一、二章习题课选讲例题
- 格式:ppt
- 大小:1.26 MB
- 文档页数:28
高等数学教学备课系统与《高等数学多媒体教学系统(经济类)》配套使用教师姓名:________________________教学班级:________________________2005年9月1至2006年1月10微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分.冯. 诺伊曼注:冯. 诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最杰出的数学家之一,在纯粹数学、应用数学、计算数学等许多分支,从集合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献. 他与经济学家合著的《博弈论与经济行为》奠定了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”.第一章函数、极限与连续函数是现代数学的基本概念之一,是高等数学的主要研究对象. 极限概念是微积分的理论基础,极限方法是微积分的基本分析方法,因此,掌握、运用好极限方法是学好微积分的关键. 连续是函数的一个重要性态. 本章将介绍函数、极限与连续的基本知识和有关的基本方法,为今后的学习打下必要的基础.第一节函数概念在现实世界中,一切事物都在一定的空间中运动着. 17世纪初,数学首先从对运动(如天文、航海问题等)的研究中引出了函数这个基本概念. 在那以后的二百多年里,这个概念在几乎所有的科学研究工作中占据了中心位置.本节将介绍函数的概念、函数关系的构建与函数的特性.内容分布图示★集合的概念★集合的运算★区间★例1 ★邻域★函数概念★例2 ★例3 ★例4★例5 ★例6★函数的表示法★分段函数举例★例7★函数关系的建立★例8 ★例9函数的特性★有界性★例10 ★单调性★例11★奇偶性★例12 ★例13★周期性★例14 ★例15★内容小结★课堂练习★ 习题 1- 1★ 返回内容要点:一、 集合:集合的概念;集合的表示;集合之间的关系;集合的基本运算;区间;邻域; 二、 函数的概念:函数是描述变量间相互依赖关系的一种数学模型. 函数的定义、函数的图形、函数的表示法三、 函数关系的建立:为解决实际应用问题, 首先要将该问题量化, 从而建立起该问题的数学模型, 即建立函数关系;四、 函数特性:函数的有界性;函数的单调性;函数的奇偶性;函数的周期性.例题选讲:函数举例例1 解下列不等式, 并将其解用区间表示.(1) ;312<-x (2) ;323≥+x (3) ().9102<-<x例2 函数2=y . 定义域),(+∞-∞=D , 值域{}.2=f R 例3(讲义例1) 绝对值函数 ⎩⎨⎧<-≥==0,,||x x x x x y 例4判断下面函数是否相同, 并说明理由. (1) 1=y 与;cos sin 22x x y += (2) 12+=x y 与12+=y x .例5求函数 2112++-=x xy 的定义域. 例6 求函数()()245sin 3lg x x xx x f -++-=的定义域. 例7 设(),21,210,1⎩⎨⎧≤<-≤≤=x x x f求函数()3+x f 的定义域.例8(讲义例4)某工厂生产某型号车床, 年产量为a 台, 分若干批进行生产, 每批生产准备费为b 元, 设产品均匀投入市场, 且上一批用完后立即生产下一批, 即平均库存量为批量的一半. 设每年每台库存费为c 元. 显然, 生产批量大则库存费高; 生产批量少则批数增多, 因而生产准备费高. 为了选择最优批量, 试求出一年中库存费与生产准备费的和与批量的函数关系.例9(讲义例5)某运输公司规定货物的吨公里运价为: 在a 公里以内,每公里k 元, 超过部分公里为k 54元. 求运价m 和里程s 之间的函数关系.例10 证明(1)(讲义例6)函数 12+=x xy 在),(+∞-∞上是有界的; (2) 函数21xy =在()1,0上是无界的.例11(讲义例7)证明函数xxy +=1在),1(∞+-内是单调增加的函数. 例12(讲义例8)判断函数)1ln(2x x y ++=的奇偶性. 例13 判断函数()()1111ln 11<<-+-+-=x xxe e xf xx 的奇偶性. 例14(讲义例9)设函数)(x f 是周期T 的周期函数,试求函数)(b ax f +的周期,其中b a ,为常数,且0>a .例15 若)(x f 对其定义域上的一切, 恒有),2()(x a f x f -=则称)(x f 对称于.a x =证明: 若)(x f 对称于a x =及),(b a b x <= 则)(x f 是以)(2a b T -=为周期的周期函数.例6(讲义例2)符号函数 ⎪⎩⎪⎨⎧<-=>==0,1,0,0,0,1s g nx x x x y 例3(讲义例3)取整函数 ],[x y = 其中,][x 表示不超过x 的最大整数.函数的有界性: 函数的增减性: 函数的奇偶性: 函数的周期性:课堂练习1. 用分段函数表示函数 .|1|3--=x y2. 判别函数⎪⎩⎪⎨⎧<+-≥+=0,0,)(22x x x x x x x f 的奇偶性.3.设b a ,为两个函数, 且b a <. 对于任意实数x , 函数()x f 满足条件: ()(),x a f x a f +=- 及()()x b f x b f +=-证明: ()x f 以()a b T -=2周期.第二节 初等函数内容分布图示★ 反函数 ★ 例1 ★ 例2 ★ 复合函数 ★ 例3-4 ★ 例5★ 例6 ★ 例7 ★ 例8★ 幂函数、指数函数与对数函数★ 三角函数 ★ 反三角函数★ 初等函数 ★ 函数图形的迭加与变换★ 内容小结 ★ 课堂练习 ★ 习题1-2 ★ 返回内容要点:一、 反函数:反函数的概念;函数存在反函数的条件;在同一个坐标平面内, 直接函数)(x f y =和反函数)(x y ϕ=的图形关于直线x y =是对称的.二、 基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数. 三、 复合函数的概念 四、初等函数:由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数. 初等函数的基本特征: 在函数有定义的区间内初等函数的图形是不间断的.例题选讲:求反函数例1(讲义例1)求函数xx y 411411+++-=的反函数.例2 已知x x x x x sgn ,0,10,00,1sgn ⎪⎩⎪⎨⎧<-=>=为符号函数,求()x x y sgn 12+=的反函数.函数的复合例3(讲义例2)设 u u f y sin )(==,1)(2+==x x u ϕ,求)]([x f ϕ. 例4 (讲义例3) 设 u u f y arctan )(==,tt u 1)(==ϕ,)(x t φ=12-=x ,求 )]}([{x f φϕ. 例5 设(),1+=x x f (),2x x =ϕ 求()[]x f ϕ及()[],x f ϕ 并求它们的定义域. 例6(讲义例4)将下列函数分解成基本初等函数的复合. (1) ;sin ln 2x y = (2) ;2arctan x e y =(3) ).12ln(cos 22x y ++= 例7(讲义例5)设,0,10,2)(,1,1,)(2⎩⎨⎧≥-<+=⎩⎨⎧≥<=x x x x x x x x e x f x ϕ求)].