2018年第21章一元二次方程单元测试题
- 格式:docx
- 大小:72.98 KB
- 文档页数:4
第二十一章一元二次方程检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列方程:①x2-5=0;②ax2+bx+c=0;③(x-2)(x+3)=x2+1;④x2-4x+4=0;⑤x2+1x=412中,一元二次方程的个数是()A.1 B.2 C.3 D.42.一元二次方程x2-6x-6=0配方后化为()A.(x-3)2=15 B.(x-3)2=3 C.(x+3)2=15 D.(x+3)2=33.(2018·上海)下列对一元二次方程x2+x-3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根4.(2018·铜仁)关于x的一元二次方程x2-4x+3=0的解为()A.x1=-1,x2=3 B.x1=1,x2=-3 C.x1=1,x2=3 D.x1=-1,x2=-35.关于x的一元二次方程x2-3x-a=0有一个实数根为-1,则a的值()A.2 B.-2 C.4 D.-46.等腰三角形的两边长为方程x2-7x+10=0的两根,则它的周长为()A.12 B.12或9 C.9 D.77.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()8.(2018·咸宁)已知一元二次方程2x2+2x-1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A .x 1+x 2=1B .x 1·x 2=-1C .|x 1|<|x 2|D .x 12+x 1=129.(2018·舟山)欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:画Rt △ABC ,使∠ACB =90°,BC =a 2,AC =b ,再在斜边AB 上截取BD =a2.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长10.(2018·乌鲁木齐)宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A .(180+x -20)(50-x10)=10890 B .(x -20)(50-x -18010)=10890 C .x(50-x -18010)-50×20=10890 D .(x +180)(50-x10)-50×20=10890 二、填空题(每小题3分,共24分)11.把方程(x +1)(3x -2)=10化成一般形式为3x 2+x -12=0,一次项系数为1,常数项为 .12.(2018·苏州)若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n = . 13.(2018·威海)关于x 的一元二次方程(m -5)x 2+2x +2=0有实根,则m 的最大整数解是 .14.(2018·十堰)对于实数a ,b ,定义运算“※”如下:a ※b =a 2-ab ,例如,5※3=52-5×3=10.若(x +1)※(x -2)=6,则x 的值为 .15.若两个不等实数m ,n 满足条件:m 2-2m -1=0,n 2-2n -1=0,则m 2+n 2的值是 . 16.等腰△ABC 中,BC =8,AB ,AC 的长是关于x 的方程x 2-10x +m =0的两根,则m 的值是 .17.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .18.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是 .三、解答题(共66分)19.(6分)解方程:(1)x2-5x+2=0; (2)x2-1=2(x+1).20.(6分)方程(m-2)xm2-2+(3-m)x-2=0是一元二次方程,试求代数式m2+2m-4的值.21.(6分)(2018·甘孜州)已知关于x的方程x2-2x+m=0有两个不相等的实数根,求实数m的取值范围.22.(7分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.(1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x元,则每天可卖出(170-5x)件,商店预期每天要盈利280元,那么每件商品的售价应定为多少元?23.(9分)(2018·随州)已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若1x1+1x2=-1,求k的值.24.(10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2016年该市投入基础教育经费5000万元,2018年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2019年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?25.(10分)如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向点B以1 cm/s的速度移动,点Q从点B沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8 cm2?(2)出发几秒后,线段PQ的长为4 2 cm?(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.26.(12分)(2018·常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x =0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD,DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.第二十一章检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列方程:①x 2-5=0;②ax 2+bx +c =0;③(x -2)(x +3)=x 2+1;④x 2-4x +4=0;⑤x 2+1x =412中,一元二次方程的个数是(B )A .1B .2C .3D .42.一元二次方程x 2-6x -6=0配方后化为(A )A .(x -3)2=15B .(x -3)2=3C .(x +3)2=15D .(x +3)2=3 3.(2018·上海)下列对一元二次方程x 2+x -3=0根的情况的判断,正确的是(A ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根 4.(2018·铜仁)关于x 的一元二次方程x 2-4x +3=0的解为(C )A .x 1=-1,x 2=3B .x 1=1,x 2=-3C .x 1=1,x 2=3D .x 1=-1,x 2=-3 5.关于x 的一元二次方程x 2-3x -a =0有一个实数根为-1,则a 的值(C ) A .2 B .-2 C .4 D .-46.等腰三角形的两边长为方程x 2-7x +10=0的两根,则它的周长为(A ) A .12 B .12或9 C .9 D .77.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是(B )8.(2018·咸宁)已知一元二次方程2x 2+2x -1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是(D ) A .x 1+x 2=1 B .x 1·x 2=-1 C .|x 1|<|x 2| D .x 12+x 1=129.(2018·舟山)欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:画Rt △ABC ,使∠ACB =90°,BC =a 2,AC =b ,再在斜边AB 上截取BD =a2.则该方程的一个正根是(B )A .AC 的长B .AD 的长C .BC 的长D .CD 的长 10.