高二北师大数学选修221.4数学归纳法
- 格式:ppt
- 大小:1.26 MB
- 文档页数:22
第六课时 1.4数学归纳法【教学目标】1.使学生了解归纳法, 理解数学归纳的原理与实质.2.掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题.3.培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想.4.努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.5.通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热情,使学生初步形成做数学的意识和科学精神.【教学重点】归纳法意义的认识和数学归纳法产生过程的分析【教学难点】数学归纳法中递推思想的理解【教学方法】类比启发探究式教学方法【教学手段】多媒体辅助课堂教学【教学程序】第一阶段:输入阶段——创造学习情境,提供学习内容1.创设问题情境,启动学生思维(1) 不完全归纳法引例:明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论,用的就是“归纳法”,不过,这个归纳推出的结论显然是错误的.(2) 完全归纳法对比引例:有一位师傅想考考他的两个徒弟,看谁更聪明一些.他给每人一筐花生去剥皮,看看每一粒花生仁是不是都有粉衣包着,看谁先给出答案.大徒弟费了很大劲将花生全部剥完了;二徒弟只拣了几个饱满的,几个干瘪的,几个熟好的,几个没熟的,几个三仁的,几个一仁、两仁的,总共不过一把花生.显然,二徒弟先给出答案,他比大徒弟聪明.在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.这些归纳法却不能用完全归纳法.2.回顾数学旧知,追溯归纳意识(从生活走向数学,与学生一起回顾以前学过的数学知识,进一步体会归纳意识,同时让学生感受到我们以前的学习中其实早已接触过归纳.)(1) 不完全归纳法实例:给出等差数列前四项, 写出该数列的通项公式.(2) 完全归纳法实例:证明圆周角定理分圆心在圆周角内部、外部及一边上三种情况.3.借助数学史料, 促使学生思辨(在生活引例与学过的数学知识的基础上,再引导学生看数学史料,能够让学生多方位多角度体会归纳法,感受使用归纳法的普遍性.同时引导学生进行思辨:在数学中运用不完全归纳法常常会得到错误的结论,不管是我们还是数学大家都可能如此.那么,有没有更好的归纳法呢?)问题1 已知n a =22)55(+-n n (n ∈N ),(1)分别求1a ;2a ;3a ;4a . (2)由此你能得到一个什么结论?这个结论正确吗? (培养学生大胆猜想的意识和数学概括能力.概括能力是思维能力的核心.鲁宾斯坦指出:思维都是在概括中完成的.心理学认为“迁移就是概括”,这里知识、技能、思维方法、数学原理的迁移,我找的突破口就是学生的概括过程.)问题2 费马(Fermat )是17世纪法国著名的数学家,他曾认为,当n ∈N 时,122+n 一定都是质数,这是他对n =0,1,2,3,4作了验证后得到的.后来,18世纪伟大的瑞士科学家欧拉(Euler )却证明了1252+=4 294 967 297=6 700 417×641,从而否定了费马的推测.没想到当n =5这一结论便不成立.问题3 41)(2++=n n n f , 当n ∈N 时,)(n f 是否都为质数?验证: f (0)=41,f (1)=43,f (2)=47,f (3)=53,f (4)=61,f (5)=71,f (6)=83,f (7)=97,f (8)=113,f (9)=131,f (10)=151,…,f (39)=1 601.但是f (40)=1 681=241,是合数.第二阶段:新旧知识相互作用阶段——新旧知识作用,搭建新知结构3. 搜索生活实例,激发学习兴趣(在第一阶段的基础上,由生活实例出发,与学生一起解析归纳原理, 揭示递推过程.孔子说:“知之者不如好之者,好之者不如乐之者.”兴趣这种个性心理倾向一般总是伴随着良好的情感体验.)实例:播放多米诺骨牌录像关键:(1)第一张牌被推倒; (2) 假如某一张牌倒下, 则它的后一张牌必定倒下. 于是, 我们可以下结论: 多米诺骨牌会全部倒下.搜索:再举几则生活事例:推倒自行车, 早操排队对齐等.4. 类比数学问题, 激起思维浪花类比多米诺骨牌过程, 证明等差数列通项公式d n a a n )1(1-+=:(1) 当n =1时等式成立; (2) 假设当n =k 时等式成立, 即d k a a k )1(1-+=, 则d a a k k +=+1=d k a ]1)1[(1-++, 即n =k +1时等式也成立. 