([x f ϕ例8 设 ,1122xx x x f +=⎪⎭⎫ ⎝⎛+ 求().x f课堂练习1.下列函数能否复合为函数)]([x g f y =若能, 写出其解析式、定义域、值域. .1sin )(,ln )()2(;)(,)()1(2-====-====x x g u u u f y x x x g u u u f y2.分析函数 32cos arctan x e y =的复合结构.第三节 常用经济函数用数学方法解决实际问题,首先要构建该问题的数学模型,即找出该问题的函数关系. 本节将介绍几种常用的经济函数.内容分布图示★ 单利与复利 ★ 例1★ 多次付息 ★ 贴现 ★ 例2 ★ 需求函数 ★ 供给函数★ 市场均衡 ★ 例3 ★ 例4 ★ 成本函数 ★ 例5★ 收入函数与利润函数 ★ 例6 ★ 例7 ★ 例8 ★ 例9★ 内容小结 ★ 课堂练习 ★ 习题1-3 ★ 返回内容要点:一、单利与复利利息是指借款者向贷款者支付的报酬, 它是根据本金的数额按一定比例计算出来的. 利息又有存款利息、贷款利息、债券利息、贴现利息等几种主要形式.单利计算公式设初始本金为p (元), 银行年利率为r . 则第一年末本利和为 )1(1r p rp p s +=+= 第二年末本利和为 )21()1(2r p rp r p s +=++=……第n 年末的本利和为 )1(nr p s n +=. 复利计算公式设初始本金为p (元), 银行年利率为r . 则 第一年末本利和为 )1(1r p rp p s +=+=第二年末本利和为 22)1()1()1(r p r rp r p s +=+++=……第n 年末的本利和为 .)1(nn r p s +=二、多次付息单利付息情形因每次的利息都不计入本金, 故若一年分n 次付息, 则年末的本利和为)1(1r p n r n p s +=⎪⎭⎫ ⎝⎛+=即年末的本利和与支付利息的次数无关.复利付息情形因每次支付的利息都记入本金, 故年末的本利和与支付利息的次数是有关系的. 设初始本金为p (元),年利率为r , 若一年分m 次付息, 则一年末的本利和为mm r p s ⎪⎭⎫ ⎝⎛+=1易见本利和是随付息次数m 的增大而增加的.而第n 年末的本利和为mnn m r p s ⎪⎭⎫ ⎝⎛+=1.三、 贴现票据的持有人, 为在票据到期以前获得资金, 从票面金额中扣除未到期期间的利息后, 得到所余金额的现金称为贴现.钱存在银行里可以获得利息, 如果不考虑贬值因素, 那么若干年后的本利和就高于本金. 如果考虑贬值的因素, 则在若干年后使用的未来值(相当于本利和)就有一个较低的现值.考虑更一般的问题: 确定第n 年后价值为R 元钱的现值.假设在这n 年之间复利年利率r 不变.利用复利计算公式有n r p R )1(+=,得到第n 年后价值为R 元钱的现值为nr Rp )1(+=,式中R 表示第n 年后到期的票据金额, r 表示贴现率, 而p 表示现在进行票据转让时银行付给的贴现金额.若票据持有者手中持有若干张不同期限及不同面额的票据, 且每张票据的贴现率都是相同的, 则一次性向银行转让票据而得到的现金nnr R r R r R R p )1()1()1(2210+++++++=式中0R 为已到期的票据金额, n R 为n 年后到期的票据金额.nr )1(1+称为贴现因子, 它表示在贴现率r 下n 年后到期的1元钱的贴现值. 由它可给出不同年限及不同贴现率下的贴现因子表.四、需求函数需求函数是指在某一特定时期内, 市场上某种商品的各种可能的购买量和决定这些购买量的诸因素之间的数量关系.假定其它因素(如消费者的货币收入、偏好和相关商品的价格等)不变, 则决定某种商品需求量的因素就是这种商品的价格. 此时, 需求函数表示的就是商品需求量和价格这两个经济量之间的数量关系)(p f q =其中, q 表示需求量, p 表示价格.需求函数的反函数)(1q fp -=称为价格函数, 习惯上将价格函数也统称为需求函数.五、 供给函数供给函数是指在某一特定时期内, 市场上某种商品的各种可能的供给量和决定这些供给量的诸因素之间的数量关系. 六、市场均衡对一种商品而言, 如果需求量等于供给量, 则这种商品就达到了市场均衡. 以线性需求函数和线性供给函数为例, 令s d q q =d cp b ap +=+0p ca bd p ≡--=这个价格0p 称为该商品的市场均衡价格(图1-3-3).市场均衡价格就是需求函数和供给函数两条直线的交点的横坐标. 当市场价格高于均衡价格时, 将出现供过于求的现象, 而当市场价格低于均衡价格时,将出现供不应求的现象.. 当市场均衡时有,0q q q s d ==称0q 为市场均衡数量.根据市场的不同情况,需求函数与供给函数还有二次函数、多项式函数与指数函数等. 但其基本规律是相同的, 都可找到相应的市场均衡点(0p ,0q ).七、成本函数产品成本是以货币形式表现的企业生产和销售产品的全部费用支出, 成本函数表示费用总额与产量(或销售量)之间的依赖关系, 产品成本可分为固定成本和变动成本两部分. 所谓固定成本, 是指在一定时期内不随产量变化的那部分成本; 所谓变动成本, 是指随产量变化而变化的那部分成本. 一般地, 以货币计值的(总)成本C 是产量x 的函数, 即)0()(≥=x x C C称其为成本函数. 当产量0=x 时, 对应的成本函数值)0(C 就是产品的固定成本值.设)(x C 为成本函数, 称)0()(>=x xx C C 为单位成本函数或平均成本函数. 成本函数是单调增加函数, 其图象称为成本曲线.八、 收入函数与利润函数销售某种产品的收入R , 等于产品的单位价格P 乘以销售量x , 即,x P R ⋅= 称其为收入函数. 而销售利润L 等于收入R 减去成本C , 即,C R L -= 称其为利润函数.当0>-=C R L 时, 生产者盈利; 当0<-=C R L 时, 生产者亏损;当0=-=C R L 时, 生产者盈亏平衡, 使0)(=x L 的点0x 称为盈亏平衡点(又称为保本点).例题选讲:单利与复利例1(讲义例1)现有初始本金100元, 若银行年储蓄利率为7%, 问: (1) 按单利计算, 3年末的本利加为多少? (2) 按复利计算, 3年末的本利和为多少?(3) 按复利计算, 需多少年能使本利和超过初始本金的一倍?贴现例2(讲义例2)某人手中有三张票据, 其中一年后到期的票据金额是500元, 二年后到期的是800元, 五年后到期的是2000元, 已知银行的贴现率6%, 现在将三张票据向银行做一次性转让, 银行的贴现金额是多少?市场均衡例3(讲义例3)某种商品的供给函数和需求函数分别为P Q P Q s d 5200,1025-=-=求该商品的市场均衡价格和市场均衡数量.例4(讲义例4)某批发商每次以160元/台的价格将500台电扇批发给零售商, 在这个基础上零售商每次多进100台电扇, 则批发价相应降低2元, 批发商最大批发量为每次1000台, 试将电扇批发价格表示为批发量的函数, 并求零售商每次进800台电扇时的批发价格.成本函数例5(讲义例5) 某工厂生产某产品, 每日最多生产200单位. 它的日固定成本为150元, 生产一个单位产品的可变成本为16元. 求该厂日总成本函数及平均成本函数.