(2018·乌鲁木齐)宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有(B )A .(180+x -20)(50-x10)=10890 B .(x -20)(50-x -18010)=10890C .x(50-x -18010)-50×20=10890D .(x +180)(50-x10)-50×20=10890二、填空题(每小题3分,共24分)11.把方程(x +1)(3x -2)=10化成一般形式为3x 2+x -12=0,一次项系数为1,常数项为-12. 12.(2018·苏州)若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =-2. 13.(2018·威海)关于x 的一元二次方程(m -5)x 2+2x +2=0有实根,则m 的最大整数解是4. 14.(2018·十堰)对于实数a ,b ,定义运算“※”如下:a ※b =a 2-ab ,例如,5※3=52-5×3=10.若(x +1)※(x -2)=6,则x 的值为1.15.若两个不等实数m ,n 满足条件:m 2-2m -1=0,n 2-2n -1=0,则m 2+n 2的值是6.16.等腰△ABC 中,BC =8,AB ,AC 的长是关于x 的方程x 2-10x +m =0的两根,则m 的值是25或16. 17.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是10%. 18.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是74.三、解答题(共66分) 19.(6分)解方程:(1)x 2-5x +2=0; (2)x 2-1=2(x +1).(1)x 1=5+172,x 2=5-172解:(2)x 1=-1,x 2=320.(6分)方程(m -2)xm 2-2+(3-m)x -2=0是一元二次方程,试求代数式m 2+2m -4的值. 根据题意,得m 2-2=2且m -2≠0,解得m =±2且m ≠2,∴m =-2,∴m 2+2m -4=(-2)2+2×(-2)-4=4-4-4=-421.(6分)(2018·甘孜州)已知关于x 的方程x 2-2x +m =0有两个不相等的实数根,求实数m 的取值范围. ∵方程x 2-2x +m =0有两个不相等的实数根,∴Δ=(-2)2-4×1×m =4-4m >0,解得m <122.(7分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%. (1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x 元,则每天可卖出(170-5x)件,商店预期每天要盈利280元,那么每件商品的售价应定为多少元?(1)16(1+30%)=20.8,即此商品每件售价最高可定为20.8元 (2)由题意得(x -16)·(170-5x)=280,解得x 1=20,x 2=30,因为售价最高不得高于20.8元,所以x 2=30不合题意,应舍去.故每件商品的售价应定为20元23.(9分)(2018·随州)已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若1x 1+1x 2=-1,求k 的值.(1)∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴Δ=(2k +3)2-4k 2>0,解得k >-34 (2)∵x 1,x 2是方程x 2+(2k +3)x +k 2=0的实数根,∴x 1+x 2=-2k -3,x 1x 2=k 2,∴1x 1+1x 2=x 1+x 2x 1x 2=-(2k +3)k 2=-1,解得k 1=3,k 2=-1,经检验,k 1=3,k 2=-1都是原分式方程的根.又∵k >-34,∴k =324.(10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2016年该市投入基础教育经费5000万元,2018年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2019年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?(1)设该市这两年投入基础教育经费的年平均增长率为x ,根据题意,得5000(1+x)2=7200,解得x 1=0.2=20%,x 2=-2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20% (2)2019年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m 台,则购买实物投影仪(1500-m)台,根据题意,得3500m +2000(1500-m)≤86400000×5%,解得m ≤880.答:2019年最多可购买电脑880台25.(10分)如图,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,若点P 从点A 沿AB 边向点B 以1 cm /s 的速度移动,点Q 从点B 沿BC 边向点C 以2 cm /s 的速度移动,两点同时出发.(1)问几秒后,△PBQ 的面积为8 cm 2?(2)出发几秒后,线段PQ 的长为4 2 cm?(3)△PBQ 的面积能否为10 cm 2?若能,求出时间;若不能,请说明理由.(1)设经过t 秒时,△PBQ 的面积为8 cm 2,则PB =6-t ,BQ =2t ,∵∠B =90°,∴12(6-t)×2t =8,解得t 1=2,t 2=4,经过2秒或4秒时,△PBQ 的面积为8 cm 2 (2)设x 秒后,PQ =4 2 cm ,由题意,得(6-x)2+(2x)2=(42)2,解得x 1=25,x 2=2,故经过25秒或2秒时,线段PQ 的长为4 2 cm(3)△PBQ 的面积不能为10 cm 2.理由如下:设经过y 秒,△PBQ 的面积等于10 cm 2,则12×(6-y)×2y =10,即y 2-6y +10=0,∵Δ=b 2-4ac =36-4×10=-4<0,∴△PBQ 的面积不会等于10 cm 226.(12分)(2018·常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD,DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.(1)-21(2)2x+3=x,方程的两边平方,得2x+3=x2,即x2-2x-3=0,(x-3)(x+1)=0,∴x-3=0或x+1=0,∴x1=3,x2=-1,当x=-1时,2x+3=1=1≠-1,∴-1不是原方程的解.∴方程2x+3=x 的解是x=3(3)∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD=3 m,设AP=x m,则PD=(8-x)m,∵BP+CP=10,BP=AP2+AB2,CP=CD2+PD2,∴9+x2+(8-x)2+9=10,∴(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-209+x2+9+x2,整理,得5x2+9=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,所以x=4.经检验,x=4是方程的解.答:AP的长为4 m。
