201704天津市滨海新区中考数学一模试卷含答案
- 格式:doc
- 大小:641.50 KB
- 文档页数:11
2017年天津市中考数学考试(解析版)作者: 日期:2017年天津市中考数学试卷、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个 选项中,只有一项是符合题目要求的) 计算(-3) +5的结果等于( )对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张•将12630000用科学记数法表示为( )A. 0.1263X 108 B . 1.263X 107 C. 12.63X 106 D . 126.3X 1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(A .2 B.— 2 C. D .— 82. cos60的值等于A . D .3.在一些美术字中,有的汉子是轴对称图形. F 面 4个汉字中,可以看作是轴A .B .C .丿/A .6.估计莎的值在5和6之间 C. 6和7之间D . 7和8之间8.A. 的解是(沪3y=6D .9.如图,将厶ABC绕点B顺时针旋转60°得厶DBE点C的对应点E恰好落在AB第3页(共27页)ii .如图,在△ ABC 中,AB=AC AD 、。
丘是厶ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于 BP+EP 最小值的是( )A . BC B. CE C. AD D . ACi2.已知抛物线yrx 2-4x+3与x 轴相交于点A ,(点A 在点B 左侧),顶点为M .平 移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落 在y 轴上,则平移后的抛物线解析式为( ) A . y=x 2+2x+i B. y=x 2+2x - i C. y=« -2x+i D . y=x 2- 2x - i二、填空题(本大题共6小题,每小题3分,共18分) 13. __________________________ 计算x 7宁x 4的结果等于 . 14. __________________________________ 计算両的结果等于 .15. 不透明袋子中装有6个球,其中有5个红球、i 个绿球,这些球除颜色外无 其他差别.从袋子中随机取出i 个球,则它是红球的概率是 ___________ .16. _________ 若正比例函数y=kx (k 是常数,k M 0)的图象经过第二、四象限,贝U k 的值 可以是 (写出一个即可).在反比例函数「一的图象上,则y i , y , yA . y i < y 2<y 3B. y 2<y 3<y iC. y 3< y 2< y i D . y 2<y i <y 3AD=BC10•若点 A (- 1, y i ), B (1,y 2), C (3, y 3) A3 D17•如图,正方形ABCD和正方形EFCG勺边长分别为3和1,点F,G分别在边BC, CD上, P为AE的中点,连接PG,贝U PG的长为_______ .18•如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于 ______ ;(2)在厶ABC的内部有一点P,满足S A PAB: S L PBC: S L pC=1: 2: 3,请在如图所示的网格中,用无刻.度.的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明) ________ .三、解答题(本大题共7小题,共66分。
天津市2017年中考数学真题试卷和答案一、选择题(每小题3分,共36分)。
1.计算(﹣3)+5的结果等于()A.2B.﹣2C.8D.﹣82.cos60°的值等于()A.√3B.1C.√22D.123.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计√38的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算+1+1??+1的结果为()A.1B.a C.a+1D.1 +18.方程组{=2??3??+??=15的解是()A.{=2=3B.{??=4??=3C.{??=4??=8D.{??=3??=69.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数??=-3的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1B.y=x2+2x﹣1C.y=x2﹣2x+1D.y=x2﹣2x﹣1二、填空题(每小题3分,共18分)。
2017年滨海新区初中毕业生模拟学业考试试卷(一)【节选】物理一、单项选择题(每小题3分,共15分)1、如图1所示为海波的熔化图像,从图像中获得的信息说法正确的是A、海波的沸点是48℃B、海波在BC段吸收了热量C、海波在CD段是气态D、6min时海波已全熔化2、一辆汽车在平直的公路上匀速行驶,下列属于平衡力的是A、汽车的重力与路面对汽车的支持力B、汽车受到的牵引力与汽车受到的重力C、汽车的重力与汽车对路面的压力D、汽车对路面的压力与路面对汽车的支持力3、骑自行车上坡前往往要加紧蹬几下,这样做是为了图1A、增大车的惯性B、增大车的冲力C、增大车的动能D、增大车的势能4、闭合电路的一部分导体在磁场中运动的方向如图2所示,图中小圆圈表示导体的横截面,箭头表示导体运动的方向,下列各图中不能..产生感应电流的是A B C D图25、图3为四个同学设计的楼梯照明图,其中S1、S2分别为楼上和楼下的开关(都是单刀双掷开关),要求拨动其中任何一个开关都能改变电灯原来发光或熄灭的状态,则在实际中最理想的方案是图3二、多项选择题(每小题5分,共10分)1、甲、乙两个形状未知的容器的底面积之比为S甲:S乙=4:3,两个容器内盛有同种液体。
若两容器底面所受液体压力相等,则下列结论正确的是A、甲、乙两容器底面所受液体压强之比p甲:p乙=4:3B、甲、乙两容器底面所受液体压强之比p甲:p乙=3:4C、甲、乙两容器内液体的深度之比h甲:h乙=3:4D、甲、乙两容器内液体的质量之比m甲:m乙=1:12、如图4所示,灯L1上标有“12V 8W”,L2上标有“24V 12W”,电源电压恒定为12V,开关S 闭合后A、电流表A1和A2示数相同B、电流表A2示数为0.5AC、灯L1正常发光,且比灯L2亮D、电压表接法是错误的三、填空(每空3分,共12分)1、如图5所示,轻质杠杆OA中点悬挂重为60N的物体,在A端施加图4一竖直向上的力F,杠杆在水平位置平衡,则力F的大小是________N,保持F的方向不变,将杠杆从A位置匀速提升到B位置的过程中,力F将_______(选填“变大”“变小”或“不变”)图52、一只电烙铁的额定电压是220V,在额定电压下工作时的电阻是1210Ω,它的额定功率是______W,在额定电压下通电10min产生_________J热量。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于( )A .2B .﹣2C .8D .﹣82.(3分)cos60°的值等于( )A .√3B .1C .√22D .123.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .0。
1263×108B .1.263×107C .12。
63×106D .126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间7.(3分)计算a a+1+1a+1的结果为( ) A .1 B .a C .a +1 D .1a+1 8.(3分)方程组{y =2x 3x +y =15的解是( )A .{x =2y =3B .{x =4y =3C .{x =4y =8D .{x =3y =69.(3分)如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD=∠EB .∠CBE=∠C C .AD ∥BC D .AD=BC10.(3分)若点A (﹣1,y 1),B (1,y 2),C (3,y 3)在反比例函数y =−3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 311.(3分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( )A .BCB .CEC .AD D .AC12.(3分)已知抛物线y=x 2﹣4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( )A .y=x 2+2x +1B .y=x 2+2x ﹣1C .y=x 2﹣2x +1D .y=x 2﹣2x ﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x 7÷x 4的结果等于 .14.(3分)计算(4+√7)(4−√7)的结果等于 .15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k 的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。