收入函数与利润函数例6(讲义例6)某工厂生产某产品年产量为x 台, 每台售价500元, 当年产量超过800台时, 超过部分只能按9折出售. 这样可多售出200台, 如果再多生产,本年就销售不出去了. 试写出本年的收益(入)函数.例7 已知某厂单位产品时,可变成本为15元,每天的固定成本为2000元,如这种产品出厂价为20元,求(1)利润函数;(2)若不亏本,该厂每天至少生产多少单位这种产品. 例8(讲义例7)某电器厂生产一种新产品, 在定价时不单是根据生产成本而定, 还要请各销售单位来出价, 即他们愿意以什么价格来购买. 根据调查得出需求函数为.45000900+-=P x 该厂生产该产品的固定成本是270000元, 而单位产品的变动成本为10元. 为获得最大利润, 出厂价格应为多少?例9 已知该商品的成本函数与收入函数分别是xR x x C 113122=++=试求该商品的盈亏平衡点, 并说明盈亏情况.课堂练习 1.(1)设手表的价格为70元, 销售量为10000只, 若手表每只提高3元, 需求量就减少3000只, 求需求函数d Q .(2)设手表价格为70元, 手表厂可提供10000只手表, 当价格每只增加3元时, 手表厂可多提供300只, 求供应函数s Q . (3)求市场均衡价格和市场均衡数量.第四节 数列的极限极限思想是由于求某些实际问题的精确解答而产生的. 例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法----割圆术(参看光盘演示), 就是极限思想在几何学上的应用. 又如,春秋战国时期的哲学家庄子(公元4世纪)在《庄子.天下篇》一书中对“截丈问题”(参看光盘演示)有一段名言:“一尺之棰, 日截其半, 万世不竭”,其中也隐含了深刻的极限思想.极限是研究变量的变化趋势的基本工具,高等数学中许多基本概念,例如连续、导数、定积分、无穷级数等都是建立在极限的基础上. 极限方法又是研究函数的一种最基本的方法. 本节将首先给出数列极限的定义.内容分布图示★ 极限概念的引入 ★ 数列的定义 ★ 数列的极限 ★ 例1★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 收敛数列的有界性★ 极限的唯一性 ★ 例7★ 收敛数列的保号性 ★ 子数列的收敛性★ 内容小结★ 习题1-4 ★ 返回内容要点:一、 数列的定义 二、 数列的极限:N -ε论证法,其论证步骤为:(1) 任意给定的正数ε, 令 ε<-||a x n ;(2) 上式开始分析倒推, 推出 )(εϕ>n ; (3) 取 )]([εϕ=N ,再用N -ε语言顺述结论. 三、 收敛数列的有界性 四、极限的唯一性五、收敛数列的保号性 六、子数列的收敛性例题选讲:数列的极限例1(讲义例1) 证明 .1)1(lim1=-+-∞→nn n n 例2 设C C x n (≡为常数), 证明C x n n =∞→lim .例3 证明 ,0lim 0=→nn q 其中.1<q例4 设,0>n x 且,0lim >=∞→a x n n 求证 .lima x n n =∞→例5 用数列极限定义证明 323125lim-=-+∞→n n n .例6(讲义例2)用数列极限定义证明 .112lim 22=++-∞→n n n n 例7(讲义例3)证明数列1)1(+-=n n x 是发散的.课堂练习 1.设,0>p 证明数列pn n x 1=的极限是0.第五节 函数的极限数列可看作自变量为正整数n 的函数: )(n f x n =, 数列{}n x 的极限为a ,即:当自变量n 取正整数且无限增大(∞→n )时,对应的函数值)(n f 无限接近数a . 若将数列极限概念中自变量n 和函数值)(n f 的特殊性撇开,可以由此引出函数极限的一般概念:在自变量x 的某个变化过程中,如果对应的函数值)(x f 无限接近于某个确定的数A ,则A 就称为x 在该变化过程中函数)(x f 的极限. 显然,极限A 是与自变量x 的变化过程紧密相关,自变量的变化过程不同,函数的极限就有不同的表现形式. 本节分下列两种情况来讨论: 1、自变量趋于无穷大时函数的极限; 2、自变量趋于有限值时函数的极限.内容分布图示★ 自变量趋向无穷大时函数的极限★ 例1 ★ 例2 ★ 例3★ 自变量趋向有限值时函数的极限★ 例4 ★ 例5 ★ 例6★ 左右极限 ★ 例7★ 例8 ★ 例9 ★ 例10★ 函数极限的性质 ★ 子序列收敛性 ★ 函数极限与数列极限的关系 ★ 内容小结 ★ 课堂练习 ★ 习题1-5 ★ 返回内容要点:一、自变量趋于无穷大时函数的极限 二、 自变量趋于有限值时函数的极限 三、 左右极限的概念四、函数极限的性质:唯一性 有界性 保号性 五、子序列的收敛性例题选讲:自变量趋于无穷大时函数的极限例1(讲义例1)用极限定义证明 .0sin lim=∞→xxx例2(讲义例2)用极限定义证明 .021lim =⎪⎭⎫⎝⎛+∞→xx例3 证明 .111lim-=+-∞→x xx自变量趋于有限值时函数的极限例4(1)(讲义例3)利用定义证明 C C x x =→0lim (C 为常数).(2) 证明 .lim 00x x x x =→例5(讲义例4)利用定义证明 211lim 21=--→x x x .例6 证明: 当00>x 时, 00lim x x x x =→.例7 验证xx x 0lim→不存在.左右极限的概念例8(讲义例5)设,0,10,)(⎩⎨⎧<+≥=x x x x x f 求 )(lim 0x f x →. 例9 设(),0,10,12⎩⎨⎧≥+<-=x x x x x f 求 ().lim 0x f x → 例10(讲义例6)设 ,2121)(11xx x f +-=求 ).(lim 0x f x →子序列的收敛性例7(讲义例7)证明 xx 1sinlim 0→ 不存在.课堂练习 1. 设函数⎪⎪⎩⎪⎪⎨⎧<+=>=0,80,20,1sin )(2x x x x x x x f ,试问函数在0=x 处的左、右极限是否存在? 当0→x 时, )(x f 的极限是否存在?2. 若,0)(>x f 且.)(lim A x f =问: 能否保证有0>A 的结论? 试举例说明.第六节 无穷小与无穷大没有任何问题可以像无穷那样深深地触动人的感情,很少有别的观念能像无穷那样激励理智 产生富有成果的思想,然而也没有任何其它的概 念能像无穷那样需要加于阐明.-------大卫. 希尔伯特对无穷小的认识问题,可以远溯到古希腊,那时,阿基米德就曾用无限小量方法得到许多重要的数学结果,但他认为无限小量方法存在着不合理的地方. 直到1821年,柯西在他的《分析教程》中才对无限小(即这里所说的无穷小)这一概念给出了明确的回答. 而有关无穷小的理论就是在柯西的理论基础上发展起来的.内容分布图示★ 无穷小★ 无穷小与函数极限的关系 ★ 例1 ★ 无穷小的运算性质 ★ 例2 ★ 无穷大★ 例3 ★ 例4 ★ 例5 ★ 无穷大与无界变量★ 无穷小与无穷大的关系 ★ 例6★ 内容小结★ 习题1-6 ★ 返回内容要点:一、 无穷小的概念二、无穷小的运算性质有限个无穷小的代数和仍是无穷小 有界函数与无穷小的乘积是无穷小. 三、无穷大的概念四、 无穷小与无穷大的关系例题选讲:无穷小的概念与无穷小的运算性质例1 根据定义证明: xx y 1sin 2=当0→x 时为无穷小. 例2(讲义例1)求 x xx sin lim ∞→.