第21章一元二次方程单元检测题满分:100分,限时:60分钟一、选择题(每小题3分,共30分)1.(2019江苏盐城东台期中)下列关于x的方程中,一定是一元二次方程的为( )A.x2-2=(x+3)2B.ax2+bx+c=0-5=0 D.x2-1=0C.x2+3x2.(2019天津宁河期中)x=2不是下列哪一个方程的解?( )A.3(x-2)=0B.2x2-3x=2C.(x-2)(x+2)=0D.x2-x+2=03.(2016新疆中考)一元二次方程x2-6x-5=0配方可变形为( )A.(x-3)2=14B.(x-3)2=4C.(x+3)2=14D.(x+3)2=44.(2018上海中考)下列对一元二次方程x2+x-3=0根的情况的判断,正确的是( )A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根5.(2016辽宁营口中考)若关于x的一元二次方程kx2+2x-1=0有实数根,则实数k的取值范围是( )A.k≥-1B.k>-1C.k≥-1且k≠0D.k>-1且k≠06.(2019河南周口川汇期中)在设计人体雕像时,使雕像的上部与下部的高度比,等于下部与全部的高度比,可以增加视觉美感.如果雕像高度为2 m,设雕像下部高为x m,则x满足( )A.x2=2(2-x)B.(2-x)2=2xC.x2=2(2+x)D.(2+x)2=2x7.(2018湖北咸宁中考)已知一元二次方程2x2+2x-1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( )A.x1+x2=1B.x1·x2=-1C.|x1|<|x2|D.x12+x1=128.定义新运算,规定运算“★”是a★b=ab2,如2★5=2×52,若3★x=36,则x的值为( )A.x1=4,x2=-4B.x1=x2=0C.x1=2√3,x2=-2√3D.x1=3,x2=-39.如图21-4-1,要设计一幅宽为20 cm,长为30 cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,那么横彩条和竖彩条的宽度分别是( )图21-4-1A.2 cm 和3 cmB.13 cm 和12 cm C.53 cm 和52 cm D.25 cm 和35cm10.(2017四川泸州中考)已知m,n 是关于x 的一元二次方程x 2-2tx+t 2-2t+4=0的两实数根,则(m+2)(n+2)的最小值是( )A.7B.11C.12D.16 二、填空题(每小题3分,共24分)11.(2018福建龙岩上杭期中)一元二次方程3x(x-3)=2x 2+1化成一般形式为 .12.(2019吉林延边安图月考)若x=-2是关于x 的一元二次方程ax 2-4=0的一个解,则这个方程的另一个解是 .13.已知代数式2x(x+1)与代数式3x-3的值互为相反数,则x 的值为 . 14.关于x 的方程ax 2+bx+c=3的解与(x-1)(x-4)=0的解相同,则5a+b 的值为 .15.(2017河南南阳新野模拟)已知关于x 的方程(1-2k)x 2-2√k x-1=0有两个不相等的实数根,则k 的取值范围为 .16.(2018湖北潜江月考)一人患了流感,经过两轮传染后共有64人患了流感.如果不及时控制,第三轮将又有 人被传染.17.(2017山东潍坊诸城期中)已知线段AB 的长为2,以AB 为边在AB 的下方作正方形ACDB.取AB 边上一点E,以AE 为边在AB 的上方作正方形AENM.过E 作EF ⊥CD,垂足为点F,如图21-4-2.若正方形AENM 与四边形EFDB 的面积相等,则AE 的长为 .图21-4-218.(2017四川成都中考)已知x 1,x 2是关于x 的一元二次方程x 2-5x+a=0的两个实数根,且x 12-x 22=10,则a= . 三、解答题(共46分)19.(每小题4分,共8分)用适当的方法解下列方程: (1)(3x-1)2=(x+1)2;(2)2x 2+x-12=0.20.(2017广东深圳中考)(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.(2017四川南充中考)(10分)已知关于x的一元二次方程x2-(m-3)x-m=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22-x1x2=7,求m的值.22.(2018贵州安顺中考)(10分)某地2015年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1 600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.23.(2019重庆沙坪坝月考)(10分)小飞文具店今年7月份购进一批笔记本,共2 290本,每本进价为10元,该文具店决定从8月份开始进行销售,若每本售价为11元,则可全部售完;且每本售价每增长1元,销量就减少30本.(1)若该种笔记本在8月份的销售量不低于2 200本,则8月份每本售价应不高于多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量进行了销售调整,售价比8月份在(1)的条件下的最高售价减少了1m%,结果9月份的销量比8月份在(1)的条件下的最低销量增7加了m%,9月份的销售利润达到6 600元,求m的值.。
人教版九年级上册数学第二十一章一元二次方程单元练习题附详细解析一、单选题1.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是().A.a<2 B.a>2C.a<2且a≠1D.a<-22.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007B.2005C.﹣2007D.40103.一元二次方程x2-kx-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.用配方法解方程时,原方程应变形为()A.B.C.D.5.方程-x2+3x=1用公式法求解,先确定a,b,c的值,正确的是()A.a=-1,b=3,c=-1B.a=-1,b=3,c=1C.a=-1,b=-3,c=-1D.a=1,b=-3,c=-16.下列方程中,有两个不相等实数根的是().A.x2-4x+4=0B.x2+3x-1=0C.x2+x+1=0D.x2-2x+3=07.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是()A.k>-1或k≠0B.k≥-1C.k≤-1或k≠0D.k≥-1且k≠08.参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为()A.12x(x−1)=10B.x(x−1)=10C.12x(x+1)=10D.2x(x−1)=109.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32−x)(20−x)=32×20−570B.32x+2×20x=32×20−570C.32x+2×20x−2x2=570D.(32−2x)(20−x)=57010.直角三角形两条直角边的和为7,面积是6,则斜边长是()A.√37B.5C.√38D.7二、填空题11.已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
第21章《一元二次方程》单元测试班级: 姓名: 得分:——A 卷(60分)——一、选择题(每小题3分,共21分)1.下列方程中是关于x 的一元二次方程的是( )A.20ax bx c ++=B.2250x x --=C.223x x x -=+D.2120x x -= 2.关于x 的方程2320ax x -+=是一元二次方程,则( )A.0a >B.0a ≠C.1a =D.a ≥03.用配方法解下列方程,其中应在左右两边同时加上4的是( )A.225x x -=B.2245x x -=C.245x x +=D.225x x +=4.方程(1)0x x -=的根是( )A.0x =B.1x =C.10x =,21x =D.110x x ==5.解方程① x 2+2x -3=0,②x 2-3x -2=0,③(x +1)2=2(x +1),方法选择适当的是( )A.①公式法;②因式分解法;③配方法B.①因式分解法;②公式法;③配方法C.①公式法;②配方法;③因式分解法D.①配方法;②公式法;③因式分解法6.已知关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,则k ( )A. 2k =B. 2k >C. 2k <D.2k ≠7.某厂一月份的产量为500吨,三月份的产量达到720吨。
