2020年浙教版九年级数学上册第3章 圆的基本性质单元检测卷(含答案)
- 格式:doc
- 大小:689.00 KB
- 文档页数:15
2020-2021学年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷一.选择题(共10小题)1.下面说法正确的是()A.一条路已经修了80%千米B.半径是2厘米的圆,它的周长和面积相等C.某班的出勤率达到101%D.某校的男同学人数比女同学人数多10%2.半径为10的⊙O,圆心在直角坐标系的原点O,则点P(8,6)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定3.如图,在直角坐标系中,点A(0,3)、点B(4,3)、点C(0,﹣1),则△ABC外接圆的半径为()A.2B.3C.4D.4.如图,AB是⊙O的直径,C、D为⊙O上的点,弧AD=弧CD,若∠CAB=40°,则∠CAD=()A.30°B.40°C.50°D.25°5.如图,已知A、B、C、D、E是⊙O上的五个点,圆心O在AD上,∠BCD=110°,则∠AEB的度数为()A.70°B.35°C.40°D.20°6.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个7.如图,扇形OAB中,OB=3,∠AOB=100°,点C在OB上,连接AC,点O关于AC 的对称点D刚好落在上,则的长是()A.B.C.D.8.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)9.如图,半径为R的⊙O的弦AC=BD,且AC⊥BD于E,连结AB、AD,若AD=,则半径R的长为()A.1B.C.D.10.如图,点C是半圆O的中点,AB是直径,CF⊥弦AD于点E,交AB于点F,若CE =1,EF=,则BF的长为()A.B.1C.D.二.填空题(共10小题)11.已知弦AB把圆周分成1:9两部分,则弦AB所对圆心角的度数为.12.如图,⊙O的半径为1,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则的长为.13.如图,⊙O是△ABC的外接圆,∠A=60°,BC=6,则⊙O的半径是.14.若过⊙O内一点M的最长弦为10,最短弦为6,则OM的长为.15.如图,已知AB为⊙O的直径,AB=AC,⊙O交BC于D,DE⊥AC于E,⊙O的半径为2.5,AD=3,则DE的长为.16.在平面直角坐标系中有A,B,C三点,A(1,3),B(3,3),C(5,1).现在要画一个圆同时经过这三点,则圆心坐标为.17.如图,四边形ABCD内接于⊙O,AC平分∠BAD.若∠BDC=40°,则∠BCD的度数为.18.正六边形的边长为2,则边心距为.19.平面直角坐标系中,点A的坐标为(,1),以原点O为中心,将点A逆时针旋转150o得到点A′,则点A′的坐标为.20.已知一个扇形的圆心角是60°,面积是6π,那么这个扇形的弧长是.三.解答题(共7小题)21.如图,在⊙O中.(1)若=,∠ACB=80°,求∠BOC的度数;(2)若⊙O的半径为13,且BC=10,求点O到BC的距离.22.如图,已知⊙O与⊙O内一定点P,请用尺规作图法求作经过点P的最短弦AB.(保留作图痕迹,不写作法)23.如图,正方形ABCD内接于⊙O,P为上一点,连接DE,AE.(1)∠CPD=°;(2)若DC=4,CP=,求DP的长.24.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠CBD=30°,求图中阴影部分的面积.25.如图,Rt△ABC中,∠C=90°,AB=4,在BC上取一点D,连结AD,作△ACD 的外接圆⊙O,交AB于点E.张老师要求添加条件后,编制一道题目,并解答.(1)小明编制题目是:若AD=BD,求证:AE=BE.请你解答.(2)在小明添加条件的基础上请你再添加一条线段的长度,编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)26.如图,图1等腰△BAC与等腰△DEC,共点于C,且∠BCA=∠ECD,连结BE、AD,若BC=AC、EC=DC.(1)求证:BE=AD;(2)若将等腰△DEC绕点C旋转至图2、3、4情况时,其余条件不变,BE与AD还相等吗?为什么?(请你用图2证明你的猜想)27.如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E.(1)若∠BAC=40°,则∠ADC=°;(2)求证:∠BAC=2∠DAC;(3)若AB=10,CD=5,求BC的值.参考答案与试题解析一.选择题(共10小题)1.解:A:根据百分数意义,百分数表示一个数是另一个数的百分之几,不能表示具体数量,无单位,故错误;B:圆的周长单位是厘米,面积单位是平方厘米,两者之间无法比较大小,故错误;C:出勤率最高为100%,不可能更大了,因此选项错误;故选:D.2.解:∵点P(8,6),∴OP==10,则OP=r,∴点P在⊙O上,故选:A.3.解:连接AB、BC,如图,∵A(0,3)、B(4,3),∴AB⊥y轴,∴∠BAC=90°,∴BC为△ABC外接圆的直径,∵AC=3+1=4,AB=4,∴BC==4,∴△ABC外接圆的半径为2.故选:D.4.解:连接OD、OC,如图,∵OA=OC,∴∠OCA=∠OAC=40°,∴∠AOC=180°﹣40°﹣40°=100°,∵=,∴∠AOD=∠COD=∠AOB=50°,∴∠CAD=∠COD=25°.故选:D.5.解:如图,连接DE,∵四边形BCDE是⊙O的内接四边形,∴∠BCD+∠BED=180°,∵∠BCD=110°,∴∠BED=70°,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB=∠AED﹣∠BED=90°﹣70°=20°,故选:D.6.解:①若m>n,则ma2>nb2,当a=0时错误;故不符合题意;②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故不符合题意;③有两个角互余的三角形一定是直角三角形,故符合题意;④各边都相等,各角也相等的多边形是正多边形,故不符合题意.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故不符合题意;故选:A.7.解:连接OD,∵点D是点O关于AC的对称点,∴AD=OA,∵OA=OD,∴OA=OD=AD,∴△OAD为等边三角形,∴∠AOD=60°,∴∠BOD=100°﹣60°=40°,∴的长==π,故选:B.8.解:如图,由题意A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',观察图象可知A′(4,﹣3).故选:B.9.解:∵弦AC=BD,∴,∴,∴∠ABD=∠BAC,∴AE=BE;连接OA,OD,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD=R,∵AD=,∴R=1,故选:A.10.解:如图,连接AC,BC,OC,过点B作BH⊥CF交CF的延长线于H,设OC交AD 于J.∵=,∴AC=BC,OC⊥AB,∵AB是直径,∴ACB=90°,∴∠ACJ=∠CBF=45°,∵CF⊥AD,∴∠ACF+∠CAJ=90°,∠ACF+∠BCF=90°,∴∠CAJ=∠BCF,∴△CAJ≌△BCF(ASA),∴CJ=BF,AJ=CF=1+=,∵OC=OB,∴OJ=OF,设BF=CJ=x.OJ=OF=y,∵∠AEC=∠H=90°,∠CAE=∠BCH,CA=CB,∴△ACE≌△CBH(AAS),∴EC=BH=1,∵∠ECJ=∠FCO,∠CEJ=∠COF=90°,∴△CEJ∽△COF,∴==,∴==,∴EJ=,∵BF=CJ,∠H=∠CEJ,∠CJE=∠BFH,∴△BHF≌△CEJ(AAS),∴FH=EJ=,∵AE∥BH,∴=,∴=,整理得,10x2+7xy﹣6y2=0,解得x=y或x=﹣y(舍弃),∴y=2x,∴=,解得x=或﹣(舍弃).∴BF=,故选:A.二.填空题(共10小题)11.解:∵弦AB把圆周分成1:9两部分,∴弦AB所对圆心角的度数=×360°=36°.故答案为36°.12.解:由圆周角定理得,2∠BAD=∠BOD,∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°﹣∠BAD,∴180°﹣∠BAD=2∠BAD,解得,∠BAD=60°,∴∠BOD=2∠BAD=120°,∴的长==π,故答案为:π.13.解:作直径CD,如图,连接BD,∵CD为直径,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半径是6.故答案为6.14.解:由已知可知,最长的弦是过M的直径AB,最短的是垂直平分直径的弦CD,已知AB=10,CD=8,则OD=5,MD=4,由勾股定理得OM=3.故答案为:3.15.解:∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AC=5,在Rt△ADC中,∵AC=5,AD=3,∴CD==4,∵×DE×AC=×AD×CD,∴DE==.故答案为16.解:∵A(1,3),B(3,3),C(5,1)不在同一直线上∴经过点A,B,C可以确定一个圆∴该圆圆心必在线段AB的垂直平分线上∴设圆心坐标为M(2,m)则点M在线段BC的垂直平分线上∴MB=MC由勾股定理得:=∴1+m2﹣6m+9=9+m2﹣2m+1∴m=0∴圆心坐标为M(2,0)故答案为:(2,0).17.解:∵∠BDC=40°,∵∠BDC与∠BAC在BC的同侧,∴∠BAC=40°,∵AC平分∠BAD,∴∠BAD=2∠BAC=80°,∵四边形ABCD内接于⊙O,∴∠BCD+∠BAD=180°;∴∠BCD的度数为100°,故答案为:100°.18.解:如图所示:连接OA、OB,作OC⊥AB于C,则∠OCA=90°,AC=BC=AB=1,∠AOB=60°,∴∠AOC=30°,∴OC=AC=;故答案为:.19.解:如图,过点A作AE⊥x轴于E.∵A(,1),∴OE=,AE=1,∴tan∠AOE==,∴∠AOE=30°,∴OA=OA′=2OE=2,∵∠AOA′=150°,∴点A′在x轴上,∴A′(﹣2,0),故答案为(﹣2,0).20.解:设扇形的半径为r,由题意,=6π,∴r=6,∴扇形的弧长==2π,故答案为2π.三.解答题(共7小题)21.解:(1)∵=,∴∠ABC=∠ACB=80°,∴∠A=180°﹣80°﹣80°=20°,∴∠BOC=2∠A=40°;(2)作OH⊥BC于H,如图,则BH=CH=BC=5,在Rt△OBH中,OH===12,即点O到BC的距离为12.22.解:如图所示:线段AB即为所求;23.解:(1)如图,连接BD,∵正方形ABCD内接于⊙O,P为上一点,∴∠DBC=45°,∵∠CPD=∠DBC,∴∠CPD=45°.故答案为:45;(2)如图,作CH⊥DP于H,∵CP=2,∠CPD=45°,∴CH=PH=2,∵DC=4,∴DH===2,∴DP=PH+DH=2+2.24.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,又∵OC为半径,∴AE=ED,(2)解:连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∵AB=6,∴BD=3,AD=3,∵OA=OB,AE=ED,∴,∴S阴影=S扇形AOD﹣S△AOD=﹣=3π﹣.25.(1)证明:连结DE,∵∠C=90°,∴AD为直径,∴DE⊥AB,∵AD=BD,∴AE=BE;(2)答案不唯一.①第一层次:若AC=4,求BC的长.答案:BC=8;②第二层次:若CD=3,求BD的长.答案:BD=5;③第三层次:若CD=3,求AC的长.设BD=x,∵∠B=∠B,∠C=∠DEB=90°,∴△ABC~△DBE,∴=,∴=,∴x=5,∴AD=BD=5,∴AC==4.26.(1)证明:∵∠BCA=∠ECD,∴∠BCA﹣∠ECA=∠ECD﹣∠ECA,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD;(2)解:图2、图3、图4中,BE=AD,理由如下:∵∠BCA=∠ECD,∴∠BCA﹣∠ECA=∠ECD﹣∠ECA,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD.27.(1)解:∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵四边形ABCD是⊙O的内接四边形,∴∠ADC=180°﹣∠BAC=110°,故答案为:110;(2)证明:∵BD⊥AC,∴∠AEB=∠BEC=90°,∴∠ACB=90°﹣∠CBD,∵AB=AC,∴∠ABC=∠ACB=90°﹣∠CBD,∴∠BAC=180°﹣2∠ABC=2∠CBD,∵∠DAC=∠CBD,∴∠BAC=2∠DAC;(3)解:过A作AH⊥BC于H,∵AB=AC,∴∠BAH=∠CAH=CAB,CH=BH,∵∠BAC=2∠DAC,∴∠CAG=∠CAH,过C作CG⊥AD交AD的延长线于G,∴∠G=∠AHC=90°,∵AC=AC,∴△AGC≌△AHC(AAS),∴AG=AH,CG=CH,∵∠CDG=∠ABC,∴△CDG∽△ABH,∴==,∴=,设BH=k,AH=2k,∴AB==k=10,∴k=2,∴BC=2k=4.。