2024届天津市滨海新区第四共同体市级名校中考一模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.2.2018的相反数是()A.12018B.2018 C.-2018 D.12018-3.如图1,在等边△ABC中,D是BC的中点,P为AB边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4B.23C.12D.34.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较. 根据上述信息,下列结论中错误的是( )A .2017年第二季度环比有所提高B .2017年第三季度环比有所提高C .2018年第一季度同比有所提高D .2018年第四季度同比有所提高5.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .6.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A .15°B .30°C .45°D .60° 7.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.8.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是( ) 年龄(岁) 12 13 14 15 16 人数1 2 2 5 2A .2,14岁B .2,15岁C .19岁,20岁D .15岁,15岁 9.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8 9 10 户数 2 6 2则关于这10户家庭的月用水量,下列说法错误的是( )A .方差是4B .极差是2C .平均数是9D .众数是910.已知关于x 的不等式组﹣1<2x+b <1的解满足0<x <2,则b 满足的条件是( )A .0<b <2B .﹣3<b <﹣1C .﹣3≤b≤﹣1D .b=﹣1或﹣311.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A .12B .13C .14D .1612.计算3–(–9)的结果是( )A .12B .–12C .6D .–6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.14.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.15.函数y=123x x ++ 中,自变量x 的取值范围是 _____. 16.在函数y=的表达式中,自变量x 的取值范围是 . 17.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.18.因式分解:x 2﹣10x+24=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在Rt ABC ∆中,90ACB ∠=,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=①如图1,DCB ∠=②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明)20.(6分)如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交AB 点F ,连接BE .(1)求证:AC 平分∠DAB ;(2)求证:PC =PF ;(3)若tan ∠ABC =43,AB =14,求线段PC 的长.21.(6分)如图,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m 的影子CE ;而当光线与地面的夹角是45º时,教学楼顶A 在地面上的影子F 与墙角C 有13m 的距离(B 、F 、C 在一条直线上).求教学楼AB 的高度;学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离(结果保留整数).22.(8分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表: 商品名称甲 乙 进价(元/件)40 90 售价(元/件) 60 120设其中甲种商品购进x 件,商场售完这100件商品的总利润为y 元.写出y 关于x 的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?23.(8分)某商店老板准备购买A 、B 两种型号的足球共100只,已知A 型号足球进价每只40元,B 型号足球进价每只60元.(1)若该店老板共花费了5200元,那么A 、B 型号足球各进了多少只;(2)若B 型号足球数量不少于A 型号足球数量的23,那么进多少只A 型号足球,可以让该老板所用的进货款最少? 24.(10分)已知:AB 为⊙O 上一点,如图,12AB =,43BC=BH 与⊙O 相切于点B ,过点C 作BH 的平行线交AB 于点E.(1)求CE 的长;(2)延长CE 到F ,使2EF =,连结BF 并延长BF 交⊙O 于点G ,求BG 的长;(3)在(2)的条件下,连结GC 并延长GC 交BH 于点D ,求证:BD BG =25.(10分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD (如图).已知标语牌的高AB=5m ,在地面的点E 处,测得标语牌点A 的仰角为30°,在地面的点F 处,测得标语牌点A 的仰角为75°,且点E ,F ,B ,C 在同一直线上,求点E 与点F 之间的距离.(计算结果精确到0.1m ,参考数据:2≈1.41,3≈1.73)26.(12分)(1)计算:8﹣2sin45°+(2﹣π)0﹣(13)﹣1; (2)先化简,再求值2a a ab-•(a 2﹣b 2),其中a =2,b =﹣22. 27.(12分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C【解题分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【题目详解】解:由不等式①,得3x >5-2,解得x >1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C .故选C .【题目点拨】考核知识点:解不等式组.2、C【解题分析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【题目详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【题目点拨】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.3、D【解题分析】分析:由图1、图2结合题意可知,当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小3,过点P 作PD ⊥AB 于点P ,连接AD ,结合△ABC 是等边三角形和点D 是BC 边的中点进行分析解答即可.详解:由题意可知:当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小,如图3,过点P 作PD ⊥AB 于点P ,连接AD , ∵△ABC 是等边三角形,点D 是BC 边上的中点,∴∠ABC=60°,AD ⊥BC ,∵DP ⊥AB 于点P ,此时∴BD=32sin 60PD ==,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=23,∴S△ABC=12AD·BC=1234432⨯⨯=.故选D.点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=3”是解答本题的关键.4、C【解题分析】根据环比和同比的比较方法,验证每一个选项即可.【题目详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;故选C.【题目点拨】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.5、A【解题分析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6、B【解题分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【题目详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【题目点拨】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.7、A【解题分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【题目详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【题目点拨】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.8、D【解题分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【题目详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1.