若平均每月增长率是x ,则可以列方程( )A .720)21(500=+xB .720)1(5002=+xC .720)1(5002=+xD .500)1(7202=+x二、填空题(每小题3分,共18分)8.若(a -1)x 2+3ax -1=0是关于x 的一元二次方程,那么a 的取值范围是 .9.将方程3x (x -1)=5(x +2)化成一般形式为 .10.方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 . 11.22___)(_____6+=++x x x .12.方程230x kx +-=的一个根是1,则k 的值是 .13.已知关于的x 方程240x mx -+=有两个相等实数根,那么=m .三、解方程(每小题5分,共10分)14.22990x x --=(配方法) 15.2450x x --=(公式法)四、解答题(第16题5分,第17题6分,共11分)16.学校组织了一次篮球比赛(每两队之间只进行一场比赛),共进行了6场比赛,那么共有多少个球队参加了这次比赛?17.某蔬菜有限公司一年四季都有大量新鲜蔬菜销往全国各地,近年来它的蔬菜产值不断增加,2013年蔬菜的产值是1000万元,2015年产值达到1210万元.求这两年蔬菜产值的年平均增长率是多少?——B 卷(40分)——一、选择题(每小题2分,共6分)1. 关于x 的方程21(1)310m m x x +++-=是一元二次方程,则( )A. 1m =B. 1m =-C. 1m =±D. m 为全体实数2.以3和1-为两根的一元二次方程是 ( );A.0322=-+x xB.0322=++x xC.0322=--x xD.0322=+-x x3.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6-B. 1C. 6-或1D. 2二、填空题(每小题3分,共6分)4.已知m 是方程x 2-x -2=0的一个根,则代数式m 2-m 的值等于 .5.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 .三、解方程(每小题5分,共10分)6.)12(3)12(2+=+x x 7.01072=+-x x四、解答题(每小题9分,共18分)8.如图,矩形ABCD中,AB=6厘米,BC=12厘米,点P从点A出发沿AB边向点B 以1厘米/秒的速度移动,点Q从点B出发沿BC边向点C以2厘米/秒的速度移动,如果P、Q分别是从A、B同时出发,经过几秒时△PBQ的面积等于8平方厘米?P9.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?——C 卷(20分)——一、选择题(每小题2分,共4分)1. 已知222246140x y z x y z +++-++=,则x y z ++的值是( )A. 1B. -1C. 2D. -2 2.已知a 是210x x +-=的一个根,则22211a a a---的值是( )二、填空题(每小题3分,共6分) 3.已知一元二次方程2560x x -+=的两个根是12,x x ,则1211x x += . 4.若一个三角形的三边长均满足方程2680x x -+=,则此三角形的周长为 .三、解答题(每小题5分,共10分)5.先化简,再求值:3(1)1x x +--÷2441x x x -+-,其中x 满足方程260x x +-=.6.已知a 是2201610x x -+=的一个根,试求22201620151a a a -++的值.第21章《一元二次方程》单元测试参考答案一、选择题(每小题3分,共21分)1.B 2.B 3.C 4.C 5.D 6.C 7.B二、填空题(每小题3分,共18分)8.a ≠1 9.3x 2-5x -10=0 10.2、-3 、-1 11.9、3 12.2 13.±4三、解方程(每小题5分,共10分)14.22990x x --=(配方法) 15.2450x x --=(公式法) 解:移项,得 2299x x -= 解:1,4,c 5.a b ==-=-配方,得 221991x x -+=+ 224(4)41(5)360b ac ∆=-=--⨯⨯-=> 即 2(1)100x -= 方程有两个不等实数根由此可得 110x -=± 462x ±=== 111x =,29x =- 15x =,21x =-四、解答题(第16题5分,第17题6分,共11分)16.解:共有x 个球队参加了这次比赛,由题意得12×x (x -1)=6解得 x 1=4,x 2=-3(不合题意,舍去)答:共有4个球队参加了这次比赛.17.解:设这两年蔬菜产值的年平均增长率是x ,由题意得1000(1+x )2=1210解得 x 1=0.1,x 2=-2.1(不合题意,舍去)∴ x =0.1=10%答:这两年绿地面积的年平均增长率为10%.——B 卷(40分)——一、选择题(每小题2分,共6分)1.A 2.C 3.C二、填空题(每小题3分,共6分)4.2 5.25或36.三、解方程(每小题5分,共10分) 6.)12(3)12(2+=+x x 7.01072=+-x x 解:移项,得 2(21)3(21)0x x +-+= 解:1,7,c 10.a b ==-=因式分解,得(21)(213)0x x ++-= 224(7)410019b ac ∆=-=--⨯⨯=>于是,得210x +=,或2130x +-= 9732x ±== 112x =-,21x = 15x =,22x =四、解答题(每小题9分,共18分)8.解:设经过x 秒时△PBQ 的面积等于 8 平方厘米,由题意得 12×2x (6-x )=8解得 x 1=2,x 2=4经检验x 1,x 2均符合题意答:经过2秒或4秒时△PBQ 的面积等于 8 平方厘米。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
21.3 实际问题与一元二次方程学校:___________姓名:___________班级:___________一.选择题(共12小题)1.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5072.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%3.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=324.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100 5.宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890 D.(x+180)(50﹣)﹣50×20=108906.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x,则根据题意可列方程为()A.2000(1+x)2=4500 B.2000(1+2x)=4500C.2000(1﹣x)2=4500 D.2000x2=45007.云南省某市2018年现有森林和人工绿化面积为20万亩,为了响应十九大的“绿水青山就是金山银山”,现计划在两年后将本市的绿化面积提高到24.2万亩,设每年平均增长率为x,则列方程为()A.20(1+x)×2=24.2 B.20(1+x)2=24.2×2C.20+20(1+x)+20(1+x)2=24.2 D.20(1+x)2=24.28.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.如果设小路宽为x,根据题意,所列方程正确的是()A.(20﹣x)(32﹣x)=540 B.(20﹣x)(32﹣x)=100 C.(20+x)(32﹣x)=540 D.(20+x)(32﹣x)=1009.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分总面积为112m2,设小路宽为xm,那么x满足的方程是()A.2x2﹣25x+16=0 B.x2﹣25x+32=0 C.x2﹣17x+16=0 D.x2﹣17x﹣16=010.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=12011.近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A.10% B.15% C.20% D.25%12.用总长10m的铝合金型材做一个如图所示的窗框(不计损耗),窗框的外围是矩形,上部是两个全等的正方形,窗框的总面积为3.52m2(材料的厚度忽略不计).