2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷一.选择题(共10小题)1.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定2.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5B.C.2D.3.我国著名的引滦工程的主干线输水管的截面如图所示,直径为2.6米,水最深为2.5米,则水面AB的宽为()A.0.9 米B.1.0 米C.1.1米D.1.2米4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y5.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°6.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片7.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°8.如图四个圆形网案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,)D.(﹣,﹣)或(,)10.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.30°B.45°C.60°D.90°二.填空题(共8小题)11.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=度.12.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为.13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是cm.14.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为.15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为.16.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,若点D在AB上,则此时旋转角的大小为(用含α的式子表示).17.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O 分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2018的坐标为.三.解答题(共8小题)19.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.20.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.21.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.22.如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且=,连接AB,BC,CD.求证:△CDE≌△ABC.23.小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?24.如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是(直接写出结论,不必证明)25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).若△ABC和△A1B1C1关于原点O成中心对称图形,画出图形并写出△A1B1C1的各顶点的坐标.2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定【分析】根据图形,得两个小半圆的直径之和等于大半圆的直径,则根据圆周长公式,得二人所走的路程相等.【解答】解:设小明走的半圆的半径是R.则小明所走的路程是:πR.设小红所走的两个半圆的半径分别是:r1与r2,则r1+r2=R.小红所走的路程是:πr1+πr2=π(r1+r2)=πR.因而a=b.故选:A.【点评】本题考查了圆的认识,注意计算两个小半圆周长的时候,可以提取,则两个小半圆的直径之和是大半圆的直径.2.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5B.C.2D.【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【解答】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:C.【点评】本题考查的是垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.3.我国著名的引滦工程的主干线输水管的截面如图所示,直径为2.6米,水最深为2.5米,则水面AB的宽为()A.0.9 米B.1.0 米C.1.1米D.1.2米【分析】作OC⊥AB交圆于C,交AB于D,连接OA,根据勾股定理求出AD,根据垂径定理解答.【解答】解:作OC⊥AB交圆于C,交AB于D,连接OA,则OA=1.3,OD=1.2,由勾股定理得,AD==0.5,则AB=2AD=1.0(米),故选:B.【点评】本题考查的是垂径定理的应用,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y【分析】连接BC,根据圆周角定理求出∠B,根据平行线的性质,圆内接四边形的性质,三角形内角和定理计算即可.【解答】解:连接BC,由圆周角定理得,∠BAC=∠BOC=x°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣x°,∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠B=90°+x°,∵OA=OC,∴∠OCA=∠OAC=x°,∵AD∥OC,∴∠DAC=∠OCA=x°,∴∠ACD=180°﹣∠DAC﹣∠D,即y=180°﹣x°﹣(90°+x°)=90°﹣x°,∴x+y=90,故选:A.【点评】本题考查的是圆周角定理,圆心角、弧、弦的关系定理,掌握圆内接四边形的性质,圆周角定理是解题的关键.5.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°【分析】根据等腰三角形的性质、三角形的外角的性质计算,得到答案.【解答】解:∵OE=OD,DC=OE,∴DC=DO,∴∠C=∠DOC,∴∠ODE=2∠C,∵OD=OE,∴∠ODE=∠OED,∴∠OED=2∠C,∵∠BOE=∠C+∠OED,∴∠C+2∠C=72°,解得,∠C=24°,故选:A.【点评】本题考查的是圆周角定理、三角形的外角的性质,掌握等腰三角形的性质、三角形的外角的性质是解题的关键.6.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片【分析】根据旋转的定义来判断即可.【解答】解:骑自行车的人在前进的过程中没有发生旋转.故选:C.【点评】本题主要考查了生活中的旋转现象,解题的关键是要正确理解旋转的特征:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【分析】首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据对应点与旋转中心所连线段的夹角等于旋转角,可得旋转角的度数等于∠BAB1的度数,据此解答即可.【解答】解:∵∠B=35°,∠C=90°,∴∠BAC=180°﹣35°﹣90°=55°,∵点C,A,B1在同一条直线上,∴∠BAB1=180°﹣∠BAC=180°﹣55°=125°,即旋转角等于125°.故选:C.【点评】此题主要考查了旋转的性质和应用,要熟练掌握,解答此题的关键是要明确:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.8.如图四个圆形网案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.【分析】观察图形,从图形的性质可以确定旋转角,然后进行判断即可得到答案.【解答】解:A图形顺时针旋转120°后,能与原图形完全重合,A不正确;B图形顺时针旋转90°后,能与原图形完全重合,B不正确;C图形顺时针旋转180°后,能与原图形完全重合,C不正确;D图形顺时针旋转72°后,能与原图形完全重合,D正确,故选:D.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,)D.(﹣,﹣)或(,)【分析】根据题意只研究点B的旋转即可,OB与x轴夹角为45°,分别按顺时针和逆时针旋转75°后,与y轴负向、x轴正向分别夹角为30°,由此计算坐标即可.【解答】解:由点B坐标为(2,﹣2)则OB=2,且OB与x轴、y轴夹角为45°当点B绕原点逆时针转动75°时,OB1与x轴正向夹角为30°则B1到x轴、y轴距离分别为,,则点B1坐标为(,);同理,当点B绕原点顺时针转动75°时,OB1与y轴负半轴夹角为30°,则B1到x轴、y轴距离分别为,,则点B1坐标为(﹣,﹣);故选:C.【点评】本题为坐标旋转变换问题,考查了图形旋转的性质、特殊角锐角三角函数值,解答时注意分类讨论和确定象限符号.10.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.30°B.45°C.60°D.90°【分析】根据旋转的性质,观察图形,中心角是由四个角度相同的角组成,结合周角是360°求解.【解答】解:∵中心角是由四个角度相同的角组成,∴旋转的角度是360°÷4=90°.故选:D.【点评】本题把旋转的性质和一个周角是360°结合求解.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.二.填空题(共8小题)11.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=25度.【分析】解答此题要作辅助线OB,根据OA=OB=BD=半径,构造出两个等腰三角形,结合三角形外角和内角的关系解决.【解答】解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°.【点评】此题主要考查了等腰三角形的基本性质,以及三角形内角和定理,难易程度适中.12.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为或.【分析】分AB、CD在圆心O的两侧、AB、CD在圆心O的同侧两种情况,根据垂径定理、勾股定理计算即可.【解答】解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理:OQ=4,则PQ=OQ+OP=7,∴PC===,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,∴PC===;故答案为:或.【点评】本题考查了勾股定理和垂径定理以及分类讨论,掌握垂径定理和勾股定理,灵活运用分类讨论思想是解题的关键.13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是37.5cm.【分析】根据切线的性质和已知条件证出O、D、C共线,根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【解答】解:如图,设点O为圆环的圆心,连接OA和OD,∵AB是内圆O的切线,∴AB⊥OD,∴∠ADO=90°,∵CD⊥AB,∴∠ADC=90°,∴∠ODC=180°,∴O、D、C共线,∴OC⊥AB,∴AD=AB=30cm,∴设OA为rcm,则OD=(r﹣15)cm,根据题意得:r2=(r﹣15)2+302,解得:r=37.5.∴这个摆件的外圆半径长为37.5cm;故答案为:37.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.14.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为或2.【分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OC,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OC,∵CE===2,∴边CD===2,故答案为或2.【点评】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为105°.【分析】连结AC并且延长至E,根据旋转的性质和平角的定义,由角的和差关系即可求解.【解答】解:如图:连结AC并且延长至E,∠DCE=180°﹣∠DCB﹣∠ACB=105°.故灰斗柄AB绕点C转动的角度为105°.故答案为:105°.【点评】考查了生活中的旋转现象,本题关键是由角的和差关系得到∠DCE的度数.16.