故选D.【题目点拨】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9、A【解题分析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.10、C【解题分析】根据不等式的性质得出x的解集,进而解答即可.【题目详解】∵-1<2x+b<1∴1122b bx---<<,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴12122bb--⎧≥⎪⎪⎨-⎪≤⎪⎩,解得:-3≤b≤-1,故选C.【题目点拨】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.11、D【解题分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【题目详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12、A【解题分析】根据有理数的减法,即可解答.【题目详解】()393912,--=+=故选A.【题目点拨】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、20【解题分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【题目详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【题目点拨】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.14、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解. 当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.15、x≠﹣32.【解题分析】该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.【题目详解】解:根据分式有意义的条件得:2x+3≠1解得:32x≠-.故答案为32x≠-.【题目点拨】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.16、x≥1.【解题分析】根据被开方数大于等于0列式计算即可得解.【题目详解】根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.【题目点拨】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.17、73°【解题分析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.18、(x ﹣4)(x ﹣6)【解题分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可. 【题目详解】x 2﹣10x+24= x 2﹣10x+(-4)×(-6)=(x ﹣4)(x ﹣6)【题目点拨】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)①60;②CP BF =.理由见解析;(2)2tan BF BP DE α-=⋅,理由见解析.【解题分析】(1)①根据直角三角形斜边中线的性质,结合30A ∠=,只要证明CDB ∆是等边三角形即可;②根据全等三角形的判定推出DCP DBF ∆≅∆,根据全等的性质得出CP BF =,(2)如图2,求出DC DB AD ==,DE AC ,求出2FDB CDP PDB α∠=∠=+∠,DP DF =,根据全等三角形的判定得出DCP DBF ∆≅∆,求出CP BF =,推出BF BP BC -=,解直角三角形求出tan CE DE α=即可.【题目详解】解:(1)①∵30A ∠=,90ACB ∠=,∴60B ∠=,∵AD DB =,∴CD AD DB ==,∴CDB ∆是等边三角形,∴60DCB ∠=.故答案为60.②如图1,结论:CP BF =.理由如下:∵90ACB ∠=,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=-∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =.(2)结论:2tan BF BP DE α-=⋅.理由:∵90ACB ∠=,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=+∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =,而CP BC BP =+,∴BF BP BC -=,在Rt CDE ∆中,90DEC ∠=, ∴tan DE DCE CE ∠=, ∴tan CE DE α=,∴22tan BC CE DE α==,即2tan BF BP DE α-=.【题目点拨】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出DCP DBF ∆≅∆是解此题的关键,综合性比较强,证明过程类似.20、(1)(2)证明见解析;(3)1.【解题分析】(1)由PD 切⊙O 于点C ,AD 与过点C 的切线垂直,易证得OC ∥AD ,继而证得AC 平分∠DAB ;(2)由条件可得∠CAO=∠PCB ,结合条件可得∠PCF=∠PFC ,即可证得PC=PF ;(3)易证△PAC ∽△PCB ,由相似三角形的性质可得到PC AP PB PC = ,又因为tan ∠ABC=43 ,所以可得AC BC =43,进而可得到PC PB =43,设PC=4k ,PB=3k ,则在Rt △POC 中,利用勾股定理可得PC 2+OC 2=OP 2,进而可建立关于k 的方程,解方程求出k 的值即可求出PC 的长.【题目详解】(1)证明:∵PD 切⊙O 于点C ,∴OC ⊥PD ,又∵AD ⊥PD ,∴OC ∥AD ,∴∠A CO=∠DAC .∵OC=OA ,∴∠ACO=∠CAO ,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=1.【题目点拨】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.21、(1)2m(2)27m【解题分析】(1)首先构造直角三角形△AEM ,利用0AM tan22ME =,求出即可. (2)利用Rt △AME 中,0ME cos22AE=,求出AE 即可. 【题目详解】解:(1)过点E 作EM ⊥AB ,垂足为M .设AB 为x .在Rt △ABF 中,∠AFB=45°,∴BF=AB=x ,∴BC=BF +FC=x +1.在Rt △AEM 中,∠AEM=22°,AM=AB -BM=AB -CE=x -2,又∵0AM tan22ME =,∴x 22x 135-≈+,解得:x≈2. ∴教学楼的高2m .(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt △AME 中,0ME cos22AE =, ∴AE=MEcos22°≈15252716⨯≈. ∴A 、E 之间的距离约为27m .22、 (Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解题分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【题目详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品.103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x 时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【题目点拨】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.23、(1)A 型足球进了40个,B 型足球进了60个;(2)当x=60时,y 最小=4800元.【解题分析】(1)设A 型足球x 个,则B 型足球(100-x )个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y 元,根据题意列出函数关系式,根据B 型号足球数量不少于A 型号足球数量的23求出x 的取值范围,然后根据一次函数的性质求解即可.【题目详解】解:(1)设A 型足球x 个,则B 型足球(100-x )个,∴ 40x +60(100-x )=5200 ,解得:x=40 ,∴100-x=100-40=60个,答:A 型足球进了40个,B 型足球进了60个.(2)设A 型足球x 个,则B 型足球(100-x )个,100-x≥23x , 解得:x≤60 ,设进货款为y 元,则y=40x+60(100-x)=-20x+6000 ,∵k=-20,∴y 随x 的增大而减小,∴当x=60时,y 最小=4800元.【题目点拨】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.24、 ;(2);(3)证明见解析.