若设小正方形的边长为xm,下列方程符合题意的是()A.2x(10﹣7x)=3.52 B.C.D.2x2+2x(10﹣9x)=3.52二.填空题(共6小题)13.为应对金融危机,某工厂从2008年到2010年把某种产品的成本下降了19%,则平均每年下降的百分数为.14.某商品的原价为120元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是元(结果用含m的代数式表示).15.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.16.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是.17.某县2015年农民人均年收入为10000元,计划到2017年,农民人均年收入达到12 100元.设人均年收入的平均增长率为x,则可列方程.18.如图,某小区有一块长为36m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为600m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为m.三.解答题(共8小题)19.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?20.在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.21.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.22.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.23.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)24.无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?25.2017年5月14日﹣﹣﹣5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?26.成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为 90m,宽为 60m,按照规划将预留总面积为 4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这 4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了 536m2的绿化任务后,将工作效率提高 25%,结果提前 2 天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?参考答案与试题解析一.选择题(共12小题)1.解:设这两年的年利润平均增长率为x,根据题意得:300(1+x)2=507.故选:B.2.解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.3.解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.4.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.5.解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.6.解:依题意得3月份该型号汽车的销量为:2000(1+x)2,则2000(1+x)2=4500.故选:A.7.解:由题意可得,20(1+x)2=24.2,故选:D.8.解:由题意,得种草部分的长为(32﹣x)m,宽为(20﹣x)m,∴由题意建立等量关系,得(20﹣x)(32﹣x)=540.故A答案正确,故选:A.9.解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为16﹣2x,9﹣x;根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,整理得:x2﹣17x+16=0.故选:C.10.解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选:D.11.解:设这两年绿地面积的年平均增长率是x,根据题意得:300(1+x)2=363,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:这两年绿地面积的年平均增长率是10%.故选:A.12.解:设小正方形的边长为xm,则小矩形的宽为2xm,长为: m,依题意得:.故选:B.二.填空题(共6小题)13.解:设每年下降的百分率为x,由题意,可得(1﹣x)2=1﹣19%,解得x1=0.1,x2=1.9(不合题意舍去).所以平均每年下降的百分率为10%.故答案为:10%.14.解:设每次降价的百分率都是m,该商品现在的价格是;120(1﹣m)2.故答案为:120(1﹣m)2.15.解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.16.解:由题意可知:100(1+x)2=121故答案为:100(1+x)2=12117.解:设人均年收入的平均增长率为x,根据题意得:10000(1+x)2=12100.故答案为:10000(1+x)2=12100.18.解:设人行通道的宽度为x,将脸矩形绿地平移,如图所示,∴AB=2x,GD=3x,ED=24﹣2x由题意可列出方程:36×24﹣600=2x×36+3x(24﹣2x)解得:x=2或x=22(不合题意,舍去)故答案为:2三.解答题(共8小题)19.解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,550)代入y=kx+b,得:,解得:,∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据题意得:(x﹣30)(﹣10x+1000)=10000,整理,得:x2﹣130x+4000=0,解得:x1=50,x2=80.∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元/台.20.解:(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,根据题意得:x≥4(50﹣x),解得:x≥40.答:按计划,2018年前5个月至少要修建40个沼气池.(2)修建每个沼气池的平均费用为78÷[40+(50﹣40)×2]=1.3(万元),修建每个垃圾处理点的平均费用为1.3×2=2.6(万元).根据题意得:1.3×(1+a%)×40×(1+5a%)+2.6×(1+5a%)×10×(1+8a%)=78×(1+10a%),设y=a%,整理得:50y2﹣5y=0,解得:y1=0(不合题意,舍去),y2=0.1,∴a的值为10.21.解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5解法二:解得:22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y元、2y元,30y+15×2y=780,y=13,2y=26,由题意得:13(1+a%)•30(1+5a%)+26(1+5a%)•15(1+8a%)=780(1+10a%),设a%=m,则390(1+m)(1+5m)+390(1+5m)(1+8m)=780(1+10m),45m2﹣m=0,m1=,m2=0(舍),∴a=.23.解:(1)设y与x之间的函数关系式y=kx+b(k≠0),把(10,40),(18,24)代入得:,解得:,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)根据题意得:(x﹣10)(﹣2x+60)=150,整理,得:x2﹣40x+375=0,解得:x1=15,x2=25(不合题意,舍去).答:该经销商想要每天获得150元的销售利润,销售价应定为15元.24.解:(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,根据题意得解得k=﹣50,b=850,所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)根据题意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.25.解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:该企业从第一季度到第三季度利润的平均增长率为20%.(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),10736万元>1亿元.答:该企业2017年的年利润总和突破1亿元.26.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.。