无穷大的概念例3(讲义例2)证明 ∞=-→11lim1x x .例4 证明 ()().11lim >+∞=-+∞→a a xx例5(讲义例3)当0→x 时, xx y 1sin 1=是一个无界变量, 但不是无穷大. 无穷小与无穷大的关系 例6(讲义例4)求 5lim 34+∞→x x x .课堂练习1. 求 .)1(22lim22--∞→x xx x第七节 极限运算法则本节要建立极限的四则运算法则和复合函数的极限运算法则. 在下面的讨论中,记号“lim ”下面没有表明自变量的变化过程,是指对0x x →和∞→x 以及单则极限均成立. 但在论证时,只证明了0x x →的情形.内容分布图示★ 极限运算法则 ★ 例1 ★ 例2★ 例3-4 ★ 例5 ★ 例6★ 例7 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11 ★ 复合函数的极限运算法则 ★ 例 12 ★ 例 13★ 内容小结 ★ 课堂练习★ 习题1-7 ★ 返回内容要点:一、 极限的四则运算:定理1 推论1 推论2 二、复合函数的极限运算法则:定理2定理2 (复合函数的极限运算法则)设函数)]([x g f y =是由函数)(u f y =与函数)(x g u =复合而成, )]([x g f 在点0x 的某去心邻域内有定义, 若,)(lim ,)(lim 00A u f u x g u u x x ==→→且存在,00>δ 当),(00δx U x∈时, 有0)(u x g ≠, 则.)(lim )]([lim 0A u f x g f u u x x ==→→例题选讲:极限的四则运算例1(讲义例1)求 )53(lim 22+-→x x x .例2(讲义例2)求 27592lim 223---→x x x x .例3(讲义例3)求 3214lim21-+-→x x x x .例4(讲义例4)求 321lim 221-+-→x x x x .例5(讲义例5)求 147532lim 2323-+++∞→x x x x x .例6(讲义例6)计算.231568lim323-+++∞→x x x x x例7(讲义例7)求 .21lim 222⎪⎭⎫ ⎝⎛+++∞→n n n n n例8 计算 ()()()();1111lim3431x x x x x ----→例9(讲义例8)求 ).sin 1(sin lim x x x -++∞→例10 计算下列极限:(1);1!sin lim32+∞→n n n n (2).2tan lim /10x x ex+→ 例11(讲义例9)已知 ⎪⎩⎪⎨⎧≥+-+<-=0,1130,1)(32x x x x x x x f , 求 ).(lim ),(lim ),(lim 0x f x f x f x x x -∞→+∞→→复合函数的极限运算法则例12(讲义例10)求极限 ⎥⎦⎤⎢⎣⎡--→)1(21ln lim 21x x x . 例13(讲义例11)已知2)5(lim 2=+--+∞→c bx ax x x , 求b a ,之值.课堂练习1. 求极限: .231lim)2(;lim )1(31sinxx ex xx x +-++∞→→2.在某个过程中, 若)(x f 有极限, )(x g 无极限, 那么)()(x g x f +是否有极限? 为什么?第八节 极限存在准则 两个重要极限内容分布图示★ 夹逼准则★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8★ 例9★ 单调有界准则 ★ 例10 ★ 例11 ★1sin lim0=→xxx★ 例12★ 例13 ★ 例14★ 例15 ★ 例16★ 例17★ 例18★ e n xx =⎪⎭⎫⎝⎛+∞→11lim ★ 例19 ★ 例21 ★ 例22★ 例23★ 例24 ★ 25★ 柯西极限存在准则 ★ 连续复利(例26) ★ 内容小结 ★ 课堂练习 ★ 习题 1-8★ 返回内容要点:一、准则I (夹逼准则):如果数列n n y x ,及n z 满足下列条件:a) ),3,2,1( =≤≤n z x y n n n ; b) ,lim ,lim a z a y n n n n ==∞→∞→那末数列n x 的极限存在, 且.lim a x n n =∞→注:利用夹逼准则求极限,关键是构造出n y 与n z , 并且n y 与n z 的极限相同且容易求. 二、 准则II (单调有界准则):单调有界数列必有极限. 三、 两个重要极限:1. 1sin lim 0=→x x x ; 2.e x xx =⎪⎭⎫⎝⎛+∞→11lim四、连续复利设初始本金为p (元), 年利率为r , 按复利付息, 若一年分m 次付息, 则第n 年末的本利和为mnn m r p s ⎪⎭⎫ ⎝⎛+=1如果利息按连续复利计算, 即计算复利的次数m 趋于无穷大时, t 年末的本利和可按如下公式计算rt mtm pe m r p s =⎪⎭⎫ ⎝⎛+=∞→1lim若要t 年末的本利和为s , 则初始本金rt se p -=.例题选讲:夹逼准则的应用例1(讲义例1)求 .12111lim 222⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 例2 求.)321(lim 1n n n n ++∞→例3 求 ()().1111lim 222⎪⎪⎭⎫ ⎝⎛+++++∞→n n n n n 例4 求 ().1lim >∞→a a nn n例5 求 ().0!lim >∞→a n a nn 例6(讲义例2)求 .!limnn n n ∞→ 例7(讲义例3)求 .lim n n n ∞→例8(讲义例4)求证).0(1lim >=∞→a a n n例9(讲义例5)求极限.1lim 0⎥⎦⎤⎢⎣⎡→x x x单调有界准则的应用例10(讲义例6)设有数列31=x ,,,312 x x +=13-+=n n x x ,求 .lim n n x ∞→例11 设 0>a 为常数, 数列 n x 由下列定义: ),2,1(2111 =⎪⎪⎭⎫ ⎝⎛+=--n x a x x n n n 其中0x 为大于零的常数,求.lim n n x ∞→ 两个重要极限的应用例12(讲义例7)求 xxx tan lim0→.例13 求 .5sin 3tan lim0xxx →例14(讲义例8)求 .cos 1lim 20xxx -→ 例15 下列运算过程是否正确: 1sin lim tan lim sin .tan lim sin tan lim===→→→→xxx x x x x x x x x x x x x x x x例16 计算 .3cos cos lim 20x xx x -→例17 计算 ;cos sin 1lim2xx x x x -+→例18(讲义例9)求 3sin 2tan 2limxxx x +-+→. 例19(讲义例10)求 311lim +∞→⎪⎭⎫⎝⎛+n n n .例20(讲义例11)求 ().21lim /10xx x -→例21(讲义例12)求 xx x ⎪⎭⎫ ⎝⎛-∞→11lim 例22(讲义例13)求 .23lim 2xx x x ⎪⎭⎫⎝⎛++∞→例23 求 .1lim 22xx x x ⎪⎪⎭⎫⎝⎛-∞→ 例24 计算 ().lim /10xxx xe +→例25 求极限 ().tan lim 2tan 4/xx x π→连续复利例26(讲义例14) 一投资者欲用1000元投资5年, 设年利率为6%,试分别按单利、复利、每年按4次复利和连续复利付息方式计算, 到第5年末, 该投资者应得的本利和A .