【解题分析】(1)只要证明△ABC ∽△CBE ,可得BC AB CE AC=,由此即可解决问题;(2)连接AG ,只要证明△ABG ∽△FBE ,可得BG BE AB BF =,由BE 4,再求出BF ,即可解决问题;(3)通过计算首先证明CF =FG ,推出∠FCG =∠FGC ,由CF ∥BD ,推出∠GCF =∠BDG ,推出∠BDG =∠BGD 即可证明.【题目详解】解:(1)∵BH 与⊙O 相切于点B ,∴AB ⊥BH ,∵BH ∥CE ,∴CE ⊥AB ,∵AB 是直径,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC ,∴△ABC ∽△CBE , ∴BC AB CE AC=,∵=∴.(2)连接AG .∵∠FEB=∠AGB=90°,∠EBF=∠ABG ,∴△ABG ∽△FBE , ∴BG BE AB BF=,∵,∴=, ∴12BG =,∴.(3)易知=5,∴GF=BG﹣BF=52,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【题目点拨】本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.25、7.3米【解题分析】:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=3x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+3x =10,解方程即可.【题目详解】解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E与点F之间的距离为7.3米【题目点拨】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.26、(1)2-2 (2)-2【解题分析】试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;(2)先把2a ab-和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)•(a2﹣b2)=•(a+b)(a﹣b)=a+b,当a=,b=﹣2时,原式=+(﹣2)=﹣.27、(1)见解析;(2)6013 DE=.【解题分析】对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【题目详解】解:(1)证明:∵AB AC=,∴B C∠=∠.又∵AD为BC边上的中线,∴AD BC⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD=, 即51312DE =, ∴6013DE =. 【题目点拨】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.。
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前天津市2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(3)5-+的结果等于( ) A .2B .2-C .8D .8- 2.cos60的值等于( )AB .1 CD .123.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .80.126310 ⨯ B .71.26310⨯ C .612.6310⨯ D .5126.310⨯ 5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.计算111a a a +++的结果为( )A .1B .aC .1a +D .11a + 8.方程组2,315y x x y =⎧⎨+=⎩的解是( )A .2,3x y =⎧⎨=⎩B .4,3x y =⎧⎨=⎩C .4,8x y =⎧⎨=⎩D .3,6x y =⎧⎨=⎩9.如图,将ABC △绕点B 顺时针旋转60得DBE △,点C 的对应点E 恰好落在AB 的延长线上,连接AD .下列结论一定正确的是 ( )A .ABD E ∠=∠B .CBEC ∠=∠ C .AD BC ∥ D .AD BC =10.若点1(1,)A y -,2(1,)B y ,3(3,)C y 在反比例函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .231y y y <<C .321y y y <<D .213y y y <<11. 如图,在ABC △中,AB AC =,AD ,CE 是ABC △的两条中线,P 是AD 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .BCB .CEC .ADD .AC12.已知抛物线243y x x =-+于x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A .221y x x =++B .221y x x =+-ABCDABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)C .221y x x =-+D .221y x x =--第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.计算74xx ÷的结果等于 .14.计算(4的结果等于 .15.不透明袋子中装有6个球,其中有5个红球,1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ; (2)在ABC △的内部有一点P ,满足::1:2:3PAB PBC PCA S S S =△△△,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解不等式组12,54 3.x x x +⎧⎨+⎩≥①≤②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为 . 20.(本小题满分8分)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:图1 图2(1)本次接受调查的跳水运动员人数为 ,图1中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数. 21.(本小题满分10分)已知AB 是O 的直径,AT 是O 的切线,50ABT ∠=,BT 交O 于点C ,E 是AB上一点,延长CE 交O 于点D .图1图2(1)如图1,求T ∠和CDB ∠的大小;(2)如图2,当BE BC =时,求CDO ∠的大小.22.(本小题满分10分)如图,一艘海轮位于灯塔P 的北偏东64方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:sin 640.90≈,cos640.44≈,tan 64 2.05≈1.414.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)23.(本小题满分10分)用A4纸复印文件.在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)(2)1212关于x 的函数关系式;(3)当70x >时,顾客在哪家复印店复印花费少?请说明理由.24.(本小题满分10分)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A ,点(0,1)B ,点(00)O ,.P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A '.图1 图2(1)如图1,当点A '在第一象限,且满足A B OB '⊥时,求点A '的坐标; (2)如图2,当P 为AB 中点时,求A B '的长;(3)当30BPA '∠=时,求点P 的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线23y x bx =+-(b 是常数)经过点(1,0)A -. (1)求该抛物线的解析式和顶点坐标;(2)(,)P m t 为抛物线上的一个动点,P 关于原点的对称点为P '. ①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,2P A '取得最小值时,求m 的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共28页)数学试卷 第8页(共28页)1cos602=. 【解析】36<【解析】ABC△绕点60得DBE△60,AB 三角形,60DAB∴∠=,DAB CBE∴∠=∠,AD BC∴∥.60,AB【解析】3k=-<,1y>,【提示】根据反比例函数的性质判断即可,AB AC=5 / 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)PE PC CE +≥,∴P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.,平移该抛物线,使点【解析】共【解析】若正比例函数.P直角45,∴△EG+=7 / 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)22(3)把不等式①和②的解集在数轴上表示出来:9 / 14大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=; (2)根据平均数、众数和中位数的定义求解即可. 