第二十一章《一元二次方程》单元测试卷(二)一.选择题1.下列方程中属于一元二次方程的是()A.=0 B.x2+3x=x2﹣2C.ax2+bx+c=0 D.2(x+1)2=x+12.已知关于x的方程(a+1)x|a|+1﹣2x﹣1=0是一元二次方程,则a的值为()A.﹣1 B.1 C.0 D.﹣1或13.已知x、y都是正实数,且满足x2+2xy+y2+x+y﹣12=0,则x(1﹣y)的最小值是()A.4 B.﹣1 C.﹣2 D.无法确定4.一个矩形内放入两个边长分别为3cm和4cm的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A.5cm2B.6cm2C.7cm2D.8cm25.若一元二次方程5x﹣1=4x2的两根为x1和x2,则x1•x2的值等于()A.1 B.C.D.6.一元二次方程x2+4x+5=0的根的情况是()A.无实数根B.有一个实根C.有两个相等的实数根D.有两个不相等的实数根7.受非洲猪瘟及其他因素影响,2019年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是()A.23(1﹣x%)2=60 B.23(1+x%)2=60C.23(1+x2%)=60 D.23(1+2x%)=608.已知一元二次方程x2+6x+c=0有一个根为﹣2,则另一个根为()A.﹣2 B.﹣3 C.﹣4 D.﹣89.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣2019 10.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017 B.2020 C.2019 D.2018二.填空题11.已知关于x的方程x2+kx﹣2=0的一个根是x=2,则另外一个根为.12.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x 人,则关于x的方程为.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是.14.把关于y的方程(2y﹣3)2=y(y﹣2)化成一般形式为.15.已知关于x的方程x2﹣(3+2a)x+a2=0的两个实数根为x1,x2,且x1x2﹣5=x1+x2,则a的值为.16.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.17.疫情期间,学校利用一段已有的围墙(可利用的围墙长度仅有5米)搭建一个矩形临时隔离点ABCD,如图所示,它的另外三边所围的总长度是10米,矩形隔离点的面积为12平方米,则AB的长度是米.三.解答题18.解方程:(1)x2﹣x﹣1=0;(2)3x(1﹣x)=2﹣2x.19.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间距离是cm?20.已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.21.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?22.合肥长江180艺术街区进行绿化改造,用一段长40m的篱笆和长15m的墙AB,围成一个矩形的花园,设平行于墙的一边DE的长为xm;(1)如图1,如果矩形花园的一边靠墙AB,另三边由篱笆CDEF围成,当花园面积为150m2时,求x的值;(2)如图2,如果矩形花园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF 围成,当花园面积是150m2时,求BF的长.23.悠悠食品店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A种菜品每天销售多少份?参考答案一.选择题1.解:A、是分式方程,故A不合题意;B、整理后是一元一次方程,故B不合题意;C、当a=0时是一元一次方程,故C不合题意;D、是一元二次方程,故D符合题意.故选:D.2.解:∵方程(a+1)x|a|+1﹣2x﹣1=0是一元二次方程,∴|a|+1=2且a+1≠0,∴a=±1且a≠﹣1,∴a=1,故选:B.3.解:∵x2+2xy+y2+x+y﹣12=0∴(x+y)2+(x+y)﹣12=0即(x+y﹣3)(x+y+4)=0,可得x+y=3或x+y=﹣4(舍去)∴y=﹣x+3,∴x(1﹣y)=x(1+x﹣3)=x2﹣2x=(x﹣1)2﹣1,最小值为﹣1.故选:B.4.解:设矩形的长为xcm,宽为ycm,依题意,得:,(②﹣①)÷3,得:y﹣x+1=0,∴x=y+1③.将③代入②,得:y(y+1)=16+3(y﹣4)+11,整理,得:y2﹣2y﹣15=0,解得:y1=5,y2=﹣3(舍去),∴x=6.∴按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为(x﹣4)(y﹣3)+(x﹣3)(y﹣4)=2×2+3×1=7.故选:C.5.解:方程化为4x2﹣5x+1=0,根据题意得x1•x2=.故选:B.6.解:∵△=42﹣4×5=﹣4<0,∴方程无实数根.故选:A.7.解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2.∴23(1+x%)2=60.故选:B.8.解:∵一元二次方程x2+6x+c=0有一个根为﹣2,∴设另一个根为m,则有m﹣2=﹣6,∴m=﹣4,故选:C.9.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a2﹣1=a,﹣a2+a=﹣1,∴﹣a3+2a+2020=﹣a(a2﹣1)+a+2020=﹣a2+a+2020=2019.故选:C.10.解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故选:B.二.填空题(共7小题)11.解:设方程的另一个根为t,根据题意得2t=﹣2,解得t=﹣1.即方程的另一个根为﹣1.故答案为﹣1.12.解:∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x,∵经过两轮传染后共有121人患了流感,∴可列方程为:(1+x)2=121.故答案为:(1+x)2=121.13.解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.14.解:∵(2y﹣3)2=y(y﹣2),∴4y2﹣12y+9=y2﹣2y,∴4y2﹣12y+9﹣y2+2y=0,∴3y2﹣10y+9=0,故答案为:3y2﹣10y+9=0.15.解:根据题意得△=(3+2a)2﹣4a2≥0,解得a≥﹣,∵x1+x2=3+2a,x1x2=a2,∴a2﹣5=3+2a,整理得a2﹣2a﹣8=0,解得a1=4,a2=﹣2(舍去),∴a的值为4.故答案为4.16.解:设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,依题意,得:x(x﹣1)=2450,解得:x1=50,x2=﹣49(不合题意,舍去).故答案为:50.17.解:设AB=x米,则BC=(10﹣2x)米,根据题意可得,x(10﹣2x)=12,解得x1=3,x2=2(舍去),∴AB的长为3米.故答案为:3.三.解答题(共6小题)18.解:(1)∵x2﹣x﹣1=0,∴b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5,∴x==,解得:x1=,x2=.