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,若点D在AB上,则此时旋转角的大小为2α(用含α的式子表示).【分析】由直角三角形的性质得出∠B=90°﹣α,由旋转的性质得出CD=CB,由等腰三角形的性质得出∠CDB=∠B=90°﹣α,由三角形内角和定理即可得出答案.【解答】解:∵∠ACB=90°,∠A=α,∴∠B=90°﹣α,由旋转的性质得:CD=CB,∴∠CDB=∠B=90°﹣α,∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣2(90°﹣α)=2α;故答案为:2α.【点评】本题考查了旋转的性质、等腰三角形的性质、直角三角形的性质等知识;熟练掌握旋转的性质和等腰三角形的性质是解题的关键.17.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转36度构成的.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.利用基本图形和旋转次数,即可得到旋转的角度.【解答】解:根据图形可得:这是一个由字母“Y”绕着中心连续旋转9次,每次旋转36度角形成的图案.故答案为:36.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O 分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2018的坐标为(10090,4).【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求得B2018的坐标.【解答】解:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,且B2C2=4,∴B4的横坐标为:2×10=20,∴点B2018的横坐标为:1009×10=10090.∴点B2018的纵坐标为:4.故点B2018的坐标为(10090,4).故答案为:(10090,4).【点评】此题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.三.解答题(共8小题)19.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.【分析】先作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆即可.【解答】解:这样的圆能画2个.如图:作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆,则⊙O1和⊙O2为所求圆.【点评】本题考查了圆的认识,解题的关键是找出圆心O1和O2.20.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.【分析】(1)由圆周角定理得出∠C=90°,再由垂径定理得出∠OEB=∠C=90°,即可得出结论;(2)令⊙O的半径为r,由垂径定理得出BE=CE=BC=4,由勾股定理得出方程,解方程求出半径,即可得出⊙O的直径.【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD∥AC;(2)解:令⊙O的半径为r,根据垂径定理可得:BE=CE=BC=4,由勾股定理得:r2=42+(r﹣3)2,解得:r=,所以⊙O的直径为.【点评】本题考查了垂径定理、勾股定理、圆周角定理;熟练掌握圆周角定理和垂径定理,由勾股定理得出方程是解决问题(2)的关键.21.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.【分析】(1)作半径OD⊥AB于C,连接OB,根据勾股定理计算;(2)分水位上升到圆心以下、水位上升到圆心以上两种情况,根据垂径定理、勾股定理计算即可.【解答】解:(1)作半径OD⊥AB于C,连接OB,由垂径定理得:BC=AB=0.3,在Rt△OBC中,OC==0.4CD=0.5﹣0.4=0.1,此时的水深为0.1米;(2)当水位上升到圆心以下时水面宽0.8 米则OC==0.3,水面上升的高度为:0.3﹣0.2=0.1米;当水位上升到圆心以上时,水面上升的高度为:0.4+0.3=0.7米,综上可得,水面上升的高度为0.1米或0.7米.【点评】本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.22.如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且=,连接AB,BC,CD.求证:△CDE≌△ABC.【分析】连接DF,根据圆内接四边形的性质得到∠CAE=∠DFE、∠B=∠CDE,根据圆心角、弧、弦的关系定理得到BC=DE,根据全等三角形的判定定理证明即可.【解答】证明:∵四边形ABCD内接于⊙O,∴∠ABC=∠CDE,∵=,∴∠BAC=∠DCE,在△CDE和△ABC中,,∴△CDE≌△ABC(AAS).【点评】本题考查的是圆心角、弧、弦的关系、全等三角形的判定、等腰三角形的性质,掌握圆心角、弧、弦的关系定理是解题的关键.23.小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?【分析】利用分针与时针的速度关系,列出方程求出时针走的圆心角的度数,再由时针走1°相当于2分钟,即可求出准确时间.【解答】解:分针的速度是时针速度的12倍,设时针走了x°,则分针走了12x°,∵小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),且时针与分针刚好重合在一起.∴12x°﹣x°=120°,解得x°=°,∵时针走1°相当于2分钟,∴时针走过的分钟为°×2=21分.∴这时准确的时间为4时21分.【点评】本题主要考查了生活中的旋转现象,解题的关键是求出时针走了多少度.24.如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是OC=OM﹣ON(直接写出结论,不必证明)【分析】(1)作∠OCG=60°,交OA于G,证明△OCG是等边三角形,得出OC=OG,∠CGM=60°=∠CON,证出∠OCN=∠GCM,证明△OCN≌△GCM(ASA),得出ON=GM,即可得出结论;(2)作∠OCG=60°,交OA于G,证明△OCG是等边三角形,得出OC=OG,∠CGM=60°=∠CON,证出∠OCN=∠GCM,证明△OCN≌△GCM(ASA),得出ON=GM,即可得出结论.【解答】(1)证明:作∠OCG=60°,交OA于G,如图1所示:∵∠AOB=120°,OC平分∠AOB,∴∠CON=∠COG=60°,∴∠OCG=∠COG,∴OC=CG,∴△OCG是等边三角形,∴OC=OG,∠CGM=60°=∠CON,∵∠MCN=∠OCG=60°,∴∠OCN=∠GCM,在△OCN和△GCM中,,∴△OCN≌△GCM(ASA),∴ON=GM,∵OG=OM+GM,∴OC=OM+ON;(2)解:OC=OM﹣ON,理由如下:作∠OCG=60°,交OA于G,如图2所示:∵∠AOB=120°,OC平分∠AOB,∴∠CON=∠COG=60°,∴∠CON=120°,∠OCG=∠COG,∴OC=CG,∴△OCG是等边三角形,∴OC=OG,∠CGO=60°,∴∠CGM=120°=∠CON,∵∠MCN=∠OCG=60°,∴∠OCN=∠GCM,在△OCN和△GCM中,,∴△OCN≌△GCM(ASA),∴ON=GM,∵OG=OM﹣GM,∴OC=OM﹣ON;故答案为:OC=OM﹣ON【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、旋转的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.【分析】(1)依据△ABC经过平移后得到的△A1B1C1,点C1的坐标为(4,0),即可得到顶点A1,B1的坐标;(2)依据△ABC和△A2B2C2关于原点O成中心对称图形,即可得出△A2B2C2的各顶点的坐标;(3)依据△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,即可得到△A3B3C3的各顶点的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求,顶点A1,B1的坐标分别为(2,2)和(3,﹣2);(2)如图所示,A2的坐标为(3,﹣5);B2的坐标为(2,﹣1);C2的坐标为(1,﹣3);(3)如图所示,△A3B3C3即为所求;A3的坐标为(5,3),B3的坐标为(1,2),C3的坐标为(3,1).【点评】本题主要考查平移变换和旋转变换,熟练掌握平移变换和旋转变换的定义是解题的关键.26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).若△ABC和△A1B1C1关于原点O成中心对称图形,画出图形并写出△A1B1C1的各顶点的坐标.【分析】根据关于原点成中心对称的图形横纵坐标都互为相反数即可得结论.【解答】解:如图所示:△A1B1C1即为所求作的图形.A1(3,﹣5),B1(2,﹣1),C1(1,﹣3).【点评】本题考查了旋转变换、中心对称图形,解决本题的关键是掌握中心对称图形的坐标特征.。
第3章圆的基本性质数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列命题:①等弧所对的圆周角相等;②平分弦的直径垂直于弦;③等边三角形的外心也是它的内心;④正五边形既是轴对称图形,也是中心对称图形.其中正确的命题是( )A.①③B.②④C.①②③D.①②③④2、如图,四边形中,.若.则外心与外心的距离是()A.5B.C.D.3、如图圆O是等边△ABC的外接圆,其半径为3. 则阴影部分的面积是()A. B. C. D.4、如图,在Rt△ABC中,∠C=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点C与点A重合得△DEA,AE交CB于点N.若AB=2 ,AC=4,则CN的长为()A. B. C. D.5、已知点P在圆O内,且OP=4,则圆O的半径可以是()A.2B.3C.4D.56、我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.若在△ABC中,AB=AC,BC=6,∠BAC=120°,则△ABC的最小覆盖圆的半径是()A.3B.C.2D.7、如图,在正方形网格中,每个小正方形的边长都是1,点A,B,C均在网格交点上,⊙O是的外接圆,则的值是()A. B. C. D.8、下列说法:①三点确定一个圆;②圆中最长弦是直径;③长度相等的弧是等弧;④三角形只有一个外接圆.其中真命题有()A.4个B.3个C.2个D.1个9、如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A按逆时针方向旋转到△AB'C'的位置,使得CC'∥AB,则∠BAB'=()A.30°B.35°C.40°D.50°10、在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A. B. C. D.11、如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BEB.C.OE=DED.∠DBC=90°12、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()</p>A.80°B.50°C.40°D.20°13、如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的面积为15πcm2,则sin∠ABC的值为()A. B. C. D.14、如图,点A,B,C都在⊙O上,若∠AOC=140°,则∠B的度数是()。