于是, 我们可以下结论: 等差数列的通项公式d n a a n )1(1-+=对任何n ∈*N 都成立.(布鲁纳的发现学习理论认为,“有指导的发现学习”强调知识发生发展过程.这里通过类比多米诺骨牌过程,让学生发现数学归纳法的雏形,是一种再创造的发现性学习.)5. 引导学生概括, 形成科学方法证明一个与正整数有关的命题关键步骤如下:(1) 证明当n 取第一个值0n 时结论正确;(2) 假设当n =k (k ∈*N ,k ≥0n ) 时结论正确, 证明当n =k +1时结论也正确. 完成这两个步骤后, 就可以断定命题对从0n 开始的所有正整数n 都正确.这种证明方法叫做数学归纳法.第三阶段:操作阶段——巩固认知结构,充实认知过程6. 蕴含猜想证明, 培养研究意识典例分析(本例要求学生先猜想后证明,既能巩固归纳法和数学归纳法,也能教给学生做数学的方法,培养学生独立研究数学问题的意识和能力.)例1 数列{}n a 满足,2n n S n a =-*n N ∈,先计算前4项后,猜想n a 的表达式,并用数学归纳法证明; 解:815472314321====a a a a ,,,,猜想:1212--=n n n a 下面用数学归纳法证明:证明:(1)当时n=1有上面过程知猜想成立(2)假设)(1≥=k k n 时,命题真,即:1212--=k k k a ∵1111121222+-++++--=+-=+=k k k k k k k k a k a a k a S S 又1112++-+=k k a k S )( ∴112122+-+--k k k a k =112+-+k a k )(111121221222-+-+-=-+=⇒k k k k k a ∴kk k a 21211-=++,即当1+=k n 时也成立。
数学归纳法(第一课时)教学设计【教学目标】知识与技能:(1)初步理解数学归纳法的原理;(2)掌握用数学归纳法证明数学命题的两个步骤;(3)会用数学证明一些与正整数相关的简单恒等式。
过程与方法亲历知识的构建过程----发现问题、提出问题、分析问题、解决问题;体会类比的数学思想;感受无限的问题用有限的步骤来解决的思想方法。
情感目标体会数学源于实际,高于实际的科学价值与文化价值;培养学生大胆猜想,小心求证的思维素质和科学精神;通过发现问题、提出问题、解决问题、合作交流等环节培养数学交流能力和合作精神。
【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用。
【教学难点】(1)理解数学归纳法整体的严密性和有效性。
(2)递推步骤中如何利用归纳假设,即如何利用假设证明当n=k+1时结论正确。
【教学过程设计】精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
§4 数学归纳法(教师用书独具)●三维目标1.知识与技能(1)通过具体实例的探究,使学生知道数学归纳法可以完成一些与正整数n有关的命题的证明;(2)通过具体实例的证明,让学生体会归纳法原理,并能应用数学归纳法证明简单的命题.2.过程与方法从具体实例出发,让学生认识到与正整数n有关的命题是蕴含了无数个命题,然后借助多米诺骨牌游戏等引伸出通过有限个步骤的推理,证明n取无限多个正整数的情形,进而理解归纳法原理.3.情感、态度与价值观通过数学归纳法的学习和运用,体会数学中“无限”与“有限”的相互转化及辨证统一.●重点难点重点:了解数学归纳法的思想实质,掌握它的步骤,运用它证明一些与正整数n(n取无限多个值)有关的数学命题.难点:数学归纳法的思想实质,以及归纳递推的证明.学生对归纳法并不陌生,但对完全归纳法如何来实施是一个新的增长点,教学时应详细分析“多米诺骨牌”全部倒下的两个条件:①第一块骨牌倒下;②任意相邻的两块骨牌,前一块倒下一定导致后一块倒下.并通过思考,引导学生分析条件②的作用:给出一个递推关系,从而突破难点,然后通过具体实例的求解强化重点.(教师用书独具)●教学建议可通过具体实例(如求数列通项)引出归纳法(不完全归纳法和完全归纳法),并分析归纳法的特点,进而提出问题,“如何进行完全归纳”,即解决无限个命题的证明,然后通过多米诺骨牌游戏引出数学归纳法原理,再通过例题及练习深化提高.●教学流程创设问题情境,提出问题:要使排成一排的自行车倒下,需要几个条件.⇒通过引导学生对问题导思的分析,引出数学归纳法的证明步骤.⇒通过例1及互动探究,使学生掌握利用数学归纳法证明恒等式.⇒通过例2及互动探究,使学生掌握利用数学归纳法证明不等式.⇒通过例3及变式训练,使学生掌握数学归纳法在数列问题中的应用.⇒归纳小结,整体认识本节知识.