⎧⎪=7⎨⎪=2⎩.(4)m n 1⎧=⎪⎪2⎨1⎪=⎪3⎩.演练5。
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
二元一次方程组及其解法
提要
二元一次方程组是一元一次方程知识的延续,与函数有着密切的联系,学习时应注意加强二元一次方程和二元一次方程组及它们解法的理解:消元是解方程组的基本思想,是将复杂问题简化的一种化归思想,其目的是将多元的方程组逐步转化为一元方程。
选择解法时要根据二元一次方程组的系数特点,确定是使用“代入法”还是使用“加减法”来消元。
知识全解
一、二元一次方程的概念
含有两个未知数(x和y),并且未知项的指数都是1,这样的方程被叫做二元一次方程。
二元一次方程的一般形式为ax+by=c(a≠0,b≠0).
提示
判断一个方程是不是二元一次方程,通常先把它化为ax+by=c的形式,再根据概念判断。
构成二元一次方
程的条件:是方程,方程两边都是整式,含有两个未知数,含有未知数的项的次数都是1。
二.二元一次方程的解
使二元一次方程左右两边的值相等的两个未知数的值,称为二元一次方程的一个解。
提示
(1)所有二元一次方程都有无数多组解
(2)求二元一次方程的一个解时,只要任给其中一个未知数的一个数值,并把它代入方程,解关于另一个未知数的一元一次方程即可确定原二元一次方程的一组解。
三.二元一次方程组的概念
(1)把具有相同未知数的两个二元一次方程合在一起,就组成了二元一次方程组。
(2)二元一次方程组必须满足的三个条件:含有两个未知数;含未知数的项的次数都是1;整式方程组(含两个或两个以上的整式方程)。
(3)一般形式:
提示
(1)二元一次方程组不一定都是由两个二元一次方程组成的,方程的个数可超过2个,其中有的方程可以是一元一次方程。
(2)在方程组的各方程中,相同的字母必须代表同一数量,否则不能将两个方程组合在一起。
四、二元一次方程组的解
一般的,使二元一次方程组中的两个方程的左右两边的值都相等的两个未知数的值,称为二元一次方程组的解。
二元一次方程组的解要用大括号“{”表示。
提示
检验一对数是不是某个二元一次方程组的解时,可将这对数值分别代入方程组中的每一个方程,只有当这对数值满足其中的所有方程时,才能说这对数值是此方程组的解。
五、代入消元法
(1)把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消
元,进而求得这个二元一次方程组的解,这种方法称为代入消元法,简称代入法。
(2)用代入法解二元一次方程组的一般步骤如下:
①从方程组中选择一个系数较为简单的方程,然后将这个方程中的一个未知数用含有另一个未知数的式子表示出来。
②用含有另一个未知数的式子代替另一个方程中的相应的未知数,从而把二元一次方程变为一元一次方程,达到消元的目的。
③解得到的一元一次方程,求出一个未知数的值。
④把求出的未知数的值代入到变形后的关系式中或原方程组的任一个方程中,求出另一个未知数。
⑤把求出的两个未知数的值用大括号的形式写出来。
提示
(1)代入消元法解方程组的关键:能够灵活“变形”和“代入”,以达到消元的目的。
(2)注意事项:
①解方程组时,不要将变形后的方程代入变形前的那个方程;
②利用已求出的未知数去求另一个未知数的值时,应代入到变形后的方程中,
计算较为简便;
③学会用检验的方法验证解方程的正确性。
六、加减消元法
(1)两个二元一次方程中同一未知数的系数相反或相等时,将这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)二元一次方程组加减消元法的步骤如下:
①变形:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,则要用适当的数乘方程的两边,使一个未知数的系数互为相反数或相等。
②加减:当同一个未知数的系数互为相反数时,用加法消去这个未知数,得出关于另一个未知数的一元一次方程;当同一个未知数的系数相等时,用减法消去这个未知数,得到关于另一个未知数的一元一次方程。