【考点】统计的初步知识运用 21.【答案】(1)40T ∠=40CDB ∠= (2)15CDO ∠=【解析】(1)如图①,连接AC , AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT ∠=,9040T ABT ∴∠=-∠=; 由AB 是⊙O 的直径,得90ACB ∠=,9040CAB ABC ∴∠=-∠=, 40CDB CAB ∴∠=∠=; (2)如图②,连接AD ,在BCE △中,BE BC =,50EBC ∠=,65BCE BEC ∴∠=∠=,65BAD BCD ∴∠=∠=,OA OD =,65ODA OAD ∴∠=∠=,50ADC ABC ∠=∠=,655015CDO ODA ADC ∴∠=∠-∠=-=.【提示】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得90TAB ∠=,根据三角形内角和得T∠的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得CDB ∠的度数;(2)如图②,连接AD ,根据等边对等角得65BCE BEC ∠=∠=,利用同圆的半径相等知OA OD =,同理65ODA OAD ∠=∠=,由此可得结论.【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质 22.【答案】BP 的长为153海里数学试卷 第20页(共28页)64,45B ∠,PAsin 120sin 64PA A =,cos 120cos64AC PA A =; PCB 中,45B ∠=,PC BC ∴,1200.901534522PC ⨯=≈120cos64120sin 641200.90+≈⨯所以BP 的长为153海里,BA 的长为161海里.)点A B OB '⊥90,在Rt A OB '△2'P 60,180120BPO ∴∠∠=-,120OPA '=,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45, (,)P x y ,32P ⎛-∴ 30,OA 30BPA '∠=,∴∠OA AP '∴∥PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点60,求出120,由折叠的性质得:120,PA,得出四边形是平行四边形,即可得出45,30,OA')抛物线2=y x-(2)①由点点抛物线的顶点坐标为PA-,,(10)2(∴=P A'm>,∴∴m的值为。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)。
1•计算(-3)+5的结果等于()。
A. 2B.- 2C. 8D.- 82. cos60°的值等于()。
3. 在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()。
4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()。
A. 0.1263X 108B. 1.263X 107C. 12.63X 106D. 126.3X 1056.估计的值在(A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间y=2x8.方程组0十y"5|的解是()A.匚B. 1C.D.A.礼B.迎C全D.运D.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(B. . __—IC.D.7.计算的结果为(9.如图,将△ ABC绕点B 顺时针旋转60°得厶DBE 点C 的对应点E 恰好落在 F 列结论一定正确的是( )oA .Z ABD=Z EB .Z CBE 2C C. AD // BC D . AD=BC10.若点A (- 1, yl ), B (1, y2), C (3, y3)在反比例函数丨 的图象上,则y1, y2, y3的大小关系是(11.如图,在△ ABC 中,AB=AC 动点,则下列线段的长度等于 BP+ER 最小值的是(12 .已知抛物线y=x2- 4x+3与x 轴相交于点A , B (点A 在点B 左侧),顶点为 M .平移该抛物线,使点 M 平移后的对应点M'落在x 轴上,点B 平移后的对应 点B'落在y 轴上,则平移后的抛物线解析式为( )o A. y=x2+2x+1 B . y=x2+2x- 1 C. y=x2- 2x+1 D. y=x2- 2x - 1 二、填空题(本大题共6小题,每小题3分,共18分) 13.计算x 7十x 4的结果等于14 .计算(4人刀)(心何)15. _____________________________________________________ 不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无A . yl v y2v y3B . y2v y3v y1 C. y3v y2v y1 D. y2v yl v y3AD 、。
天津市初三中考数学一模模拟试卷【含答案】一、选择题(本大题共8小题,共24分)1.2的算术平方根是()A. ±√2B. √2C. −√2D. 22.下列运算正确的是()A. a3⋅a3=2a6B. a3+a3=2a6C. (a3)2=a6D. a6⋅a2=a33.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. 18×104B. 1.8×104C. 0.18×106D.1.8×1054.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. 20%B. 25%C. 50%D. 62.5%的图象经过▱ABCD对角线的交点P,7.如图,反比例函数y=kx已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A. −6B. −5C. −4D. −38.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. 2√35B. √55C. 3√35D. 2√55二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若√x−2在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+(√7)018.化简:(1−3a )÷a−3a219.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组{4x+2<x+42x>1−x21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:√2=1.41,√3=1.73)25.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(√6,0)与点B(0,-√2),点D在劣弧OA⏜上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx-√3的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.27.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在S△OBG,连接GP,则当BO 点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=14为何值时,四边形PKBG的面积最大?最大面积为多少?答案和解析1.【答案】B【解析】解:2的算术平方根是,故选:B.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.【答案】C【解析】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.【答案】D【解析】解:将180000用科学记数法表示为1.8×105,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.【答案】A【解析】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选:A.先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.本题考查的知识点有:用样本估计总体、众数、方差以及中位数的知识,解题的关键是牢记概念及公式.6.【答案】C【解析】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.7.【答案】D【解析】解:过点P作PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=-3故选:D.由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.