注: 连续复利的计算公式在其它许多问题中也常有应用如细胞分裂、树木增长等问题.课堂练习1. 求极限 .sin sin tan lim20xx xx x -→ 2. 求极限.)93(lim 1x x xx ++∞→第九节 无穷小的比较内容分布图示★ 无穷小的比较 ★ 例1-2 ★ 例3 ★ 常用等价无穷小 ★ 例4 ★ 等价无穷小替换定理 ★ 例5★ 例6★ 例7 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11★ 例1 2 ★ 等价无穷小的充要条件★ 例13★ 内容小结 ★ 课堂练习 ★ 习题1-9 ★ 返回内容要点:一、 无穷小比较的概念:无穷小比的极限不同, 反映了无穷小趋向于零的快慢程度不同.二、 常用等价无穷小关系:)0(~1)1()0(ln ~1~1~)1ln(21~cos 1~arctan ~arcsin ~tan ~sin 2是常数≠-+>--+-αααx x a a x a xe xx x x x x x x x x x x x x三、 关于等价无穷小的两个重要结论:定理1 β与α是等价无穷小的充分必要条件是).(ααβo +=定理2 设,是同一过程中的无穷小ββαα'',,,且ββαα''~,~,αβ''lim存在, 则 .lim limαβαβ''=例题选讲:无穷小比较概念的应用:例1(讲义例1)证明: 当0→x 时, x x 3tan 4为x 的四阶无穷小. 例2(讲义例2)当0→x 时, 求x x sin tan -关于x 的阶数.例3 当1→x 时,将下列各量与无穷小量1-x 进行比较. (1);233+-x x (2);lg x (3)().11sin1--x x 例4 证明.~1x e x -例5(讲义例4) 求极限.1211lim nn n ⎪⎭⎫ ⎝⎛+-∞→例6(讲义例6)求 xxx 5sin 2tan lim0→.例7(讲义例7)求 .2sin sin tan lim30xxx x -→ 例8求 ().1cos 11lim3/120--+→x x x例9(讲义例8)求 121tan 1tan 1lim-+--+→x xx x例10计算 ().1ln lim 2cos 0x x e e xx x x +-→例11 计算 .sin cos 12lim2xxx +-→ 例12 求 ()().cos sec 1ln 1ln lim220xx x x x x x -+-+++→ 例13(讲义例9)求 xx x x 3sin 1cos 5tan lim 0+-→等价无穷小的应用:例3(讲义例3) 证明: 11lim0=-→xe x x . 例5(讲义例5)设,0≠α证明: .11)1(lim 0=-+→xx x αα无穷小等价替换定理的应用:课堂练习1. 求极限 βαβαβα--→e e lim .2. 任何两个无穷小量都可以比较吗?第十节 函数的连续性与间断点客观世界的许多现象和事物不仅是运动变化的,而且其运动变化的过程往往是连绵不断的,比如日月行空、岁月流逝、植物生长、物种变化等,这些连绵不断发展变化的事物在量的方面的反映就是函数的连续性. 本节将要引入的连续函数就是刻画变量连续变化的数学模型.16、17世纪微积分的酝酿和产生,直接肇始于对物体的连续运动的研究. 例如伽利略所研究的自由落体运动等都是连续变化的量. 但直到19世纪以前,数学家们对连续变量的研究仍停留在几何直观的层面上,即把能一笔画成的曲线所对应的函数称为连续函数. 19世纪中叶,在柯西等数学家建立起严格的极限理论之后,才对连续函数作出了严格的数学表述.连续函数不仅是微积分的研究对象,而且微积分中的主要概念、定理、公式法则等,往往都要求函数具有连续性.本节和下一节将以极限为基础,介绍连续函数的概念、连续函数的运算及连续函数的一些性质.内容分布图示★ 函数的连续性 ★ 例1 ★ 例2 ★ 左右连续 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 连续函数与连续区间 ★ 例7★ 函数的间断点 ★ 例8 ★ 例9 ★ 例 10 ★ 例 11 ★ 例12 ★ 例 13 ★ 例14★ 内容小结 ★ 课堂练习★ 习题1-10 ★ 返回内容要点:一、函数的连续性:函数的增量 连续性的三种定义形式二、左右连续的概念定理1 函数)(x f 在0x 处连续的充要条件是函数)(x f 在0x 处既左连续又右连续. 三、 连续函数与连续区间四、函数的间断点及其分类:第一类间断点 跳跃间断点 可去间断点;第二类间断点 无穷间断点 振荡间断点;例题选讲:函数的连续性例1(讲义例1)试证函数⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )(x x xx x f 在0=x 处连续. 例2设)(x f 是定义于[a , b ]上的单调增加函数, ),,(0b a x ∈如果)(lim 0x f x x →存在, 试证明函数)(x f 在点0x 处连续.例3(讲义例4)讨论⎩⎨⎧<-≥+=,0,2,0,2)(x x x x x f 在0=x 处的连续性.。
第2章习题课(二)习题课(二) 数列求和学习目标 1.掌握分组分解求和法的使用情形和解题要点.2.掌握奇偶并项求和法的使用情形和解题要点.3.掌握裂项相消求和法的使用情形和解题要点.4.进一步熟悉错位相减法. 知识点一 分组分解求和法思考 求和:112+2122+3123+…+⎝⎛⎭⎪⎪⎫n +12n . 答案 112+2122+3123+…+⎝ ⎛⎭⎪⎪⎫n +12n =(1+2+3+…+n )+⎝⎛⎭⎪⎪⎫12+122+123+ (12)=n (n +1)2+12⎝ ⎛⎭⎪⎪⎫1-12n 1-12=n (n +1)2+1-12n .梳理 分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和.答案 由1n (n +1)=1n -1n +1,得11×2+12×3+…+1n (n +1)=1-12+12-13+…+1n -1(n +1)=1-1n +1.梳理 如果数列的项能裂成前后抵消的两项,则可用裂项相消法求和,此法一般先研究通项的形式,然后仿照公式裂开每一项.裂项相消求和常用公式:(1)1n (n +k )=1k ⎝⎛⎭⎪⎪⎫1n -1n +k ; (2)1n +k +n =1k (n +k -n );(3)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎪⎫12n -1-12n +1;(4)1n (n +1)(n +2)=12⎣⎢⎢⎡⎦⎥⎥⎤1n (n +1)-1(n +1)(n +2). 1.并项求和一定是相邻两项结合.(×) 2.裂项相消一定是相邻两项裂项后产生抵消.(×)类型一 分组分解求和例1 求和:S n =⎝⎛⎭⎪⎪⎫x +1x 2+⎝ ⎛⎭⎪⎪⎫x 2+1x 22+…+⎝ ⎛⎭⎪⎪⎫x n +1x n 2(x ≠0).