③解元:解所得到的一元一次方程。
④求值:将求出的一个未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值,从而得到方程组的解。
⑤联立:把求得的x、y的值用“{”联立起来,就是方程组的解。
提示
(1)加减消无法的关键:把方程组中两个方程中同一个未知数的系数化为相等或互为相反的数。
(2)应注意的问题:
①使某个方程乘以一个数时,应将方程两边的每一项都和这个数相乘;
②两个方程相加减时,一定要对两个方程两边分别相加减。
方法点拨
类型1 识别二元一次方程及二元一次方程组
【解答】选A
【方法总结】识别二元一次方程组时,要注意方程中有没有二次项,有没有不是整式的项,有没有超过两个未知数的项,若存在上面现象的某一个或几个,则不是二元一次方程组。
类型2 代入消元法解二元一次方程组
例3 解方程组
【分析】二元一次方程组中,若其中一个方程的某个未知数的系数是1或-1,则可经过变形,将它代入到另一个方程中,用代入法求解.由x+y=4变形得y=4-x ③,把③代入②即可求得x的值。
【解答】由①得:y=4-x ③
把③代入②得:2x-(4-x)=5
解得:x=3
把x=3代入③得:y=1
∴这个方程组的解为
例4 解方程组
【分析】本题如果直接使用代入法解题,计算过程较繁琐,仔细观察题目可以发现两个方程中y的系数正好呈倍数关系,因此可以把6y看作一个整体代入②式
【解答】由方程①,得6y=13-5x ③
把③代入方程②,得7x+3(13-5x)=-1,整理,得
8x=40
【方法总结】用代入法解二元一次方程组时,需先观察方程组的系数特点,判断消去哪个未知数较为简单,代
入消元时,要注意所代入的代数式的整体性,必要时添加括号,以避免符号错误。
类型3 加减消元法解二元一次方程组
例5 方程组
【分析】当二元一次方程组中某个未知数的系数相等或互为相反数时,可以将两个方程相加或相减达到消元的目的。
观察方程组,可以发现y的系数分别是3和-3,它们是一对相反数,将方程①和方程②相加就可以消去y,得到一个关于x的一元一次方程
【解答】①+②得:
3x=3,
X=1
把x=1代入方程①:
1+3y=4,
y=1
解得:
例6 解方程组:
【分析】观察方程组中两个未知数的系数特点,可以发现方程②中未知数y的系数为方程①中未知数y的系数的2倍,若将方程①两边都乘2,再和方程②相加即可消去y,即利用加减消元法来解答,
【解答】①×2.得6x-10y=8 ③
②+③,得8x=24,解得x=3
把x=3代入①,得3×3-5y=4,解得y=1.
所以,这个方程组的解是
【方法总结】此题方程组中的两个方程,两个未知数的系数分别既不相等也不互为相反数,即绝对值不相等,因此先将两个方程分别变形,使某一个未知数的系数的
绝对值相等。
另外,用加减法解二元一次方程组时,需注意两方程相减过程中符号的正确处理。
类型4 灵活选择适当的方法解二元一次方程组
【分析】当方程中含有分数或小数时,可将方程化为一般形式:因方程以比例的形式出现,可引入参数k,使解题过程得到简化
【解答】方法1:(代入法)由②得x=2/3y ③
【方法总结】所有的二元一次方程都可以用“代入法”解,也都可以用“加减法”解。
但是,通过比较,我们发现对于同一个方程组,用两种方法解有“繁”、“筒”之别,所以,应该根据方程组的结构特点,选择最优方法.同时,注意一题多解,比较各种方法之间的异同点。
二元一次方程组的解法不是唯一的,要根据题目的特征灵活选择适当的方法。
类型6 二元一次方程组及其解法的应用
例8 若方程mx+ny=6的两个解是
①+②得3m=12,即m=4。
将m=4代入①得n=2。
故选A。
【方法总结】此题综合考查了二元一次方程组解的意义及二元一次方程组的解
法,解题的关键是根据二元一次方程组解的意义,将方程组的解代入方程组,得到以所求字母为未知数的新方程组。