浙教版九年级数学上册第3章圆的基本性质单元测试卷题号一二三总分得分一、选择题(本大题共11小题,共33分)1.已知⊙O的半径为4cm,点A到圆心O的距离为3cm,则点A与⊙O的位置关系是()A. 点A在⊙O内B. 点A在⊙O上C. 点A在⊙O外D. 不能确定2.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A. 65°B. 35°C. 25°D. 15°3.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A. 80°B. 90°C. 100°D. 无法确定4.已知正六边形的边长为6,则它的边心距()A. 3√3B. 6C. 3D. √35.如图,☉O的半径为3,四边形ABCD内接于☉O,连接OB,OD,若∠BCD=∠BOD,则BD⌢的长为()π C. 2π D. 3πA. πB. 326.如图,在圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB等于()A. 36∘B. 60∘C. 72∘D. 108∘7.如图,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A. 5B. 7C. 9D. 118.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5∘,OC=4,CD的长为()A. 2√2B. 4C. 4√2D. 89.半径为3,圆心角为120°的扇形的面积是()A. 3πB. 6πC. 9πD. 12π10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A. 16πB. 12πC. 10πD. 8π11.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q.若MP+NQ= 14,AC+BC=18,则AB的长为()C. 13D. 16A. 9√2B. 907二、填空题(本大题共9小题,共35分)12.如图,⊙O的内接四边形ABCD中,∠BOD=140°,则∠A等于______°.13.正五边形每个外角的度数是______.14.在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为_______.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果AC⏜=CD⏜,则∠ACD的度数是______.16.有一张矩形的纸片,AB=3cm,AD=4cm,若以A为圆心作圆,并且要使点D在⊙A内,而点C在⊙A外,⊙A的半径r的取值范围是______.17.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.18.如图,在直角坐标系中,已知点A(−3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形1、2、3、4….则三角形2016的直角顶点坐标为______ .19.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD上的一个动点,当CD=6时,AP+BP的最小值为______.20.在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为______.三、解答题(本大题共4小题,共52分)21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)22.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD//BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.23.如图,AB是⊙O的直径,点C是圆上一点,连接CA,CB,过点O作弦BC的垂线,交BC⌢于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求AC⌢的长.24.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD//AC;(2)若BC=8,DE=3,求⊙O的直径.答案和解析1.【答案】A【解析】解:∵圆的半径是4cm,点A到圆心的距离是3cm,小于圆的半径,∴点A在圆内.故选A.根据点到圆心的距离与圆的半径大小的比较,确定点与圆的位置关系.本题考查的是点与圆的位置关系,点A到圆心的距离是3cm,比圆的半径4cm小,可以判断点A就在圆内.2.【答案】C【解析】【分析】∠BOC,求出∠BOC即可.根据圆周角定理:∠D=12本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.【解答】解:∵∠BOC=180°−∠AOC,∠AOC=130°,∴∠BOC=50°,∠BOC=25°,∴∠D=12故选:C.3.【答案】B【解析】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB= 90°.此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB与∠ACB是优弧AB所对的圆周角.【解析】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,=3√3,∴OG=OA⋅cos30°=6×√32故选:A.已知正六边形的边长为6,欲求边心距,可通过边心距、边长的一半和内接圆半径构造直角三角形,通过解直角三角形求解即可.此题主要考查正多边形的计算问题,属于常规题.解答时要注意以下问题:①熟悉正六边形和正三角形的性质;②作出半径和边心距,构造出直角三角形,利用解直角三角形的知识解答.5.【答案】C【解析】【分析】本题主要考查了弧长公式,圆内接四边形的性质,圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴BD⏜的长.故选C.【解析】【分析】本题考查了正多边形和圆的知识,题目中还用到了三角形的外角的性质及正多边形的性质等,比较简单.首先根据正五边形的性质得到AB=BC,∠ABC=108°,∠ACB=36°,最后利用三角形的外角的性质得到∠APB=∠PBC+∠ACB.【解答】解:∵五边形ABCDE是正五边形,∴∠ABC=108∘,BA=BC,∴∠ACB=36∘.同理∠PBC=36∘,∴∠APB=∠PBC+∠ACB=72∘.故选C.7.【答案】A【解析】【分析】本题考查垂径定理与勾股定理的综合应用,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.根据⊙O的半径为13,弦AB的长度是24,ON⊥AB,可以求得AN的长,再根据勾股定理求得ON的长.【解答】解:由题意可得,OA=13,∠ONA=90∘,AB=24,∴AN=1AB=12.在Rt△OAN中,ON=√OA2−AN2=√132−122=5.2故选A.8.【答案】C【解析】【分析】本题考查圆周角定理,垂径定理,等腰直角三角形的判定,勾股定理.先由圆周角定理求出∠BOC=45°,再由垂径定理得出∠OEC=90°,CD=2CE,则△OCE为等腰直角三角形,由勾股定理求出CE的长,即可得出CD长.【解答】解:∵∠A=22.5∘,∴∠BOC=2∠A=45∘,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,OC=2√2,∴CD=2CE=4√2.∴CE=√22故选C.9.【答案】A【解析】【分析】把已知数据代入S=nπR2,计算即可.360是解题的关键.本题考查的是扇形面积的计算,掌握扇形的面积公式:S=nπR2360【解答】=3π,解:半径为3,圆心角为120°的扇形的面积是:120π×32360故选A.10.【答案】D【解析】解:根据题意画图如下,在Rt△ABC中,AB=√AC2−BC2=√172−152=8,π⋅42=8π.则S半圆=12故选D.首先根据勾股定理求出AB的长,再根据半圆的面积公式解答即可.此题考查了勾股定理,用到的知识点是勾股定理以及圆的面积公式,关键是根据勾股定理求出半圆的半径.11.【答案】C【解析】解:连接OP,OQ,∵DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BC的中点,(AC+BC)=9,∴OH+OI=12∵MH+NI=AC+BC=18,MP+NQ=14,∴PH+QI=18−14=4,∴AB=OP+OQ=OH+OI+PH+QI=9+4=13,故选C.连接OP,OQ,根据DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q得到OP⊥AC,OQ⊥BC,(AC+BC)=9和从而得到H、I是AC、BC的中点,利用中位线定理得到OH+OI=12PH+QI,从而利用AB=OP+OQ=OH+OI+PH+QI求解.本题考查了中位线定理,解题的关键是正确的作出辅助线,题目中还考查了垂径定理的知识,难度不大.12.【答案】110【解析】【分析】根据圆周角定理求出∠C,根据圆内接四边形的性质计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.【解答】∠BOD=70°,解:由圆周角定理得,∠C=12∵四边形ABCD内接于⊙O,∴∠A=180°−∠C=110°,故答案为:110.第18页,共18页 13.【答案】72°【解析】解:360°÷5=72°.故答案为:72°.利用正五边形的外角和等于360度,除以边数即可求出答案.本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.14.【答案】3【解析】【分析】本题考查了垂径定理和勾股定理.作OC ⊥AB 于C ,连接OA ,根据垂径定理得到AC =BC =12AB =3,然后在Rt △AOC 中利用勾股定理计算OC 即可. 【解答】解:作OC ⊥AB 于C ,连结OA ,如图,∵OC ⊥AB ,∴AC =BC =12AB =12×8=4, 在Rt △AOC 中,OA =5,∴OC =√OA 2−AC 2=3,即圆心O 到AB 的距离为3.故答案为3.15.【答案】60°【解析】解:∵AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴AC⏜=AD ⏜, ∵AC⏜=CD ⏜, ∴AC⏜=CD ⏜=AD ⏜, 即AC ⏜、CD ⏜、AD ⏜的度数是13×360°=120°,∴∠ACD=1×120°=60°,2故答案为:60°.根据垂径定理求出AC⏜=CD⏜,求出AC⏜、CD⏜、AD⏜的度数,即可求出答案.本题考查了垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识点,能求出AD⏜的度数是解决此题的关键.16.【答案】4cm<r<5cm【解析】解:∵矩形的纸片,AB=3cm,AD=4cm,∴AC=5cm,∴以A为圆心作圆,并且要使点D在⊙A内,而点C在⊙A外,⊙A的半径r的取值范围为4cm<r<5cm.故答案为4cm<r<5cm.先利用勾股数得到AC=5cm,然后根据点与圆的位置关系,要使点D在⊙A内,则r>4;要使点C在⊙A外,则r<5,然后写出它们的公共部分即可.本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.17.【答案】4√2【解析】解:如图,连接OB,OC,∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形,又∵BC=4,∴BO=CO=BC⋅cos45°=2√2,∴⊙O的直径为4√2,故答案为:4√2.连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC⋅cos45°=2√2,进而得出⊙O的直径为4√2.本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.18.【答案】(8064,0)【解析】解:∵A(−3,0),B(0,4),∴OA=3,OB=4,∴AB=√32+42=5,∴△ABC的周长=3+4+5=12,∵△OAB每连续3次后与原来的状态一样,∵2016=3×672,∴三角形2016与三角形1的状态一样,∴三角形2016的直角顶点的横坐标=672×12=8064,∴三角形2016的直角顶点坐标为(8064,0).故答案为(8064,0).先利用勾股定理计算出AB,从而得到△ABC的周长为12,根据旋转变换可得△OAB的旋转变换为每3次一个循环,由于2016=3×672,于是可判断三角形2016与三角形1的状态一样,然后计算672×12即可得到三角形2016的直角顶点坐标.本题考查了坐标与图形变化−旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是确定循环的次数.19.【答案】3√2【解析】【分析】本题考查了轴对称最短线段问题,垂径定理和勾股定理等知识,由轴对称的性质正确确定P点的位置是解题的关键.设A′是A关于CD的对称点,连接A′B,与CD的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.【解答】解:作点A关于CD的对称点A′,连接A′B,交CD于点P,此时PA+PB=A′B是最小值,连接OA′,AA′.第18页,共18页∵点A与A′关于CD对称,点A是半圆上的一个三等分点,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是弧AD的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,又∵OA=OA′=OB=3,∴A′B=3√2.∴PA+PB=PA′+PB=A′B=3√2.故答案为:3√2.20.【答案】π+12【解析】解:∵∠C=90°,AC=BC=1,∴AB=√12+12=√2;根据题意得:√2△ABC绕点B顺时针旋转135°,BC落在x轴上;△ABC再绕点C顺时针旋转90°,AC落在x轴上,停止滚动;∴点A的运动轨迹是:先绕点B旋转135°,再绕点C旋转90°;如图所示:∴点A经过的路线与x轴围成的图形是:一个圆心角为135°,半径为√2的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;∴点A经过的路线与x轴围成图形的面积=135×π×(√2)2360+12×1×1+90×π×12360=π+12.