【答案】D【解析】解:连接AC、BD、OE,∵四边形ABCD是菱形,∴AC⊥BD,AM=CM,BM=DM,∵⊙O与边AB、AD都相切,∴点O在AC上,设AM=x,BM=y,∵∠BAD<90°,∴x>y,由勾股定理得,x2+y2=25,∵菱形ABCD的面积为20,∴xy=5,,解得,x=2,y=,∵⊙O与边AB相切,∴∠OEA=90°,∵∠OEA=∠BMA,∠OAE=∠BAM,∴△AOE∽△ABM,∴=,即=,解得,OE=,故选:D.连接AC、BD、OE,根据菱形的性质、勾股定理分别求出AM、BM,根据切线的性质得到∠OEA=90°,证明△AOE∽△ABM,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、菱形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】5【解析】解:-5的相反数是5.故答案为:5.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.【答案】(2a-1)2【解析】解:4a2-4a+1=(2a-1)2.故答案为:(2a-1)2.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.11.【答案】x≥2【解析】解:由题意得:x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x-2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】30【解析】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为:30.根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD-∠AOB计算即可得解.本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.13.【答案】12【解析】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】-40【解析】解:根据题意得x+32=x,解得x=-40.故答案是:-40.根据题意得x+32=x,解方程即可求得x的值.本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.【答案】(2+2√3)【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC-BP=(4+4)cm,∵∠EPC=180°-90°-60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.本题考查了翻折变换-折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.16.【答案】√32【解析】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.17.【答案】解:原式=6-8+1=-1.【解析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:(1−3a )÷a−3a2=a−3a ⋅a2 a−3=a.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.【答案】14【解析】解:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;故答案为(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 20.【答案】解:解不等式2x >1-x ,得:x >13, 解不等式4x +2<x +4,得:x <23, 则不等式组的解集为13<x <23.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 21.【答案】200 12 36 108 【解析】解:(1)∵44÷22%=200(名) ∴该调查的样本容量为200; a=24÷200=12%, b=72÷200=36%,“常常”对应扇形的圆心角为: 360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名. 故答案为:200、12、36、108.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a 、b 的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可. (3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可. 此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 22.【答案】解:(1)∵四边形ABCD 为矩形, ∴AB =CD ,AD ∥BC ,∠B =∠D =90°,∠BAC =∠DCA . 由翻折的性质可知:∠EAB =12∠BAC ,∠DCF =12∠DCA . ∴∠EAB =∠DCF .在△ABE 和△CDF 中{∠B =∠DAB =CD ∠EAB =∠DCF,∴△ABE ≌△CDF (ASA ), ∴DF =BE . ∴AF =EC . 又∵AF ∥EC ,∴四边形AECF 是平行四边形;(2)当∠BAE =30°时,四边形AECF 是菱形, 理由:由折叠可知,∠BAE =∠CAE =30°, ∵∠B =90°,∴∠ACE =90°-30°=60°, 即∠CAE =∠ACE , ∴EA =EC ,∵四边形AECF 是平行四边形, ∴四边形AECF 是菱形. 【解析】(1)首先证明△ABE ≌△CDF ,则DF=BE ,然后可得到AF=EC ,依据一组对边平行且相等四边形是平行四边形可证明AECF 是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE ,得到EA=EC ,于是得到结论.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键. 23.【答案】240 【解析】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元. 故答案为240.(2)∵3600÷240=15,3600÷150=24, ∴收费标准在BC 段,设直线BC 的解析式为y=kx+b ,则有,解得,∴y=-6x+300,由题意(-6x+300)x=3600, 解得x=20或30(舍弃)答:参加这次旅游的人数是20人.(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.24.【答案】150° 5【解析】解:(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A转过的角度为:360°-90°-30°-90°=150°.在直角△BCH中,∠BCH=30°,BC=10cm,则BH=BC=5cm.故答案是:150°;5;(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,则MD=AD•sin30°=×10=5(cm).∵∠DCN=30°,∴cos∠DCN=cos30°==,即=,解得EF=32.4.即箱子的宽EF是32.4cm.(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A转过的角度;通过解直角△BHC来求BH的长度;(2)通过解直角△AMD得到线段MD的长度,则DN=65-EF-DM,利用解直角△DCN来求CD的长度,即EF的长度即可.本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.25.【答案】解:(1)∵点A(√6,0)与点B(0,-√2),∴OA=√6,OB=√2,∴AB=√OA2+OB2=2√2,∵∠AOB=90°,∴AB是直径,∴⊙M的半径为:√2;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A 作AE ⊥AB ,垂足为A ,交BD 的延长线于点E ,过点E 作EF ⊥OA 于点F ,即AE 是切线, ∵在Rt △AOB 中,tan ∠OAB =OB OA =√2√6=√33,∴∠OAB =30°,∴∠ABO =90°-∠OAB =60°, ∴∠ABC =∠OBC =12∠ABO =30°, ∴OC =OB •tan30°=√2×√33=√63,∴AC =OA -OC =2√63, ∴∠ACE =∠ABC +∠OAB =60°, ∴∠EAC =60°,∴△ACE 是等边三角形, ∴AE =AC =2√63, ∴AF =12AE =√63,EF =√32AE =√2,∴OF =OA -AF =2√63, ∴点E 的坐标为:(2√63,√2). 【解析】(1)由点A (,0)与点B (0,-),可求得线段AB 的长,然后由∠AOB=90°,可得AB 是直径,继而求得⊙M 的半径;(2)由圆周角定理可得:∠COD=∠ABC ,又由∠COD=∠CBO ,即可得BD 平分∠ABO ;(3)首先过点A 作AE ⊥AB ,垂足为A ,交BD 的延长线于点E ,过点E 作EF ⊥OA 于点F ,易得△AEC 是等边三角形,继而求得EF 与AF 的长,则可求得点E 的坐标.