考点 数列前n 项和的求法 题点 分组求和法 解 当x ≠±1时,S n =⎝⎛⎭⎪⎪⎫x +1x 2+⎝ ⎛⎭⎪⎪⎫x 2+1x 22+…+⎝⎛⎭⎪⎪⎫x n +1x n 2 =⎝⎛⎭⎪⎪⎫x 2+2+1x 2+⎝ ⎛⎭⎪⎪⎫x 4+2+1x 4+…+⎝⎛⎭⎪⎪⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎪⎪⎫1x 2+1x 4+…+1x 2n=x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n =(x 2n -1)(x 2n +2+1)x 2n(x 2-1)+2n ; 当x =±1时,S n =4n . 综上知,S n =⎩⎪⎨⎪⎧4n ,x =±1,(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n ,x ≠±1且x ≠0.反思与感悟 某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.跟踪训练1 求数列1,1+a,1+a +a 2,…,1+a +a 2+…+an -1,…的前n 项和S n .(其中a ≠0,n ∈N *)考点 数列前n 项和的求法 题点 分组求和法 解 当a =1时,a n =n ,于是S n =1+2+3+…+n =n (n +1)2.当a ≠1时,a n =1-a n 1-a =11-a (1-a n ).∴S n =11-a[n -(a +a 2+…+a n )]=11-a ⎣⎢⎢⎡⎦⎥⎥⎤n -a (1-a n )1-a =n 1-a -a (1-a n )(1-a )2. ∴S n =⎩⎪⎪⎨⎪⎪⎧n (n +1)2,a =1,n 1-a -a (1-a n)(1-a )2,a ≠1,且a ≠0.类型二 裂项相消求和例2 求和:122-1+132-1+142-1+…+1n 2-1,n ≥2, n ∈N *.考点 数列前n 项和的求法 题点 裂项相消法求和解 ∵1n 2-1=1(n -1)(n +1)=12⎝ ⎛⎭⎪⎪⎫1n -1-1n +1, ∴原式=12⎣⎢⎢⎡⎝⎛⎭⎪⎪⎫1-13+⎝ ⎛⎭⎪⎪⎫12-14+⎝ ⎛⎭⎪⎪⎫13-15⎦⎥⎥⎤+…+⎝ ⎛⎭⎪⎪⎫1n -1-1n +1=12⎝ ⎛⎭⎪⎪⎫1+12-1n -1n +1 =34-2n +12n (n +1)(n ≥2,n ∈N *). 引申探究求和:2222-1+3232-1+4242-1+…+n 2n 2-1,n ≥2,n ∈N *.解 ∵n 2n 2-1=n 2-1+1n 2-1=1+1n 2-1,∴原式=⎝ ⎛⎭⎪⎪⎫1+122-1+⎝ ⎛⎭⎪⎪⎫1+132-1+⎝ ⎛⎭⎪⎪⎫1+142-1+…+⎝⎛⎭⎪⎪⎫1+1n 2-1 =(n -1)+⎝ ⎛⎭⎪⎪⎫122-1+132-1+142-1+…+1n 2-1 以下同例2解法.反思与感悟 求和前一般先对数列的通项公式变形,如果数列的通项公式可转化为f (n +1)-f (n )的形式,常采用裂项求和法. 跟踪训练2 求和:1+11+2+11+2+3+…+11+2+3+…+n ,n ∈N *.考点 数列前n 项和的求法题点 裂项相消法求和 解∵a n=11+2+…+n =2n (n +1)=2⎝⎛⎭⎪⎪⎫1n -1n +1, ∴S n =2⎝ ⎛⎭⎪⎪⎫1-12+12-13+…+1n -1n +1=2n n +1. 类型三 奇偶并项求和例3 求和:S n =-1+3-5+7-…+(-1)n (2n -1).考点 数列前n 项和的求法 题点 并项求和法 解 当n 为奇数时,S n =(-1+3)+(-5+7)+(-9+11)+… +[(-2n +5)+(2n -3)]+(-2n +1) =2·n -12+(-2n +1)=-n .当n为偶数时,S n=(-1+3)+(-5+7)+…+[(-2n+3)+(2n =n.-1)]=2·n2∴S n=(-1)n n (n∈N*).反思与感悟通项中含有(-1)n的数列求前n项和时可以考虑使用奇偶并项法,分项数为奇数和偶数分别进行求和.跟踪训练3已知数列-1,4,-7,10,…,(-1)n·(3n-2),…,求其前n项和S n.考点数列前n项和的求法题点并项求和法解当n为偶数时,令n=2k(k∈N*),S n=S2k=-1+4-7+10+…+(-1)n·(3n-2) =(-1+4)+(-7+10)+…+[(-6k+5)+(6k-2)] =3k =32n ;当n 为奇数时, 令n =2k +1(k ∈N *),S n =S 2k +1=S 2k +a 2k +1=3k -(6k +1)=-3n +12.∴S n =⎩⎪⎨⎪⎧-3n +12,n 为奇数,3n 2,n 为偶数.1.数列{1+2n -1}的前n 项和为________.考点 数列前n 项和的求法 题点 分组求和法答案 S n =n +2n -1,n ∈N * 解析 ∵a n =1+2n -1, ∴S n =n +1-2n1-2=n +2n -1.2.已知数列a n =⎩⎨⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.考点 数列前n 项和的求法 题点 分组求和法 答案 5 000解析 由题意得S 100=a 1+a 2+…+a 99+a 100 =(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100) =(0+2+4+…+98)+(2+4+6+…+100) =5 000.3.已知a n =(-1)n ,数列{a n }的前n 项和为S n ,则S 9与S 10的值分别是________. 考点 数列前n 项和的求法 题点 并项求和法 答案 -1,0解析 S 10=(a 1+a 2)+(a 3+a 4)+…+(a 9+a 10)=0,S 9=S 10-a 10=-1.4.求数列112+2,122+4,132+6,142+8,…的前n 项和.考点 数列前n 项和的求法 题点 裂项相消法求和解 因为通项a n =1n 2+2n =12⎝ ⎛⎭⎪⎪⎫1n -1n +2, 所以此数列的前n 项和S n =12⎣⎢⎢⎡⎝ ⎛⎭⎪⎪⎫1-13+⎝ ⎛⎭⎪⎪⎫12-14+⎝ ⎛⎭⎪⎪⎫13-15⎦⎥⎥⎤+…+⎝ ⎛⎭⎪⎪⎫1n -1-1n +1+⎝⎛⎭⎪⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎪⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2). 求数列的前n 项和,一般有下列几种方法. 1.错位相减适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. 2.分组求和把一个数列分成几个可以直接求和的数列. 3.裂项相消把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和. 4.奇偶并项当数列通项中出现(-1)n 或(-1)n +1时,常常需要对n 取值的奇偶性进行分类讨论.5.倒序相加例如,等差数列前n 项和公式的推导方法. 一、填空题1.数列{a n }的前n 项和为S n ,若a n =1n (n +1), 则S 5=______.考点 数列前n 项和的求法 题点 裂项相消法求和 答案 56解析 ∵a n =1n (n +1)=1n -1n +1.