故答案为:π+12.由勾股定理求出AB,由题意得出点A经过的路线与x轴围成的图形是一个圆心角为135°,半径为√2的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;由扇形的面积和三角形的面积公式即可得出结果.本题考查了旋转的性质、扇形面积的计算公式;根据题意得出点A经过的路线与x轴围成的图形由三部分组成是解决问题的关键.21.【答案】解:(1)如图.△A1B1C1即为所求三角形;(2)由勾股定理可知OA=√22+22=2√2,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则.答:扫过的图形面积为2π.【解析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)先根据勾股定理求出OA的长,再根据线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可;本题考查的是作图−旋转变换、扇形的面积公式,熟知图形旋转后所得图形与原图形全等的性质是解答此题的关键.22.【答案】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD//BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°−∠B=90°−70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO=1800−∠AOD2=1800−7002=55°,∴∠CAD=∠DAO−∠CAB=55°−20°=35°;(2)在直角△ABC中,BC=√AB2−AC2=√42−32=√7.∵OE⊥AC,第18页,共18页∴AE=EC,又∵OA=OB,∴OE=12BC=√72.又∵OD=12AB=2,∴DE=OD−OE=2−√72.【解析】本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.23.【答案】解:(1)证明:∵O是圆心,OD⊥BC,∴弧CD=弧BD,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴弧AC的长:nπr180=100×π×1180=5π9.【解析】本题考查了垂径定理及圆周角定理,弧长的计算.(1)利用垂径定理及圆周角定理即可证明;(2)连接CO,先求得∠AOC=100°,再利用弧长公式计算即可.24.【答案】(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD//AC;(2)解:令⊙O的半径为r,则OE=r−3∵OD⊥BCBC=4,根据垂径定理可得:BE=CE=12在ΔOBE中由勾股定理得:r2=42+(r−3)2,,解得:r=256.所以⊙O的直径为253【解析】本题考查了垂径定理、勾股定理、圆周角定理;熟练掌握圆周角定理和垂径定理,由勾股定理得出方程是解决问题(2)的关键.(1)由圆周角定理得出∠C=90°,再由垂径定理得出∠OEB=∠C=90°,即可得出结论;BC=4,由勾股定理得出方程,解(2)令⊙O的半径为r,由垂径定理得出BE=CE=12方程求出半径,即可得出⊙O的直径.第18页,共18页。
章末达标测试一、选择题(每题3分,共30分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是( )2.在平面直角坐标系中,⊙O 的圆心在点(1,0),半径为2,则下面各点在⊙O上的是( ) A .(2,0) B .(0,2) C .(0,3)D .(3,0)3.如图,将△ABC 绕点P 顺时针旋转90°得到△A ′B ′C ′,则点P 的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)4.如图,△ABC 内接于⊙O ,BD 是⊙O 的直径.若∠DBC =33°,则∠A 等于( )A .33°B .57°C .67°D .66°5.如图,在⊙O 中,AB 是直径,BC 是弦,点P 是BC ︵上任意一点,连接AP .若AB =5,BC =3,则AP 的长不可能为( )A .3B .4C .92 D .56.如图,将边长为 2 cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长为()A.8 2 cm B.8 cm C.3π cm D.4π cm7.如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD︵所对的圆心角∠BOD的度数为()A.108°B.118°C.144°D.120°8.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的度数是()A.40°B.60°C.70°D.80°9.如图,在半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A.412B.342C.4 D.310.如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M,N分别是AC,BC的中点,则MN的最大值是()A.5 2 B.5 2 2C. 2 D.3 2二、填空题(每题3分,共18分)11.如图,△ABC外接圆的圆心坐标是__________.12.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是________.13.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为________.14.已知⊙O的半径是5,圆心O到直线AB的距离是2,则⊙O上有__________个点到直线AB的距离为3.15.如图,在Rt△AOB中,OA=OB=4 2.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为________.16.如图,直线y=-34x-3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标为______________.三、解答题(21,22题每题10分,其余每题8分,共52分)17.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将△A1B1C1绕点C1顺时针旋转90°所得的△A2B2C1.18.如图,在⊙O中,直径AB和弦CD相交于点E,已知AE=1,EB=5,且∠DEB=60°,求CD的长.19.如图,某窗户由矩形和弓形组成,已知弓形的跨度AB =6 m ,弓形的高EF=2 m .现计划安装玻璃,请你帮忙求出AB ︵所在⊙O 的半径.20.如图,已知点A ,B ,C ,D 均在已知圆上,AD ∥BC ,CA 平分∠BCD ,∠ADC =120°,四边形ABCD 的周长为10. (1)求此圆的半径;(2)求图中阴影部分的面积.21.如图,在平面直角坐标系中,⊙P 经过x 轴上一点C ,与y 轴相交于A ,B两点,连接AP 并延长分别交⊙P ,x 轴于点D ,E ,连接DC 并延长交y 轴于点F .若点F 的坐标为(0,1),点D 的坐标为(6,-1). (1)求证:FC =DC ;(2)判断⊙P 与x 轴的位置关系,并说明理由.22.如图,已知AB 为⊙O 的直径,AC 是⊙O 的切线,连接BC 交⊙O 于点F ,取BF ︵的中点D ,连接AD 交BC 于点E ,过点E 作EH ⊥AB 于点H . (1)求证:△HBE ∽△ABC;(2)若CF =4,BF =5,求AC 和EH 的长.答案一、1.B 2.C 3.B 4.B 5.A6.D 点拨:∵正方形ABCD 的边长为 2 cm ,∴对角线的一半长为1 cm ,则连续翻动8次后,正方形的中心O 经过的路线长为8×90π×1180=4π(cm).7.C 8.D 9.D10.B 点拨:∵点M ,N 分别是AC ,BC 的中点,∴MN =12AB ,∴当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大, 如图,连接AO 并延长交⊙O 于点B ′,连接CB ′, ∵AB ′是⊙O 的直径,∴∠ACB ′=90°. ∵∠ABC =45°,∴∠AB ′C =45°,∴AB ′=AC sin45°=522=5 2,∴MN 最大=5 22.二、11.(4,6)12.35° 点拨:如图,连接FB .∵∠AOF =40°,∴∠FOB =180°-40°=140°, ∴∠FEB =12∠FOB =70°.∵EF =EB ,∴∠EFB =∠EBF =55°. ∵FO =BO ,∴∠OFB =∠OBF =12×(180°-140°)=20°, ∴∠EFO =∠EFB -∠OFB =35°. 13.π4 14.315.2 3 点拨:连接OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ .根据勾股定理知,PQ 2=OP 2-OQ 2, ∴当PO ⊥AB 时,PO 最短,此时线段PQ 最短.∵在Rt △AOB 中,OA =OB =4 2,∴AB = 2OA =8,∴OP =OA ·OBAB =4,∴PQ = OP 2-OQ 2=2 3. 16.⎝ ⎛⎭⎪⎫-73,0或⎝ ⎛⎭⎪⎫-173 ,0 点拨:∵直线y =-34x -3交x 轴于点A ,交y 轴于点B ,∴令x =0,得y =-3;令y =0,得x =-4, ∴A (-4,0),B (0,-3), ∴OA =4,OB =3,∴AB =5. 如图,设⊙P 与直线AB 相切于点D , 连接PD ,则PD ⊥AB ,PD =1.∵∠ADP =∠AOB =90°,∠P AD =∠BAO , ∴△APD ∽△ABO ,∴PD OB =AP AB ,∴13=AP 5, ∴AP =53,∴OP =73.同理可得OP ′=173. ∴点P 的坐标为⎝ ⎛⎭⎪⎫-73,0或⎝ ⎛⎭⎪⎫-173,0.三、17.解:(1)如图所示,△A 1B 1C 1即为所作,其中点C 1的坐标为(-2,-1).(2)如图所示,△A 2B 2C 1即为所作.18.解:如图,作OP ⊥CD 于点P ,连接OD ,则CP =PD .∵AE =1,EB =5,∴AB =6,∴OE =2, 在Rt △OPE 中,OP =OE ·sin ∠DEB = 3, ∴PD =OD 2-OP 2= 6,∴CD =2PD =2 6.19.解:∵弓形的跨度AB =6 m ,EF 为弓形的高,∴OF ⊥AB 于点F .∴AF =12AB =3 m. 设AB ︵所在⊙O 的半径为r m.∵弓形的高EF =2 m ,∴OF =(r -2)m.在Rt △AOF 中,由勾股定理可知AO 2=AF 2+OF 2, 即r 2=32+(r -2)2, 解得r =134,即AB ︵所在⊙O 的半径为134 m. 20.解:(1)∵AD ∥BC ,∠ADC =120°,∴∠BCD =60°,∠DAC =∠ACB .又∵CA 平分∠BCD ,∴∠DCA =∠ACB =∠DAC =30°. ∴AB ︵=AD ︵=CD ︵,∠B =60°.∴∠BAC =90°, ∴BC 是圆的直径,BC =2AB . ∵四边形ABCD 的周长为10,∴AB =AD =DC =2,BC =4.∴此圆的半径为2. (2)设BC 的中点为O .由(1)可知点O 即为圆心, 如图所示.连接OA ,OD ,过点O 作OE ⊥AD 于点E , 在Rt △AOE 中,易知∠AOE =30°, ∴OE =OA ·cos 30°= 3.∴S 阴影=S 扇形AOD -S △AOD =60×π×22360-12×2× 3=2π3- 3. 21.(1)证明:如图,过点D 作DH ⊥x 轴于点H ,则∠DHC =90°.∵点F 的坐标为(0,1),点D 的坐标为(6,-1), ∴HD =OF =1.在△FOC 与△DHC 中,⎩⎨⎧∠FCO =∠DCH ,∠FOC =∠DHC ,OF =HD ,∴△FOC ≌△DHC . ∴FC =DC .(2)解:⊙P 与x 轴相切.理由如下:如图,连接CP .∵AP =PD ,DC =FC ,∴CP ∥AF . ∴∠PCE =∠AOC =90°,即PC ⊥x 轴. 又∵PC 是半径,∴⊙P 与x 轴相切. 22.(1)证明:∵AC 是⊙O 的切线,∴CA ⊥AB .∵EH ⊥AB ,∴∠EHB =∠CAB =90°. ∵∠EBH =∠CBA ,∴△HBE ∽△ABC . (2)解:如图,连接AF .∵AB 是⊙O 的直径,∴∠AFB =90°. ∵∠C =∠C ,∠CF A =∠CAB ,∴△CAF ∽△CBA ,∴CA 2=CF ·CB =36, ∴CA =6,∴AB =BC 2-AC 2=3 5, ∴AF =AB 2-BF 2=2 5.∵D 为BF ︵的中点,∴DF ︵=BD ︵,∴∠EAF =∠EAH . ∵EF ⊥AF ,EH ⊥AB ,∴EF =EH . ∵AE =AE ,∴Rt △AEF ≌Rt △AEH , ∴AF =AH =2 5,设EF =EH =x ,在Rt △EHB 中,由勾股定理得(5-x )2=x 2+(3 5-2 5)2,解得x =2, ∴EH =2.。
浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(―1,―2),B2(1,―3),C2(0,―5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,―1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C是BD的中点,∴CD=BC,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF= BF;(2)解:∵BC=CD,∴BC=CD=6.在Rt△ABC中,AB= BC2+AC2=62+82=10,∴⊙O的半径为5;∵S△ABC= 12AB×CE= 12BC×AC,∴CE= BC×ACAB =6×810=245.22.【答案】(1)解:如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴OD的长是圆心O到EF的距离.∵AB=90 cm,∴OD=12AB=45 cm.(2)解:如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD.由(1),得∠CAD=∠BAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2―O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52―32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP ,所以∠ADP=∠ADQ .②∠ADP+∠ADQ=180°.理由如下:连接AC ,因为AB 是直径,AB ⊥CD ,所以AC=AD ,CE=DE ,所以△ACP ≌△ADP (SSS ),所以∠ACP=∠ADP ,因为∠ACP=12ADQ ,∠ADQ=12ACQ ,所以∠ACP+∠ADQ=12(ADQ +ACQ )=180°.。
第3章 圆的基本性质检测题(本检测题满分:120分,时间:120分钟)一、 选择题(每小题3分,共30分)1.△ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( ) A.80° B.160° C.100° D.80°或100°2.如图所示,点A ,B ,C 是⊙O 上三点,∠AOC =130°,则∠ABC 等于( ) A.50° B.60° C.65° D.70°3. 下列四个命题中,正确的有( ) ①圆的对称轴是直径; ②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等; ④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个4.如图所示,已知BD 是⊙O 直径,点A ,C 在⊙O 上,弧AB =弧BC ,∠AOB =60°,则∠BDC 的度数是( ) A.20° B.25° C.30° D.40°在⊙中,直径垂直弦5.如图,于点,连接,已知⊙的半径为2,32,则∠的大小为( )A.B.C.D.6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3,则弦CD 的长为( ) A.23B.3C.32D.9 7.如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( ) A.4个B.3个C.2个D.1个8. 如图,在Rt△ABC 中,∠ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上 C.点P 在⊙O 外 D.无法确定9. 圆锥的底面圆的周长是4π cm,母线长是6 cm ,则该圆锥的侧面展开图的圆心角的度数是( ) A.40°B.80°C.120°D.150°10.如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ) A.10 cm B.C.27 D.25二、填空题(每小题3分,共24分)11.如图所示,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =,OC =1,则半径OB 的长为 .12.(2012·安徽中考)如图所示,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD = °13.如图,AB 是⊙O 的直径,点C ,D 是圆上两点,∠AOC =100°,则∠D = _______.14.如图,⊙O 的半径为10,弦AB 的长为12,OD ⊥AB ,交AB 于点D ,交⊙O 于点C ,则OD =_______,CD =_______.15.如图,在△ABC 中,点I 是外心,∠BIC =110°,则∠A =_______.16.如图,把半径为1的四分之三圆形纸片沿半径OA 剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比 为_______.17. 如图,一条公路的转弯处是一段圆弧(图中的),点O 是这段弧的圆心,C 是上一点,,垂足为,则这段弯路的半径是_________.18.用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽 (如图所示),则这个纸帽的高是 .三、解答题(共46分)19.(8分) (2012·宁夏中考)如图所示,在⊙O中,直径AB⊥CD于点E,连结CO并延长交AD于点F,且CF⊥A D.求∠D的度数.20.(8分)(2012·山东临沂中考)如图所示,AB是⊙O的直径,点E是BC的中点,AB=4,∠BED=120°,试求阴影部分的面积.21.(8分)如图所示,是⊙O的一条弦,,垂足为C,交⊙O于点D,点E在⊙O上.(1)若,求的度数;(2)若,,求的长.22.(8分)如图,⊙O的半径OA、OB分别交弦CD于点E、F,且.求证:△OEF是等腰三角形.23.(8分)如图,已知都是⊙O的半径,且试探索与之间的数量关系,并说明理由.24.(8分)如图是一跨河桥,桥拱是圆弧形,跨度AB为16米,拱高CD为4米,求:⑴桥拱的半径;⑵若大雨过后,桥下河面宽度EF为12米,求水面涨高了多少?25.(8分)如图,已知圆锥的底面半径为3,母线长为9,C为母线PB的中点,求从A点到C点在圆锥的侧面上的最短距离.26.(10分)如图,把半径为r的圆铁片沿着半径OA、OB剪成面积比为1︰2的两个扇形、,把它们分别围成两个无底的圆锥.设这两个圆锥的高分别为、,试比较与的大小关系.第3章 圆的基本性质检测题参考答案一、选择题1. D 解析:∠ABC =∠AOC =×160°=80°或∠ABC =×(360°-160°)=100°.2. C 解析:∵ ∠AOC =130°,∴ ∠ABC =∠AOC =×130°=65°.3.C 解析:③④正确.4 C 解析:连接OC ,由弧AB =弧BC ,得∠BOC =∠AOB =60°,故∠BDC =∠BOC =×60°=30°.5.A 解析:由垂径定理得∴,∴.又∴.6.B 解析: 在Rt △COE 中,∠COE =2∠CDB =60°,OC =3,则OE =23,2322=-=OE OC CE .由垂径定理知,故选B .7.B 解析:在弦AB 的两侧分别有1个和2个点符合要求,故选B.8.A 解析:因为OA =OC ,AC =6,所以OA =OC =3.又CP =PD ,连接OP ,可知OP 是△ADC 的中位线,所以OP=2125,所以OP <OC ,即点P 在⊙O 内. 9.C 解析:设圆心角为n °,则,解得n =120.10.C 解析: 第一次转动是以点B 为圆心,AB 为半径,圆心角是90度,所以弧长=90π55π1802⋅=,第二次转动是以点C 为圆心,A 1C 为半径,圆心角为60度,所以弧长=π1803π60=⋅,所以走过的路径长为5π2+π=27(cm).二、填空题11. 2 解析:∵ BC =AB =,∴ OB ===2.12. 60 解析:∵ 四边形OABC 为平行四边形,∴ ∠B =∠AOC ,∠BAO =∠BCO . ∵ AOC ∠=2∠D ,∠B +∠D =180°,∴ ∠B =∠A O C =120°,∠B A O =∠B C O =60°. 又∵ ∠BAD +∠BCD =180°,∴ ∠OAD +∠OCD =(∠BAD +∠BCD )-(∠BAO +∠BCO )=180°-120°=60°. 13.40° 解析:因为∠AOC =100°,所以∠BOC =80°.又∠D =21∠BOC ,所以∠D =40°.14.8;2解析:因为OD ⊥AB ,由垂径定理得,故,.15.55° 解析:根据同弧所对的圆周角等于圆心角的一半可得. 16. 4︰1 解析: 由题意知,小扇形的弧长为2π,则它组成的圆锥的底面半径=41,小圆锥的底面面积=16π;大扇形的弧长为π,则它组成的圆锥的底面半径=21,大圆锥的底面面积=4π,∴ 大圆锥的底面面积︰小圆锥的底面面积=4︰1.17.250 解析:依据垂径定理和勾股定理可得.18. 4解析:扇形的弧长l==4π(cm),所以圆锥的底面半径为4π÷2π=2(cm),所以这个圆锥形纸帽的高为= 4(cm).三、解答题19.分析:连接BD,易证∠BDC=∠C,∠BOC=2∠BDC=2∠C,∴∠C=30°, 从而∠ADC=60°.解:连接BD.∵AB是⊙O的直径,∴BD⊥AD.又∵CF⊥AD,∴BD∥CF.∴∠BDC=∠C.又∵∠BDC=∠BOC,∴∠C=∠BOC.∵AB⊥CD,∴∠C=30°,∴∠ADC=60°.点拨:直径所对的圆周角等于90°,在同一个圆中,同一条弧所对的圆心角等于圆周角的2倍.20. 解:连接AE,则AE⊥BC.由于E是BC的中点,则AB=AC,∠BAE=∠CAE,则BE=DE=EC,S弓形BE=S弓形DE,∴S阴影=S△DCE.由于∠BED=120°,则△ABC与△DEC都是等边三角形,∴S△DCE=×2×=.21.分析:(1)欲求∠DEB,已知一圆心角,可利用圆周角与圆心角的关系求解.(2)利用垂径定理可以得到,从而的长可求.解:(1)连接,∵,∴,弧AD=弧BD,∴又,∴.(2)∵,∴.又,∴.22.分析:要证明△OEF是等腰三角形,可以转化为证明,通过证明△OCE≌△ODF即可得出.证明:如图,连接OC、OD,则,∴∠OCD=∠ODC.在△OCE和△ODF中,∴△OCE≌△ODF(SAS),∴,从而△OEF是等腰三角形.23.分析:由圆周角定理,得,;已知,联立三式可得.解:.理由如下:∵,,又,∴.24.解:(1)已知桥拱的跨度AB=16米,拱高CD=4米,∴AD=8米.利用勾股定理可得,解得OA=10(米).故桥拱的半径为10米.(2)当河水上涨到EF位置时,因为∥,所以,∴(米),连接OE,则OE=10米,(米).又,所以(米),即水面涨高了2米.25.分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.解:由题意可知圆锥的底面周长是,则,∴n=120,即圆锥侧面展开图的圆心角是120°.∴∠APB=60°.在圆锥侧面展开图中,AP=9,PC=4.5,可知∠ACP=90°.∴.故从A点到C点在圆锥的侧面上的最短距离为239.点评:本题需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.26.分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可.解:设扇形做成圆锥的底面半径为,由题意知,扇形的圆心角为240°,则它的弧长=,解得,由勾股定理得,.设扇形做成圆锥的底面半径为,由题意知,扇形的圆心角为120°,则它的弧长=,解得,由勾股定理得,所以>.。