此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.26.【答案】解:(1)∵二次函数y =ax 2+bx -√3的图象经过点A (-1,0)、C (2,0), ∴{a −b −√3=04a +2b −√3=0,得{a =√32b =−√32,∴y =√32x 2-√32x -√3=√32(x −12)2−9√38,∴二次函数的表达式是y =√32x 2-√32x -√3,顶点坐标是(12,−9√38);(2)①点M 的坐标为(12,√32),(12,-√32)或(12,-5√36), 理由:当AM 1⊥AB 时,如右图1所示,∵点A (-1,0),点B (0,-√3), ∴OA =1,OB =√3, ∴tan ∠BAO =√31=√3,∴∠BAO =60°, ∴∠OAM 1=30°,∴tan ∠OAM 1=M 1DAD =M 1D32=√33, 解得,DM 1=√32,∴M 1的坐标为(12,√32);当BM 3⊥AB 时, 同理可得,√3−DM 312=√33,解得,DM 3=5√36, ∴M 3的坐标为(12,-5√36); 当点M 2到线段AB 的中点的距离等于线段AB 的一半时, ∵点A (-1,0),点B (0,-√3),∴线段AB 中点的坐标为(-12,−√32),线段AB 的长度是2,设点M 2的坐标为(12,m ),则√(−12−12)2+(−√32−m)2=1,解得,m =−√32,即点M 2的坐标为(12,-√32);由上可得,点M 的坐标为(12,√32),(12,-√32)或(12,-5√36); ②如图2所示,作AB 的垂直平分线,于y 轴交于点F , 由题意知,AB =2,∠BAF =∠ABO =30°,∠AFB =120°,∴以F 为圆心,AF 长为半径作圆交对称轴于点M 和M ′点, 则∠AMB =∠AM ′B =12∠AFB =60°, ∵∠BAF =∠ABO =30°,OA =1, ∴∠FAO =30°,AF =2√33=FM =FM ′,OF =√33, 过点F 作FG ⊥MM ′于点G , ∵FG =12,∴MG =M ′G =√FM 2−FG 2=√396,又∵G (12,-√33),∴M (12,√39−2√36),M ′(12,−√39−2√36), ∴−√39−2√36≤t ≤√39−2√36. 【解析】(1)根据二次函数y=ax 2+bx-的图象经过点A (-1,0)、C (2,0),可以求得该函数的解析式,然后将函数解析式化为顶点式,即可得到该函数的顶点坐标;(2)①根据题意,画出相应的图形,然后利用分类讨论的方法即可求得点M 的坐标; ②根据题意,构造一个圆,然后根据圆周角与圆心角的关系和∠AMB 不小于60°,即可求得t 的取值范围.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用分类讨论和数形结合的思想解答. 27.【答案】不可能 【解析】解:(1)①若ON 过点D ,则OA >AB ,OD >CD ,∴OA 2>AD 2,OD 2>AD 2,∴OA 2+OD 2>2AD 2≠AD 2,∴∠AOD ≠90°,这与∠MON=90°矛盾, ∴ON 不可能过D 点, 故答案为:不可能;②如图2中,∵EH ⊥CD ,EF ⊥BC ,∴∠EHC=∠EFC=90°,且∠HCF=90°, ∴四边形EFCH 为矩形, ∵∠MON=90°,∴∠EOF=90°-∠AOB ,在正方形ABCD 中,∠BAO=90°-∠AOB , ∴∠EOF=∠BAO , 在△OFE 和△ABO 中,,∴△OFE ≌△ABO (AAS ), ∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC , ∴CF=EF ,∴四边形EFCH 为正方形;③结论:OA=OE .理由:如图2-1中,连接EC ,在BA 上取一点Q ,使得BQ=BO ,连接OQ .∵AB=BC,BQ=BO,∴AQ=QC,∵∠QAO=∠EOC,∠AQO=∠ECO=135°,∴△AQO≌△OCE(ASA),∴AO=OE.(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=S△OBG,∴=()2=,∴OP=1,∴S△POG=OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=4,∴b=,∴S△OBG=ab=a==,∴当a2=2时,△OBG有最大值1,此时S△PKO=S△OBG=,∴四边形PKBG的最大面积为1+1+=.∴当BO为时,四边形PKBG的面积最大,最大面积为.(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;③结论:OA=OE.如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.证明△AQO ≌△OCE(ASA)即可.(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△OBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反中学数学一模模拟试卷一、选择题(本大题共8小题,共24分)28.2的算术平方根是()A. ±√2B. √2C. −√2D. 229.下列运算正确的是()A. a3⋅a3=2a6B. a3+a3=2a6C. (a3)2=a6D. a6⋅a2=a330.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. 18×104B. 1.8×104C. 0.18×106D.1.8×10531.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.32.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是233.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. 20%B. 25%C. 50%D. 62.5%34.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A. −6B. −5C. −4D. −335.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. 2√35B. √55C. 3√35D. 2√55二、填空题(本大题共8小题,共24分)36.-5的相反数是______.37.分解因式:4a2-4a+1=______.38.若√x−2在实数范围内有意义,则x的取值范围为______.39.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.40.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.41.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.42.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.43.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)44.计算|-6|+(-2)3+(√7)045.化简:(1−3a )÷a−3a246.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)47.解不等式组{4x+2<x+42x>1−x48.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?49.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.50.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?51.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:√2=1.41,√3=1.73)52.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(√6,0)与点B(0,-√2),点D在劣弧OA⏜上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.53.如图,在平面直角坐标系中,二次函数y=ax2+bx-√3的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.54.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在。