∴S 5=⎝⎛⎭⎪⎪⎫1-12+⎝ ⎛⎭⎪⎪⎫12-13+…+⎝ ⎛⎭⎪⎪⎫15-16 =1-16=56.2.在等比数列{a n }中,若a 1=12,a 4=-4,则|a 1|+|a 2|+|a 3|+…+|a n |=________. 考点 数列前n 项和的求法题点 数列求和方法综合 答案 2n -12解析 ∵{a n }为等比数列,且a 1=12,a 4=-4,∴q 3=a 4a 1=-8,∴q =-2,∴a n =12(-2)n -1,∴|a n |=2n -2,∴|a 1|+|a 2|+|a 3|+…+|a n |=12(1-2n )1-2=2n -12.3.已知数列{a n }的通项a n =2n +1,n ∈N *,由b n =a 1+a 2+a 3+…+a nn 所确定的数列{b n }的前n 项和是__________. 考点 数列前n 项和的求法 题点 数列求和方法综合 答案 12n (n +5)解析 ∵a 1+a 2+…+a n =n2(2n +4)=n 2+2n ,∴b n =n +2,∴{b n }的前n 项和S n =n (n +5)2.4.在数列{a n }中,已知S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),n ∈N *,则S 15+S 22-S 31的值是________. 考点 数列前n 项和的求法 题点 并项求和法 答案 -76解析 S 15=-4×7+a 15=-28+57=29, S 22=-4×11=-44,S 31=-4×15+a 31=-60+121=61, S 15+S 22-S 31=29-44-61=-76.5.如果一个数列{a n }满足a n +a n +1=H (H 为常数,n ∈N *),则称数列{a n }为等和数列,H 为公和,S n 是其前n 项的和,已知在等和数列{a n }中,a1=1,H=-3,则S2 017=________.考点数列前n项和的求法题点并项求和法答案-3 023解析S2 017=a1+(a2+a3+…+a2 017)=a1+1 008×H=1+1 008×(-3)=-3 023.6.数列{a n}的通项公式是a n=1n+n+1,若前n项和为10,则n的值为________.考点数列前n项和的求法题点裂项相消法求和答案120解析∵a n=1n+n+1=n+1-n,∴S n=a1+a2+…+a n=(2-1)+(3-2)+…+(n+1-n)=n +1-1,令n +1-1=10,得n =120.7.数列1,1+2,1+2+22,...,1+2+22+ (2)-1,…的前99项和为________.考点 数列前n 项和的求法 题点 并项求和法 答案 2100-101解析 由数列可知a n =1+2+22+…+2n -1=1-2n1-2=2n -1,所以,前99项的和为S 99=(2-1)+(22-1)+…+(299-1)=2+22+…+299-99=2(1-299)1-2-99=2100-101.8.若S n =1-2+3-4+…+(-1)n -1·n ,n ∈N *,则S 50=________.考点 数列前n 项和的求法题点 并项求和法 答案 -25解析 S 50=1-2+3-4+…+49-50=(-1)×25=-25.9.在数列{a n }中,若a n =ln ⎝⎛⎭⎪⎪⎫1+1n ,n ∈N *,则S n =______.考点 数列前n 项和的求法 题点 裂项相消法求和 答案 ln(n +1)解析 方法一 a n =ln n +1n =ln(n +1)-ln n S n =(ln 2-ln 1)+(ln 3-ln 2)+…+[ln(n +1)-ln n ]=ln(n +1)-ln 1=ln(n +1).方法二 S n =ln 21+ln 32+…+ln n +1n=ln ⎝ ⎛⎭⎪⎫21×32×…×n +1n =ln(n +1).10.数列12×5,15×8,18×11,…,1(3n -1)×(3n +2),…的前n 项和为__________.考点 数列前n 项和的求法 题点 裂项相消法求和 答案 n6n +4解析 由数列通项公式1(3n -1)(3n +2)=13⎝ ⎛⎭⎪⎪⎫13n -1-13n +2, 得前n 项和S n=13⎝ ⎛⎭⎪⎪⎫12-15+15-18+18-111+…+13n -1-13n +2 =13⎝ ⎛⎭⎪⎪⎫12-13n +2=n 6n +4. 11.数列{a n }的通项公式a n =n cos n π2,n ∈N *,其前n 项和为S n ,则S 2 016=________.题点并项求和法答案 1 008解析a1=cos π2=0,a2=2cos π=-2,a3=0,a4=4,….∴数列{a n}的所有奇数项为0,前2 016项的所有偶数项(共1 008项)依次为-2,4,-6,8,…,故S2 016=0+(-2+4)+(-6+8)+…+(-2 014+2 016)=1 008.二、解答题12.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a2n-1(n∈N*),求数列{b n}的前n项和T n.题点 裂项相消法求和解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎨⎧a 1+2d =7,2a 1+10d =26,解得⎩⎨⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1, S n =3n +n (n -1)2×2=n 2+2n .所以a n =2n +1,S n =n 2+2n . (2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14×1n (n +1)=14×⎝ ⎛⎭⎪⎪⎫1n -1n +1,所以T n =14×⎝ ⎛⎭⎪⎪⎫1-12+12-13+…+1n -1n +1 =14×⎝ ⎛⎭⎪⎪⎫1-1n +1=n 4(n +1), 即数列{b n }的前n 项和T n =n 4(n +1).13.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 考点 数列前n 项和的求法 题点 错位相减法求和 解 (1)由已知,得当n >1时,a n =[(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)]+a 1=3(22n -3+22n -5+…+2)+2=22n -1, 而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1. (2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1, ① 从而22·S n =1·23+2·25+3·27+…+n ·22n +1. ② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1, 即S n =19[(3n -1)22n +1+2].三、探究与拓展14.设数列{a n }满足a 1=0且11-a n +1-11-a n =1,n ∈N *.(1)求{a n }的通项公式;(2)设b n =1-a n +1n ,记S n =b 1+b 2+…+b n ,证明:S n <1.