(2)∵3x(1﹣x)=2﹣2x.∴3x(1﹣x)=2(1﹣x),∴(3x﹣2)(1﹣x)=0,∴3x﹣2=0,1﹣x=0,解得:x1=,x2=1.19.解:(1)设经过x秒后,△PBQ的面积等于8cm2,则BP=(6﹣x)cm,BQ=2xcm,依题意,得:(6﹣x)×2x=8,化简,得:x2﹣6x+8=0,解得:x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2ycm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间距离是cm.20.解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k+8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.21.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2.1(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.22.解:(1)由题意得:(40﹣x)x=150;解得:x1=10,x2=30,∵30>15∴x=30舍去,∴x=10m;答:x的值为10m;(2)设BF=y;则(25﹣2y)(y+15)=150;解得y1=﹣(舍去),y2=5,答:BF的长为5m.23.(1)设该店每天卖出A、B两种菜品分别为x份、y份,根据题意得,.解得:.答:该店每天卖出这两种菜品共60份.(2)设A种菜品售价降0.5a元,即每天卖(20+a)份,则B种菜品卖(40﹣a)份,每份售价提高0.5a元.(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)=316.即a2﹣12a+36=0a1=a2=6答:A种菜品每天销售26份.。
21.2.3 因式分解法1.方程(x +1)2=x +1的解是() A .x =-1 B .x 1=0,x 2=-1C .x 1=0,x 2=-2D .x 1=1,x 2=-12.下面是小刚在作业本中做的一道题,老师说小刚的方法有问题,可是小刚不明白,你能帮帮他吗?解一元二次方程:(2x -1)2=2x -4x 2.解:原方程变形为(2x -1)2=2x (1-2x ),①即(2x -1)2=-2x (2x -1),②化简,得2x -1=-2x ,③得4x =1,④ 即x =14.⑤在上述解法中,你认为第____步有问题,问题在于____,请将你认为正确的解法写在下面.3.用因式分解法解下列方程:(1)(x -1)2-2(x -1)=0;(2)9x 2-4=0;(3)(3x -1)2-4=0;(4)5x (x -3)=(x -3)(x +1).4.按要求或选择适当的方法解下列方程:(1)x2-5x+1=0(用配方法);(2)3(x-2)2=x(x-2);(3)2x2-22x-5=0(用公式法);(4)2(x-3)2=x2-9.5.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是____.6.由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试:分解因式:x2+6x+8=(x+____)(x+____).(2)应用:请用上述方法解方程:x2-3x-4=0.7.已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a ,b ,c 分别为△ABC 的三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.参考答案【分层作业】1.B2.③2x -1可能等于0 解法略3.(1)x 1=3,x 2=1.(2)x 1=-23,x 2=23.(3)x 1=-13,x 2=1.(4)x 1=3,x 2=14.4.(1)x 1=5+212,x 2=5-212.(2)x 1=2,x 2=3.(3)x 1=2+232,x 2=2-232.(4)x 1=3,x 2=9.5.06.(1)24(2)x 1=-1,x 2=4.7.(1)△ABC 是等腰三角形.理由略.(2)△ABC 是直角三角形.理由略.(3)x 1=0,x 2=-1.。
九年级数学上册《第二十一章一元二次方程》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.用配方法解方程x 2﹣1=6x ,配方后的方程是( )A .(x ﹣3)2=9B .(x ﹣3)2=1C .(x ﹣3)2=10D .(x+3)2=92.方程 250x x a -+= 的一个根是 2x = ,则a 的值是( )A .6B .-6C .8D .143.如图,某校劳动实践课程试验园地是长为20m ,宽为18m 的矩形,为方便活动,需要在园地中间开辟一横两纵共三条等宽的小道.如果园地余下的面积为2306m ,则小道的宽为多少?设小道的宽为m x ,根据题意,可列方程为( )A .()()20218306x x --=B .()()20182306x x --=C .2201821820306x x x ⨯-⨯-+=D .2201822018306x x x ⨯-⨯-+=4.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本率为( )A .10%B .9%C .9.5%D .8.5%5.若关于x 的一元二次方程方程(k ﹣1)x 2+4x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k <5B .k <5,且k ≠1C .k ≤5,且k ≠1D .k >56.已知a ,b ,c 分别是三角形的三边,则方程 220a b x cx a b ++++=()() 的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断7.已知方程□2420x x -+=,在□中添加一个合适的数字,使该方程有两个不相等的实数根,则添加的数字可以是( )A .0B .1C .2D .3 8.设2a 13a +=,2b 13b +=且a b ≠,则代数式2211a b +的值为( ) A .5 B .7 C .9D .11 二、填空题9.方程(2x ﹣1)(x+3)=0的根是 .10.已知 222310,2310a a b b --=--= ,且 a b ≠ ,则 a b += ;11.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了36次手,设到会的人数为x 人,则根据题意列方程为 .12.若关于x 的一元二次方程 22(23)0x k x k +++= 没有实数根,则k 的取值范围是 .13.已知 m 是关于 x 的方程 2250x x --= 的一个根,则 236m m -= .14.若 1x , 2x 是方程 2210x x --= 的两个实数根,则 2212122x x x x ++ 的值为 . 三、解答题15.用公式法解方程:3x 2﹣6x +1=2.16.用因式分解法解方程:()()21310x x +-+=.17.解下列方程(1)2670x x +-= (配方法);(2)25410x x --= (公式法).18.已知关于x 的一元二次方程()22212x k x k =+-+有两个实数根为x 1,x 2. (1)求k 的取值范围;(2)设y=x 1+x 2,当y 取得最小值时,求相应k 的值,并求出最小值.19.关于x 的方程 ()2204m mx m x +++= 有两个不相等的实数根(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.20.某租赁公司拥有80辆汽车.据统计,当每辆车的日租金为300元时,可全部租出.每辆车的日租金每增加5元,未租出的车将增加1辆.租出的车每辆每天的维护费为15元,未租出的车每辆每天的维护费为5 元.(1)当每辆车的日租金定为300元时,公司的当日日收益(租金收入扣除维护费)是多少元?(2)当每辆车的日租金定为360元时,能租出多少辆?