第3章圆的基本性质数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6 ;③sin∠AOB= ;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④2、如图,的弦垂直平分半径,若弦,则的半径为()A. B. C. D.23、如图,D是外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.45°4、如图,△ABC内接于⊙O,BC=6,AC=2,∠A-∠B=90°,则⊙O的面积为()A.9.6πB.10πC.10.8πD.12π5、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°6、下列三幅图都是“作已知三角形的高”的尺规作图过程,其中作图依据相同的是( )A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)7、如图,点A、B、C在上,,垂足分别为D、E,若,则的度数为()A. B. C. D.8、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°9、如图,、是的半径,是上一点,连接、.若,则的大小为()A.126°B.116°C.108°D.106°10、半径为6,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π11、如图,AB是⊙O的直径,= = ,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°12、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2 D.∠AC2O=45°13、如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=()A.35°B.45°C.55°D.70°14、下列说法中,①半圆是弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤三点确定一个圆.其中错误的是()A.①②③B.②③④C.①④⑤D.③④⑤15、如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为( )A.∠AIB=∠AOBB.∠AIB≠∠AOBC.4∠AIB-∠AOB=360°D.2∠AOB-∠AIB=180°二、填空题(共10题,共计30分)16、为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为________ cm2.17、如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若,则∠B=________°18、如图,△ABC内接于⊙O,∠ACB=35°,则∠OAB=________.19、如图,在圆的内接五边形ABCDE中,∠B+∠E=220°,则∠CAD=________20、如图,C为弧AB的中点,CN⊥OB于N,CD⊥OA于M,CD=4cm,则CN=________cm.21、如图,右边的扇形是由左边的正方形变形得到的,两图形周长相等,且扇形的半径等于正方形的边长,则扇形的面积为________ cm2.22、如图Rt△ABC中,∠ACB=90°,⊙O是△ABC的外接圆,E为⊙O上一点,连结CE,过C作CD⊥CE,交BE于点D,已知,AB= ,DE=5,则tan∠ACE=________.23、若⊙O是等边△ABC的外接圆,⊙O的半径为,则等边△ABC的边长为________.24、如图,在中,,,,的平分线交弧ACB 于点D,则AD的长是________.25、如图,某数学兴趣小组将边长为1的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为________.三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
第3章测试卷一、选择题(每题3分,共30分)1.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15°B.60°C.45°D.75°2.如图,已知AB和CD是⊙O的两条直径,连结AD,BC,则α和β的关系是()A.α=βB.β>2αC.β<2αD.β=2α3.如图,要拧开一个边长为6 mm的正六边形螺帽,扳手张开的开口a至少为()A.6 2 mm B.12 mm C.6 3 mm D.4 3 mm4.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是() A.AD=ABB.∠BOC=2∠DC.∠D+∠BOC=90°D.∠D=∠B5.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°6.点A,B,C,D分别是⊙O上不同的四点,∠ABC=65°,则∠ADC=() A.65°B.115°C.25°D.65°或115°7.如图,某厂生产横截面直径为7 cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳的视觉效果,字样在罐头侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为( ) A .π4 cm B .7π4 cm C .7π2cm D .7π cm8.如图,在半径为2 cm ,圆心角为90°的扇形AOB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为( ) A.⎝ ⎛⎭⎪⎫π2-1cm 2 B.⎝ ⎛⎭⎪⎫π2+1cm 2 C .1 cm 2 D.π2cm 2 9.如图,已知点A ,B ,C ,D 为⊙O 的四等分点,动点P 从圆心O 出发,沿OC —CD ︵—DO 的路线做匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y (度)与t (秒)之间的函数关系最恰当的是( )10.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,点B为劣弧AN 的中点,P 是直径MN 上一动点,则PA +PB 的最小值为( ) A. 2 B .1 C .2 D .2 2二、填空题(每题3分,共24分)11.如图,A ,B ,C 是⊙O 上的三点,∠AOB =100°,则∠ACB =________°. 12.同圆的内接正三角形与内接正方形的边长的比值是________.13.如图,△ABC 为⊙O 的内接三角形,O 为圆心,OD ⊥AB ,垂足为D ,OE⊥AC ,垂足为E.若DE =3,则BC =________.14.如图,△ABC是等边三角形,以BC为直径作圆O分别交AB,AC于点D,E,若BC=1,则DC=__________.15.如图,已知⊙O的直径CD垂直于弦AB,垂足为E,∠AOD=45°,若CD =6 cm,则AB的长为________.16.如图,将放置于平面直角坐标系中的三角尺AOB绕点O顺时针旋转90°得到△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则点B′的坐标是__________.17.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,分别以AC,BC为直径作半圆,则图中阴影部分的面积为________.18.半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连结OB,OC,延长CO交弦AB于点D,若△OBD是直角三角形,则弦BC的长为____________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,△ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径.求证:∠BAM=∠CAP.20.如图,在△ABC中,∠C=45°,AB=2.(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O;(2)求△ABC的外接圆⊙O的直径.21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.22.如图,AB 是⊙O 的直径,点C 为BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连结BD 交CF 于点G ,连结C D ,AD ,BF . (1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.23.如图,在矩形ABCD 中,AD =2,以B 为圆心,BC 为半径画弧交AD 于F .(1)若CF ︵的长为23π,求圆心角∠CBF 的度数;(2)在(1)的条件下,求图中阴影部分的面积.(结果保留根号及π)24.如图,⊙O 的直径AB =12 cm ,有一条定长为8 cm 的动弦CD 在AB ︵上滑动(点C 不与A ,B 重合,点D 也不与A ,B 重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 交AB 于点F . (1)求证:AE =BF ;(2)在动弦CD 滑动的过程中,四边形CDFE 的面积是否为定值?若是定值,请给出证明,并求出这个定值;若不是,请说明理由.答案一、1.C 2.D 3.C 4.B 5.B 6.D 7.B8.A 点拨:∵扇形AOB 的圆心角为90°,半径为2 cm ,∴扇形AOB 的面积为90π×22360=π(cm 2),两个半圆形的面积均为12×π×12=π2(cm 2).如图,连结OD ,BD ,DA ,易知A ,B ,D 三点共线.易得BD =OD =DA = 2 cm ,且两个半圆形内的4个小弓形面积相等. 在半圆形OA 中,S弓形AD=12(S 半圆形OA-S △OAD )=12⎝ ⎛⎭⎪⎫π2-1cm 2,∴S阴影=S扇形AOB -S △AOB -2S 弓形AD =π-12×2×2-2×12⎝ ⎛⎭⎪⎫π2-1=π2-1 (cm 2). 9.C 点拨:当动点P 在OC 上运动时,∠APB 逐渐变小;当动点P 在CD ︵上运动时,∠APB 不变;当动点P 在DO 上运动时,∠APB 逐渐变大. 10.A二、11.50 12.62 13.6 14.3215.3 2 cm16.⎝ ⎛⎭⎪⎫32,32 点拨:在Rt △AOB 中,由∠AOB =30°,易得OA =2AB =2.过点B 作BD ⊥OA 于点D ,在Rt △ABD 中,易得AD =12,BD =32,∴OD =2-12=32,∴点B 的坐标是⎝ ⎛⎭⎪⎫-32,32.由三角尺AOB 绕点O 顺时针旋转90°得到△A ′OB ′,易得点B ′的坐标是⎝ ⎛⎭⎪⎫32,32.17.52π-418.53或52点拨:分情况讨论:如图①,当∠ODB=90°,即CD⊥AB 时,可得AD=BD,∴CD垂直平分AB,∴AC=BC.又∵AB=AC,∴△ABC是等边三角形.易得∠DBO=30°.由OB=5,易得BD=32OB=532,∴BC=AB=2BD=5 3.如图②,当∠DOB=90°时,可得∠BOC=90°,又OB=OC,∴△BOC是等腰直角三角形.∴BC=2OB=5 2三、19.证明:连结BM.∵AP⊥BC,∴∠CAP=90°-∠C.∵AM为⊙O的直径,∴∠ABM=90°,∴∠BAM=90°-∠M.又∵∠M=∠C,∴∠BAM=∠CAP.20.解:(1)作图略.(2)作直径AD,连结BD.∵AD是直径,∴∠ABD=90°.∵∠D=∠C=45°,∴AB=BD=2.∴AD=AB2+BD2=22+22=2 2,即△ABC的外接圆⊙O的直径为 2221.解:(1)△AB ′C ′如图所示.(2)根据网格图,可知AB =32+42=5.易知线段AB 在变换到AB ′的过程中,扫过区域为圆心角为90°,半径为5的扇形,其面积S =90360π·52=254π.22.(1)证明:∵C 是BD ︵的中点,∴CD ︵=BC ︵.∵AB 是⊙O 的直径,且CF ⊥AB , ∴BC ︵=BF ︵,∴CD ︵=BF ︵,∴CD =BF . 在△BFG 和△CDG 中,∵⎩⎨⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴△BFG ≌△CDG (AAS ).(2)解:连结OF ,设⊙O 的半径为r , ∵AB 为⊙O 的直径, ∴∠ADB =90°.∴BD 2=AB 2-AD 2,即BD 2=(2r )2-22. 在Rt △OEF 中,OF 2=OE 2+EF 2, 即EF 2=r 2-(r -2)2.由(1)知CD ︵=BC ︵=BF ︵,∴BD ︵=CF ︵, ∴BD =CF ,易得EF =CE , ∴BD 2=CF 2=(2EF )2=4EF 2,即(2r )2-22=4[r 2-(r -2)2], 解得r =1(舍去)或r =3,∴BF 2=EF 2+BE 2=32-(3-2)2+22=12, ∴BF =2 3.23.解:(1)设∠CBF =n °,∵CF ︵的长为23π,半径R =BC =AD =2,∴n π×2180=23π,∴n =60, 即∠CBF 的度数为60°.(2)∵∠CBF =60°,且四边形ABCD 为矩形,∴∠ABF =30°. 在Rt △ABF 中,易得AF =12BF =12AD =1,∴AB =BF 2-AF 2=22-12= 3. 易得S 扇形CBF =60×π×22360=23π,S 矩形ABCD =AD ·AB =2×3=2 3,S △ABF =12AF ·AB =12×1×3=32,∴S 阴影=S 矩形ABCD -(S 扇形CBF +S △ABF )=23-⎝ ⎛⎭⎪⎫23π+32=332-23π.24.(1)证明:过点O 作OH ⊥CD 于点H ,易得H 为CD 的中点.∵CE ⊥CD ,DF ⊥CD ,∴EC ∥OH ∥FD , 易得O 为EF 的中点,即OE =OF . 又∵OA =OB ,∴AE =OA -OE =OB -OF =BF ,即AE =BF .(2)解:四边形CDFE 的面积为定值.证明如下:∵动弦CD 在滑动的过程中,条件EC ⊥CD ,FD ⊥CD 不变,∴CE ∥DF 不变.由此可知,四边形CDFE 为直角梯形或矩形,易得S四边形CDFE=OH ·CD .连结OC ,由勾股定理得OH =OC 2-CH 2=⎝ ⎛⎭⎪⎫1222-⎝ ⎛⎭⎪⎫822=25(cm).又∵CD =8 cm ,∴S 四边形CDFE =OH ·CD =25×8=165(cm 2),是常数.综上,四边形CDFE 的面积为定值,为165cm2.1、人不可有傲气,但不可无傲骨。