天津市 2017 年中考数学试题含答案2017 年天津市初中毕业生学业考试试卷数学一、选择题:1. 计算的结果等于()A.2B.C.8D.2.的值等于()A B.C.D.3. 在一些美术字中,有的汉子是轴对称图形. 下面 4 个汉字中,可以看作是轴对称图形的是()4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017 年 4 月末,累计发放社会保障卡12630000 张. 将 12630000 用科学记数法表示为()A.B.C.D.5. 右图是一个由 4 个相同的正方体组成的立体图形,它的主视图是()6. 估计的值在()A.4和 5 之间B. 5 和 6 之间 C. 6 和 7 之间D. 7 和 8 之间7. 计算的结果为()A.1B. C.D.8. 方程组的解是()A.B. C.D.9. 如图,将绕点顺时针旋转得,点的对应点恰好落在延长线上,连接.下列结论一定正确的是()A.B. C.D.10. 若点,,在反比例函数的图象上,则的大小关系是()A.B. C.D.11. 如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是()A.B. C.D.12. 已知抛物线与轴相交于点(点在点左侧),顶点为. 平移该抛物线,使点平移后的对应点落在轴上,点平移后的对应点落在轴上,则平移后的抛物线解析式为()A.B. C.D.二、填空题13.计算的结果等于.14.计算的结果等于.15.不透明袋子中装有 6 个球,其中有5 个红球、1 个绿球,这些球除颜色外无其他差别. 从袋子中随机取出1 个球,则它是红球的概率是. 216.若正比例函数(是常数,)的图象经过第二、四象限,则的值可以是( 写出一个即可 ). 217.如图,正方形和正方形的边长分别为 3 和 1,点分别在边上,为的中点,连接,则的长为. w18. 如图,在每个小正方形的边长为 1 的网格中,点均在格点上.(1)的长等于;(2)在的内部有一点,满足,请在如图所示的网格中,用无刻度的...直尺,画出点,并简要说明点的位置是如何找到的(不要求证明).三、解答题19. 解不等式组①②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图② . 请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21. 已知是⊙的直径,是⊙的切,,交⊙于点,是上一点,延交⊙于点.(1)如①,求和的大小;(2)如②,当,求的大小.22. 如,一艘海位于灯塔的北偏方向,距离灯塔120 海里的,它沿正南方向航行一段后,到达位于灯塔的南偏方向上的,求和的(果取整数).参考数据:,取.23. 用复印文件,在甲复印店不管一次复印多少,每收0.1 元. 在乙复印店复印同的文件,一次复印数不超20 ,每收 0.12元;一次复印数超20 ,超部分每收0.09 元.在同一家复印店一次复印文件的数(非整数).(1)根据意,填写下表:一次复印数()5102030⋯甲复印店收(元)2⋯乙复印店收(元)⋯(2)在甲复印店复印收元,在乙复印店复印收元,分写出关于的函数关系式;(3)当,客在哪家复印店复印花少?明理由.24. 将一个直角三角形纸片放置在平面直角坐标系中,点上的一点(点不与点重合),沿着折叠该纸片,得点(1)如图①,当点在第一象限,且满足时,求点(2)如图②,当为中点时,求的长;(3)当时,求点的坐标(直接写出结果即可).,点的对应点的坐标;. 2,点.是边25. 已知抛物线(是常数)经过点.(1)求该抛物线的解析式和顶点坐标;(2)为抛物线上的一个动点,关于原点的对称点为.①当点落在该抛物线上时,求的值;②当点落在第二象限内,取得最小值时,求的值.。
2017 年滨海新区初中毕业生学业考试模拟(一)
第Ⅰ卷
注意事项:
1. 每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动, 用橡皮擦干净后,再选涂其他答案标号的信息点。
2. 本卷共12题,共36分。
一、选择题: 1.计算 (-5)
×(-1) 的结果等于( ) A.5 B.5 C.1 D.1 2. 2 cos 30° 的值等于( ) A.
21 B.3 C.1 D.23
3.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是( )
4.据中国绿色时报3月30日报道,去年秋冬季造林,我市共完成238000 亩.将238000用科学记数法表示,应为( )
A.2.38×105
B.0.238×106
C.23.8×104
D.238×103
5.如图,是由5个相同的正方体组成的立体图形,从上面观察这个立体图形,得到的平面图形是( )
6.方程
12123=-+-x
x 的解为( ) A.-1 B.1 C.4 D.5 7.计算3
2
827⨯
-的结果是( ) A.3 B.
334 C.3
3
5 D.32 8.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心O.若∠B=25°,则∠C=( )
A.20°
B.25°
C.40°
D.50°
9.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a,b的值分别为( )
A.1,3
B.1,2
C.2,1
D.1,1
k(k>0)的图象上,则且a、b、c的大小关系是( ) 10.已知点A(-3,a)、B(-1,b)、C(2,c)在反比例函数y=
x
A.a>b>c
B.b>a>c
C.c>b>a
D.c>a>b
11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C/处,BC交AD于点E,则线段AE的长为( )
A.2.25
B.3
C.3.75
D.7.5
12.已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是抛物线的顶点,若y1>y2>y0,则x0的取值范围是( )
A.x0>-5
B.x0>-1
C.-5<x0<1
D.-2<x0<3
第Ⅱ卷
二、填空题:
13.计算x2∙x的结果等于__________.
14.计算)1
(-
+的结果等于__________.
3
3
)(
1
15.已知一次函数的图象经过两个点(-1,2)和(-3,4),则这个一次函数的解析式为__________.
16.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为_________.
17.△ABC是边长为18的正三角形,点D、E分别在边AB、BC上,且BD=BE.若四边形DEFG是边长为6的正方形时,则点F到AC的距离等于__________.
18.如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.
(Ⅰ)CD的长等于__________;
(Ⅱ)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).
三、解答题:
19.(本小题8分)解不等式组:
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得__________;
(Ⅱ)解不等式②,得__________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为__________.
20.(本小题8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5 棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图①)和条形图(如图②).
回答下列问题:
(Ⅰ)补全条形统计图;
(Ⅱ)写出这20名学生每人植树量的众数、中位数;
(Ⅲ)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵.
21.(本小题10分)已知AB,AC是⊙O的两条弦,且AB⊥AC,AB=AC=6,点D在⊙O上,连接AD,BD,CD.
(Ⅰ)如图①,若AD经过圆心O,求BD,CD的长;
(Ⅱ)如图②,若∠BAD=2∠DAC,求BD,CD的长.
22.(本小题10分)如图,从A地到B地的公路需经过C地,图中AC=50km,CAB=250,CBA=450,因城市规划的需要,将在A,B两地之间修建一条笔直的公路.
(Ⅰ)求改直的公路AB的长;
(Ⅱ)问公路改直后比原来缩短了多少千米?
(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,2取1.414.)(结果保留小数点后一位)
23.(本小题10分)服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元.
(Ⅰ)设购进甲种服装x件,试填写下表:
表二:
(Ⅱ)给出能够获得最大利润的进货方案,并说明理由.
24.(本小题10分)如图,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横
坐标为t.
(Ⅰ)当t=2时,求点M的坐标;
(Ⅱ)设△BCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.
25.(本小题10分)已知抛物线的解析式为y=0.25x2-0.5x+0.25,P是抛物线上的一个动点,R(1,1)是抛物线对称轴上的一点.
(Ⅰ)求抛物线的顶点及与y轴交点的坐标;
(Ⅱ)1是过点(0,-1)且平行于x轴的直线,l与抛物线的对称轴的交点为N,PM=MN,垂足为点M,连接PR,RM. (ⅰ)当△RPM是等边三角形时,求P点的坐标;
(ⅱ)求证:PR=PM.
2017 年滨海新区初中毕业生学业考试模拟(一)数学参考答案
一、选择题:
(1) A (2) B (3) B (4) A (5) D (6) C (7) C (8) C (9) D (10) D (11) A (12) B。