考点 数列前n 项和的求法题点 裂项相消法求和(1)解 由题设11-a n +1-11-a n =1知,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫11-a n 是公差为1的等差数列, 又11-a 1=1,故11-a n =n , ∴a n =1-1n .(2)证明 由(1)得b n =1-a n +1n =n +1-nn +1·n=1n -1n +1,∴S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1<1.15.已知在数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎪⎪⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出{b n }; (2)求T 2n .考点 数列前n 项和的求法 题点 分组求和法 解 (1)因为a n ·a n +1=⎝⎛⎭⎪⎪⎫12n,所以a n +1·a n +2=⎝⎛⎭⎪⎪⎫12n +1, 所以a n +2a n =12,即a n +2=12a n ,因为b n =a 2n +a 2n -1, 所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以{b n }是公比为12的等比数列.因为a 1=1,a 1·a 2=12,所以a 2=12,所以b 1=a 1+a 2=32,所以b n =32×⎝ ⎛⎭⎪⎪⎫12n -1=32n .(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎪⎪⎫12n1-12+12⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎪⎫12n 1-12=3-32n .。
习题课课时目标1.进一步理解复数的四则运算.2.了解解复数问题的基本思想.1.复数乘方的性质:对任何z,z1,即z∈C及m、n∈N*,有z m·z n=________(z m)n=z mn(z1z2)n=z n1z n22.n∈N*时,i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i.一、填空题1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是____________. 2.设z 的共轭复数是z ,若z +z =4,z ·z =8,则z z =______.3.设C ,R ,I 分别表示复数集、实数集、纯虚数集,取C 为全集,下列命题正确的是____________(请填写相应的序号).①R ∪I =C ;②R ∩I ={0};③C ∩I =∁I R ;④R ∩I =∅.4.1+i 1-i表示为a +b i(a ,b ∈R ),则a +b =________. 5.设复数z 1=1+i ,z 2=x +2i(x ∈R ),若z 1·z 2为实数,则x =________.6.已知复数z 满足z +(1+2i)=10-3i ,则z =________.7.复数z 满足(1+2i)z =4+3i ,则z =________.8.若x 是实数,y 是纯虚数且满足2x -1+2i =y ,则x =________,y =________.二、解答题9.已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z .10.解方程x 2-(2+3i)x +5+3i =0.能力提升11.已知z 是虚数,且z +1z 是实数,求证:z -1z +1是纯虚数.12.满足z +5z是实数,且z +3的实部与虚部互为相反数的虚数z 是否存在,若存在,求出虚数z ;若不存在,请说明理由.1.对于复数运算中的分式,要先进行分母实数化.2.充分利用复数相等的条件解方程问题.习题课答案知识梳理1.z m +n作业设计1.3-3i解析 3i -2的虚部为3,3i 2+2i 的实部为-3,故所求复数为3-3i.2.±i解析 设z =x +y i(x ,y ∈R ),则z =x -y i ,依题意2x =4且x 2+y 2=8,解之得x =2,y =±2.∴z z =z 2z ·z =(2±2i )28=±i. 3.④解析 复数的概念,纯虚数集和实数集都是复数集的真子集,但其并集不是复数集,当ab ≠0时,a +b i 不是实数也不是纯虚数,利用韦恩图可得出结果.4.1解析 ∵1+i 1-i =(1+i )22=i ,∴a =0,b =1, 因此a +b =1.5.-2 6.9+5i7.2+i解析 z =4+3i 1+2i =(4+3i )(1-2i )5=10-5i 5=2-i. ∴z =2+i.8.122i 解析 设y =b i(b ≠0),∴⎩⎪⎨⎪⎧ 2x -1=0b =2,∴x =12. 9.解 设z =a +b i(a ,b ∈R ),则z =a -b i(a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,则⎩⎪⎨⎪⎧ a 2+b 2-3b =1,-3a =3,解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =-1,b =3. 所以z =-1或z =-1+3i.10.解 设x =a +b i(a ,b ∈R ),则有a 2-b 2+2ab i -[(2a -3b )+(3a +2b )i]+5+3i =0,根据复数相等的充要条件得 ⎩⎪⎨⎪⎧ a 2-b 2-(2a -3b )+5=0,2ab -(3a +2b )+3=0, 解得⎩⎪⎨⎪⎧a =1,b =4,或⎩⎪⎨⎪⎧ a =1,b =-1. 故方程的解为x =1+4i 或x =1-i. 11.证明 设z =a +b i(a 、b ∈R ),于是 z +1z =a +b i +1a +b i =a +b i +a -b i a 2+b 2 =a +a a 2+b 2+⎝ ⎛⎭⎪⎫b -b a 2+b 2i. ∵z +1z ∈R ,∴b -b a 2+b 2=0. ∵z 是虚数,∴b ≠0,∴a 2+b 2=1且a ≠±1.∴z -1z +1=(a -1)+b i (a +1)+b i=[(a -1)+b i][(a +1)-b i](a +1)2+b 2 =a 2-1+b 2+[(a +1)b -(a -1)b ]i a 2+b 2+2a +1=0+2b i 1+2a +1=b a +1i.∵b ≠0,a ≠-1,a 、b ∈R , ∴b a +1i 是纯虚数,即z -1z +1是纯虚数. 12.解 设存在虚数z =x +y i(x 、y ∈R 且y ≠0). 因为z +5z =x +y i +5x +y i=x +5x x 2+y 2+⎝ ⎛⎭⎪⎫y -5y x 2+y 2i. 由已知得⎩⎪⎨⎪⎧ y -5y x 2+y 2=0,x +3=-y .因为y ≠0,所以⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3. 解得⎩⎪⎨⎪⎧ x =-1,y =-2,或⎩⎪⎨⎪⎧ x =-2,y =-1.所以存在虚数z =-1-2i 或z =-2-i 满足以上条件.。