(3)当每辆车的日租金定为多少元时,租赁公司的日收益(租金收入扣除维护费)可达23360元?21.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m的羊圈?(2)羊圈的面积能达到6502m吗?如果能,请你给出设计方案;如果不能,请说明理由.参考答案:1.C 2.A 3.A 4.A 5.B 6.C 7.B 8.B9.x=12 或x=﹣3 10.3211.12x (x ﹣1)=36 12.34k <- 13.1514.415.解:3x 2﹣6x ﹣1=0,∵a=3,b=-6,c=-1,△=(﹣6)2﹣4×3×(﹣1)=48>0,∴x = 242b b ac a -±- 648±=643± =323± ,∴x 1=323+ ,x 2=323- . 16.解:分解因式得:(+1)(+13)=0x x -所以x+1=0或x −2=0解得:1x =−1,2x =2.17.(1)解: 2670x x +-=移项,得: 267x x +=配方,得: 26979x x ++=+ 即 ()2316x +=∴11x = 27x =- ;(2)解: 25410x x --=∴5a = 4b =- 1c =-∴()()22Δ44451360b ac =-=--⨯⨯-=> ∴244364610b b ac x -±-±±=== ∴11x = 215x =- . 18.解:(1)将原方程整理为x 2﹣(2k+1)x+k 2﹣2=0∵原方程有两个实数根∴()()2221412490k k k ∆=---⨯⨯-=+≥⎡⎤⎣⎦ 解得94k ≥; (2)∵x 1,x 2为x 2﹣(2k+1)x+k 2﹣2=0的两根∴y=x 1+x 2=2k+1,且94k ≥ 因而y 随k 的增大而增大,故当k=94-时,y 有最小值72-. 19.(1)解:由△=(m+2)2-4m ·4m >0,得m >﹣1 又∵m ≠0∴m 的取值范围为m >﹣1且m ≠0.(2)解:不存在符合条件的实数m .设方程两根为x 1,x 2,则121212214110m x x m x x x x ⎧++=-⎪⎪⎪=⎨⎪⎪+=⎪⎩ 解得m=﹣2,此时△<0.∴原方程无解,故不存在.20.(1)解:根据题意得:()80300158028522800-=⨯=(元)答:当每辆车的日租金定为300元时,公司的当日日收益为22800元(2)解:根据题意得:36030080685--=(辆)答:当每辆车的日租金定为360元时,能租出68辆车(3)解:设每辆车的日租金为()300x +元 根据题意,得()803001552336055x x x ⎛⎫-+--⨯=⎡⎤ ⎪⎣⎦⎝⎭ 整理,得211028000x x -+=.解得:140x = 270x =∴300340x +=或300370x +=答:当每辆车的月租金为340元或370元时,租赁公司的日收益(租金收入扣除维护费)可达到23360元.21.(1)解:设矩形ABCD 的边m AB x =,则边()7022722BC x x =-+=-m .根据题意,得()722640x x -=.化简,得2363200x x -+=.解得116x = 220x =.当16x =时722723240x -=-=;当20x =时722724032x -=-=.答:当羊圈的长为40m ,宽为16m 或长为32m ,宽为20m 时,能围成一个面积为6402m 的羊圈.(2)解:不能,理由如下:由题意,得()722650x x -=.化简,得2363250x x -+=.∵()2Δ36432540=--⨯=-<∴一元二次方程没有实数根.∴羊圈的面积不能达到6502m。
2018~2019学年度上学期初三数学第21章《一元二次方程》单元测试题
班别:__________姓名:___________学号:__________成绩:___________
一、选择题(每小题3分,共30分)
1.方程012=-x 的解是 ( )
A .
B .
C .
D .或
2.方程0322=--x x 根的情况是 ( )
A. 有两个不相等的实数根
B.有两个相等的实数根
C. 没有实数根
D.不能确定
3.用配方法解方程0242=+-x x ,下列配方正确的是( )
A .2)2(2=-x
B .2)2(2=+x
C .2)2(2-=-x
D .
6)2(2=+x 4.若2-=x 是方程082=+-mx x 的一个根,则m 的值是( )
A. 6
B. 5
C.6-
D. 2
5.等腰三角形的两条边长分别是方程01272=+-x x 的两根,则该等腰三角形的周长是( )
A. 10
B. 11
C.12
D. 10或11
6.若方程(m-1)x2+5x+m=0是关于x 的一元二次方程,则m 的取值不可能的是( )
A.m>1
B.m<1
C.m=1
D.m=0
7.某服装原价为200元,连续两次涨价a%后,售价为242元,则a 的值为( )
A.10
B.9
C.5
D.12
8.用因式分解法把方程6x(x-7)=7-x 分解成两个一次方程,正确的是( )
A.x-7=0,6x-1=0
B.6x=0,x-7=0
C.6x+1=0,x-7=0
D.6x=7,x-7=7-x
9.若一元二次方程(1-2k)x2+12x-10=0有实数根,则k 的最大整数值为( )
A.1
B.2
C.-1
D.0
10.如图,在长为70m,宽为40m 的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的81
,则路宽x 应满足的方程是( )
A.(40-x)(70-x)=350
B.(40-2x)(70-3x)=2450
C.(40-2x)(70-3x)=350
D.(40-x)(70-x)=2450
二、填空题(每小题4分,满分24分)
11. 把一元二次方程)1(2)2(3-=-x x x 化为一般形式为____________________.
12. 一元二次方程
42=x 的根是 . 13.方程022=-x x 的解是_____________.
14.已知方程032=-+mx x 的一个根是1,则它的另一个根是___________.
15.若关于x 的一元二次方程062242=---a ax x 常数项为4,则一次项系数______.
16.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x 人,则根据题意可列方程为__________________________.
三、解答题:(本大题共2小题,每小题8分,满分16分)
17.解方程:0542=--x x (6分) 18.解方程:01432=+-x x (6分)
19.当x 为何值时,代数式1622+-x x 与代数式24x -是互为相反数.(6分)
20.已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根,求k 的取值范围.(7分)
21. (7分)关于x 的一元二次方程092=++kx x 有两个相等的实数根
(1)求k 的值; (2)求此时方程的根.
22. (7分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
23.张大爷准备用35米长的篱笆围成一个长方形的养鸡场,其中利用一面墙(墙长为18米)
(1)他能否围成一个面积为150平方米的养鸡场?如果能,请求出这个鸡场的长和宽;如果不能,请说明你的理由;
(2)他能否围成一个面积为160平方米的养鸡场?如果能,请求出这个鸡场的长和宽;如果不能,请说明你的理由;
24.已知关于x 的方程x2-(k+2)x+2k=0.
(1)求证:无论k 取任何实数值,方程总有实数根;
(2)若等腰△ABC 的一边长a=1,另两边长b,c 恰好是这个方程的两个根,求△ABC 的周长.
25某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:
(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?
(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(3)要使商场平均每天盈利1600元,可能吗?请说明理由.
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?。