浙教版九年级数学上册第3章圆的基本性质单元测试卷题号—• 二 三 总分得分1133 1.已知O0的半径为4皿 点A 到圆心0的距离为3,7小则点A 与O0的位宜关系是D ・无法确立 4. 已知正六边形的边长为6,则它的边心距()A. 3逅B. 6C. 3D. V55. 如图,囹0的半径为3,四边形ABCD 内接于囹O,连接OB, OD,若厶BCD =厶BOD,则亦的长为()6. 如图,在圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P,则"P3等于2. A.点A 在O0内 B.点A 在上 C •点A 在0 0外 如图,AB 是O0的直径,C 、D 是O 0上两点,"0C = 130°, 则乙D 等于()A. 65°B. 35°C. 25°如图,已知经过原点的OP 与X 、y 轴分别交于仏B 两点,C 是劣弧OB 上一点,则"CB = ()A. 80°B. 90°C. 100°A. nD. 3nA. 36°B. 60°C. 72°D. 108°7.如图,OO的半径为13,弦AB的长度是24, ON k AB.垂足为N,贝lj0N =()如图OO的直径AB垂直于弦CD垂足为E," = 22.5。
,0C = 4, CD的长为()A. 2\/2B. 4C. 4\/2D. 89.半径为3,圆心角为120。
的扇形的而积是()A. 3nB. 6nC. 9TTD. 12TT10.在Rt △力BC中,乙B = 90。
, EC = 15, AC = 179以AB为直径作半圆,则此半圆的而积为()A. 1671B. 12nC. 10nD. 8n11.如图,c是以AB为直径的半圆O上一点,连结AC, BC,分别以AC, BC为边向外作正方形ACDE, BCFG.DE, FG,碇,氐的中点分别是M, N, P, Q.若MP + NQ = 14, AC + BC = 18,则AB 的长为()A. 5B.7C.9DECGC. 13D. 16二、填空题(本大题共9小题,共35分)12.如图,G>0的内接四边形ABCD中,z_BOD = 140°,则"等于13.正五边形每个外角的度数是14.在O0中,已知半径为5,弦AB的长为&那么圆心O到AB的距离为_______ .15.如图,AB是O O的直径,弦CD丄加于点E,如果碇=CD.则"CD的度数是_______ ・16.有一张矩形的纸片,AB = 3cmt AD = 4cm*若以A为圆心作圆, 并且要使点D在GM内,而点C在GM外,GM的半径厂的取值范围是______17.如图,G)O是△SBC的外接圆,乙力= 45。
第3章测试卷一、选择题(每题3分,共30分)1.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15°B.60°C.45°D.75°2.如图,已知AB和CD是⊙O的两条直径,连结AD,BC,则α和β的关系是()A.α=βB.β>2αC.β<2αD.β=2α3.如图,要拧开一个边长为6 mm的正六边形螺帽,扳手张开的开口a至少为()A.6 2 mm B.12 mm C.6 3 mm D.4 3 mm4.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是() A.AD=ABB.∠BOC=2∠DC.∠D+∠BOC=90°D.∠D=∠B5.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°6.点A,B,C,D分别是⊙O上不同的四点,∠ABC=65°,则∠ADC=() A.65°B.115°C.25°D.65°或115°7.如图,某厂生产横截面直径为7 cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳的视觉效果,字样在罐头侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为( ) A .π4 cm B .7π4 cm C .7π2cm D .7π cm8.如图,在半径为2 cm ,圆心角为90°的扇形AOB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为( ) A.⎝ ⎛⎭⎪⎫π2-1cm 2 B.⎝ ⎛⎭⎪⎫π2+1cm 2 C .1 cm 2 D.π2cm 2 9.如图,已知点A ,B ,C ,D 为⊙O 的四等分点,动点P 从圆心O 出发,沿OC —CD ︵—DO 的路线做匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y (度)与t (秒)之间的函数关系最恰当的是( )10.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,点B为劣弧AN 的中点,P 是直径MN 上一动点,则PA +PB 的最小值为( ) A. 2 B .1 C .2 D .2 2二、填空题(每题3分,共24分)11.如图,A ,B ,C 是⊙O 上的三点,∠AOB =100°,则∠ACB =________°. 12.同圆的内接正三角形与内接正方形的边长的比值是________.13.如图,△ABC 为⊙O 的内接三角形,O 为圆心,OD ⊥AB ,垂足为D ,OE⊥AC ,垂足为E.若DE =3,则BC =________.14.如图,△ABC是等边三角形,以BC为直径作圆O分别交AB,AC于点D,E,若BC=1,则DC=__________.15.如图,已知⊙O的直径CD垂直于弦AB,垂足为E,∠AOD=45°,若CD =6 cm,则AB的长为________.16.如图,将放置于平面直角坐标系中的三角尺AOB绕点O顺时针旋转90°得到△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则点B′的坐标是__________.17.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,分别以AC,BC为直径作半圆,则图中阴影部分的面积为________.18.半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连结OB,OC,延长CO交弦AB于点D,若△OBD是直角三角形,则弦BC的长为____________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,△ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径.求证:∠BAM=∠CAP.20.如图,在△ABC中,∠C=45°,AB=2.(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O;(2)求△ABC的外接圆⊙O的直径.21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.22.如图,AB 是⊙O 的直径,点C 为BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连结BD 交CF 于点G ,连结C D ,AD ,BF . (1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.23.如图,在矩形ABCD 中,AD =2,以B 为圆心,BC 为半径画弧交AD 于F .(1)若CF ︵的长为23π,求圆心角∠CBF 的度数;(2)在(1)的条件下,求图中阴影部分的面积.(结果保留根号及π)24.如图,⊙O 的直径AB =12 cm ,有一条定长为8 cm 的动弦CD 在AB ︵上滑动(点C 不与A ,B 重合,点D 也不与A ,B 重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 交AB 于点F . (1)求证:AE =BF ;(2)在动弦CD 滑动的过程中,四边形CDFE 的面积是否为定值?若是定值,请给出证明,并求出这个定值;若不是,请说明理由.答案一、1.C 2.D 3.C 4.B 5.B 6.D 7.B8.A 点拨:∵扇形AOB 的圆心角为90°,半径为2 cm ,∴扇形AOB 的面积为90π×22360=π(cm 2),两个半圆形的面积均为12×π×12=π2(cm 2).如图,连结OD ,BD ,DA ,易知A ,B ,D 三点共线.易得BD =OD =DA = 2 cm ,且两个半圆形内的4个小弓形面积相等. 在半圆形OA 中,S弓形AD=12(S 半圆形OA-S △OAD )=12⎝ ⎛⎭⎪⎫π2-1cm 2,∴S阴影=S扇形AOB -S △AOB -2S 弓形AD =π-12×2×2-2×12⎝ ⎛⎭⎪⎫π2-1=π2-1 (cm 2). 9.C 点拨:当动点P 在OC 上运动时,∠APB 逐渐变小;当动点P 在CD ︵上运动时,∠APB 不变;当动点P 在DO 上运动时,∠APB 逐渐变大. 10.A二、11.50 12.62 13.6 14.3215.3 2 cm16.⎝ ⎛⎭⎪⎫32,32 点拨:在Rt △AOB 中,由∠AOB =30°,易得OA =2AB =2.过点B 作BD ⊥OA 于点D ,在Rt △ABD 中,易得AD =12,BD =32,∴OD =2-12=32,∴点B 的坐标是⎝ ⎛⎭⎪⎫-32,32.由三角尺AOB 绕点O 顺时针旋转90°得到△A ′OB ′,易得点B ′的坐标是⎝ ⎛⎭⎪⎫32,32.17.52π-418.53或52点拨:分情况讨论:如图①,当∠ODB=90°,即CD⊥AB 时,可得AD=BD,∴CD垂直平分AB,∴AC=BC.又∵AB=AC,∴△ABC是等边三角形.易得∠DBO=30°.由OB=5,易得BD=32OB=532,∴BC=AB=2BD=5 3.如图②,当∠DOB=90°时,可得∠BOC=90°,又OB=OC,∴△BOC是等腰直角三角形.∴BC=2OB=5 2三、19.证明:连结BM.∵AP⊥BC,∴∠CAP=90°-∠C.∵AM为⊙O的直径,∴∠ABM=90°,∴∠BAM=90°-∠M.又∵∠M=∠C,∴∠BAM=∠CAP.20.解:(1)作图略.(2)作直径AD,连结BD.∵AD是直径,∴∠ABD=90°.∵∠D=∠C=45°,∴AB=BD=2.∴AD=AB2+BD2=22+22=2 2,即△ABC的外接圆⊙O的直径为 2221.解:(1)△AB ′C ′如图所示.(2)根据网格图,可知AB =32+42=5.易知线段AB 在变换到AB ′的过程中,扫过区域为圆心角为90°,半径为5的扇形,其面积S =90360π·52=254π.22.(1)证明:∵C 是BD ︵的中点,∴CD ︵=BC ︵.∵AB 是⊙O 的直径,且CF ⊥AB , ∴BC ︵=BF ︵,∴CD ︵=BF ︵,∴CD =BF . 在△BFG 和△CDG 中,∵⎩⎨⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴△BFG ≌△CDG (AAS ).(2)解:连结OF ,设⊙O 的半径为r , ∵AB 为⊙O 的直径, ∴∠ADB =90°.∴BD 2=AB 2-AD 2,即BD 2=(2r )2-22. 在Rt △OEF 中,OF 2=OE 2+EF 2, 即EF 2=r 2-(r -2)2.由(1)知CD ︵=BC ︵=BF ︵,∴BD ︵=CF ︵, ∴BD =CF ,易得EF =CE , ∴BD 2=CF 2=(2EF )2=4EF 2,即(2r )2-22=4[r 2-(r -2)2], 解得r =1(舍去)或r =3,∴BF 2=EF 2+BE 2=32-(3-2)2+22=12, ∴BF =2 3.23.解:(1)设∠CBF =n °,∵CF ︵的长为23π,半径R =BC =AD =2,∴n π×2180=23π,∴n =60, 即∠CBF 的度数为60°.(2)∵∠CBF =60°,且四边形ABCD 为矩形,∴∠ABF =30°. 在Rt △ABF 中,易得AF =12BF =12AD =1,∴AB =BF 2-AF 2=22-12= 3. 易得S 扇形CBF =60×π×22360=23π,S 矩形ABCD =AD ·AB =2×3=2 3,S △ABF =12AF ·AB =12×1×3=32,∴S 阴影=S 矩形ABCD -(S 扇形CBF +S △ABF )=23-⎝ ⎛⎭⎪⎫23π+32=332-23π.24.(1)证明:过点O 作OH ⊥CD 于点H ,易得H 为CD 的中点.∵CE ⊥CD ,DF ⊥CD ,∴EC ∥OH ∥FD , 易得O 为EF 的中点,即OE =OF . 又∵OA =OB ,∴AE =OA -OE =OB -OF =BF ,即AE =BF .(2)解:四边形CDFE 的面积为定值.证明如下:∵动弦CD 在滑动的过程中,条件EC ⊥CD ,FD ⊥CD 不变,∴CE ∥DF 不变.由此可知,四边形CDFE 为直角梯形或矩形,易得S四边形CDFE=OH ·CD .连结OC ,由勾股定理得OH =OC 2-CH 2=⎝ ⎛⎭⎪⎫1222-⎝ ⎛⎭⎪⎫822=25(cm).又∵CD =8 cm ,∴S 四边形CDFE =OH ·CD =25×8=165(cm 2),是常数.综上,四边形CDFE 的面积为定值,为165cm2.1、三人行,必有我师。