3高层地震作用
- 格式:ppt
- 大小:7.99 MB
- 文档页数:82
第3章 高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030⨯,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。
已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。
已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。
为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。
解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=⨯==222210m s kN 62.19.145.0T w ⋅=⨯=(2)风荷载体型系数:对于矩形平面,由附录1可求得80.01=s μ57040120030480L H 0304802s .....-=⎪⎭⎫ ⎝⎛⨯+-=⎪⎭⎫ ⎝⎛+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。
脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =ϕ,i H 为第i 层标高;H 为建筑总高度。
则由式(3.2.8)可求得风振系数为:HH 478050211H H 11iz i z ⋅⨯+=⋅+=+=μμξνμϕνξβ.. z z z(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:()z z z z ....)z (q βμβμ6624=40×570+80×450=按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。
第3章 高层建筑结构的荷载和地震作用高层建筑结构主要承受竖向荷载和和水平荷载。
恒荷载 风荷载 1) 竖向荷载 2)水平荷载活荷载 地震作用 本章主要内容z 竖向荷载(简介) z 风荷载(重点)z 地震作用(工程结构抗震课介绍此部分内容) 与多层建筑结构有所不同,高层建筑结构:z 竖向荷载效应远大于多层建筑结构;z 水平荷载的影响显著增加,成为其设计的主要因素; z 对高层建筑结构尚应考虑竖向地震的作用。
3.1 竖向荷载3.1.1 恒荷载1)恒荷载是指各种结构构件自重和找平层、保温层、防水层、装修材料层、隔墙、幕墙及其附件、固定设备及其管道等重量,其标准值可按构件尺寸、和材料密度(单位体积或面积的自重)计算确定。
2)材料容重可从《荷载规范》查取;固定设备由相关专业提供。
3.1.2 活荷载 1. 楼面活载1)高层建筑楼面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可按《荷载规范》的规定取用。
2)在荷载汇集及内力计算中,应按未经折减的活荷载标准值进行计算,楼面活荷载的折减可在构件内力组合时进行。
2. 屋面活载1)屋面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可按《荷载规范》的规定取用。
2)有些情况下,应考虑屋面直升机平台的活荷载:(优于五星级酒店的是,七星级酒店将提供秘书式的“管家服务”,辟有直升机停机坪,用直升机和“大奔”接送客人。
)3. 屋面雪荷载1)屋面水平投影面上的雪荷载标准值k s ,应按下式计算:0r k s s μ= (3.1.1)式中:0s 为基本雪压,系以当地一般空旷平坦地面上统计所得50年一遇最大积雪的自重确定,按《荷载规范》取用;μr为屋面积雪分布系数,屋面坡度α≤25°时,μr取1.0,其它情况可按《荷载规范》取用。
2)雪荷载的组合值系数可取0.7;频遇值系数可取0.6;准永久值系数按雪荷载分区Ⅰ、Ⅱ和Ⅲ的不同,分别取0.5、0.2和0。
3)雪荷载不应与屋面均布活荷载同时组合。
小学科学3地震的成因及作用地震是地壳中由于地球内部构造变动引起的一种地球动力学现象。
地震的成因主要是地球内部的地壳运动、地壳板块运动以及地壳变形等因素的综合作用。
地震的作用则包括地质灾害、地壳形态的变化、岩石变形研究等。
地震的成因可以归结为以下几个因素:1.地壳运动:地壳处在动态平衡状态,但在地球内部的构造变动作用下,地壳中的应力不断积累,直到超过岩石的抗压强度时,就会发生地震。
地壳运动主要是由于板块运动引起的,地球外层被分为许多大板块,这些板块互相碰撞、拆离、移动等,导致地壳大面积的应力积累和释放。
2.破裂断裂:地壳中的岩石在长期的压力下,会逐渐发生应变和形变,当这种应变超过岩石的破裂极限时,岩石就会发生破裂、断裂,释放出巨大的能量,引起地震。
破裂断裂是地震的重要成因之一,它使得地壳中的应力得以释放。
3.地震波:地壳发生地震时,会产生地震波,地震波以震源为中心,以球形向四周传播。
地震波分为P波、S波和表面波等几种类型,它们以不同的方式传播,造成了地震的传播过程。
4.岩浆活动:地球的内部存在着火山活动和岩浆运动,这些活动会引起地震。
由于岩浆上升时的巨大压力和磨擦力,会导致地壳发生破裂和断裂,从而引发地震。
地震的作用主要有以下几个方面:1.地质灾害:地震在地质灾害方面起着重要作用。
地震会引发山体滑坡、崩塌、地面塌陷、地裂缝等现象,给人类的生活和财产带来巨大的损失。
2.地壳形态的变化:地震使得地壳发生变形和错动,导致地面高低不平,形成了山脉、河流和湖泊等地理现象。
地壳形态的变化对于地理、地质等学科的研究具有很大的意义。
3.岩石变形研究:地震可以研究岩石的变形和弹性特性,从而推测地下岩石的构造和物质组成。
通过地震的研究,可以了解到地球内部的结构和物质特性,对于地球科学的发展具有重要意义。
4.地震预测和防灾减灾:通过对地震的研究,可以了解地震的规律和趋势,进而预测未来地震的可能发生位置和时间。
这对于地震的预警和人们的防灾减灾工作具有重要参考价值。
高层建筑抗震设计中的规范与实践在当今城市发展的进程中,高层建筑如雨后春笋般拔地而起。
这些高耸入云的建筑不仅是城市的地标,更是人们生活和工作的重要场所。
然而,地震作为一种不可预测的自然灾害,给高层建筑带来了巨大的威胁。
因此,高层建筑的抗震设计至关重要,它关系到人们的生命财产安全和城市的可持续发展。
一、高层建筑抗震设计的重要性地震是一种极具破坏力的自然现象,它会导致地面震动、建筑物摇晃、结构破坏甚至倒塌。
对于高层建筑来说,由于其高度较高、重心偏高、结构复杂等特点,在地震作用下更容易受到破坏。
一旦高层建筑在地震中发生倒塌,将会造成巨大的人员伤亡和财产损失。
例如,在一些地震频发的地区,如日本、智利等,曾经发生过因地震导致高层建筑倒塌的惨痛事故。
因此,为了保障高层建筑在地震中的安全性,必须进行科学合理的抗震设计。
二、高层建筑抗震设计的规范为了确保高层建筑的抗震性能,各国都制定了相应的抗震设计规范。
这些规范通常包括以下几个方面:1、地震设防烈度地震设防烈度是指一个地区在未来一定时期内可能遭受的地震最大烈度。
在高层建筑抗震设计中,根据建筑物所在地区的地震设防烈度,确定建筑物的抗震设防标准,以保证建筑物在地震作用下具有足够的承载能力和变形能力。
2、结构体系高层建筑的结构体系对抗震性能有着重要影响。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
不同的结构体系在抗震性能上各有优缺点,设计时应根据建筑物的高度、使用功能、地质条件等因素综合选择合适的结构体系。
3、抗震计算方法抗震计算方法是确定建筑物在地震作用下内力和变形的重要手段。
目前,常用的抗震计算方法包括底部剪力法、振型分解反应谱法、时程分析法等。
在设计过程中,应根据建筑物的复杂程度和地震设防烈度选择合适的计算方法。
4、构造措施构造措施是保证建筑物抗震性能的重要环节。
例如,在框架结构中,应设置足够的箍筋和纵筋,以提高柱子的抗震能力;在剪力墙结构中,应保证墙体的厚度和配筋,以增强墙体的抗震性能;在节点处,应采取加强措施,以保证节点的可靠性。