⇒完成当堂双基达标,巩固本节课所学知识,并进行反馈矫正.在学校,我们经常会看到这样的一种现象:排成一排的自行车,如果一个同学将第一辆自行车不小心弄倒了,那么整排自行车就会倒下.1.试想要使整排自行车倒下,需要具备哪几个条件?【提示】(1)第一辆自行车倒下;(2)任意相邻的两辆自行车,前一辆倒下一定导致后一辆倒下.2.利用这种思想方法能解决哪类数学问题?【提示】一些与正整数n有关的问题.数学归纳法是用来证明与正整数n有关的数学命题的一种方法,它的基本步骤是:(1)验证:n=1时,命题成立;(2)在假设当n=k(k≥1)时命题成立的前提下,推出当n=k+1时,命题成立.根据(1)(2)可以断定命题对一切正整数n都成立.拓展:一般地,数学归纳法可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0)时命题成立,证明当n=k+1时命题也成立;只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.+【思路探究】第(1)步验证n=1时等式成立,第(2)步在假设n=k等式成立的基础上,等式左边加上n=k+1时新增的项,整理出等式右边的项.【自主解答】(1)当n=1时,左边=1,右边=1,等式成立.(2)假设当n=k(k≥1)时,等式成立,即1+3+…+(2k-1)=k2,那么,当n=k+1时,1+3+…+(2k-1)+[2(k+1)-1]=k2+[2(k+1)-1]=k2+2k+1=(k+1)2.这就是说,当n=k+1时等式成立.根据(1)和(2),可知等式对任意正整数n都成立.1.本题在推证“n=k+1”等式成立时,必须把归纳假设“n=k”时1+3+…+(2k-1)=k2作为必备条件使用上,否则就不是数学归纳法了.2.用数学归纳法证明与自然数有关的等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n的取值是否有关,由n=k到n=k+1时,等式两边会增加多少项.将本例等式左边的“n个奇数的和”改为“n个偶数的和”即变为2+4+…+2n=n2+n(n∈N+).【证明】(1)当n=1时,左边=2,右边=1+1=2,等式成立.(2)假设当n =k (k ≥1)时等式成立,即2+4+…+2k =k 2+k 成立, 那么当n =k +1时, 2+4+…+2k +2(k +1) =k 2+k +2(k +1) =(k +1)2+k +1,这就说,当n =k +1时等式成立.根据(1)和求证:1n +1+1n +2+…+13n >56,(n ≥2,n ∈N *).【思路探究】 在由n =k 到n =k +1的推证过程中,可用分析法或“放缩”的技巧来证明.【自主解答】 (1)当n =2时,左边=13+14+15+16=5760,故左边>右边,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即 1k +1+1k +2+…+13k >56,则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1) >56+(13k +1+13k +2+13k +3-1k +1),* 法一 (分析法)下面证*式≥56,即13k +1+13k +2+13k +3-1k +1>0, 只需证(3k +2)(3k +3)+(3k +1)(3k +3)+(3k +1)(3k +2)-3(3k +1)(3k +2)>0, 只需证(9k 2+15k +6)+(9k 2+12k +3)+(9k 2+9k +2)-(27k 2+27k +6)>0, 只需证9k +5>0,显然成立.所以当n =k +1时,不等式也成立.法二 (放缩法)*式>(3×13k +3-1k +1)+56=56,所以当n =k +1时,不等式也成立.由(1)(2)可知,原不等式对一切n ≥2,n ∈N *均成立.1.本题中证明*式>56,用到了两种方法,其中分析法思维量较小,但运算量较大,而放缩法虽然运算量小,但需要通过观察、比较挖掘出已有代数式和目标间的差异,适当放缩,故思维量较大.2.对与正整数有关的不等式的证明,如果其它方法较困难,可考虑用数学归纳法证明,使用数学归纳法的难点在第二个步骤上,这时除了一定要运用归纳假设外,还经常用到比较法、放缩法、配凑法、分析法等.若n 为大于1的自然数,求证:1n +1+1n +2+…+12n >1324.【证明】 (1)n =2时,12+1+12+2=712>1324.(2)假设当n =k 时成立,即1k +1+1k +2+…+12k >1324.则当n =k +1时,1k +2+1k +3+…+12k +12k +1+12k +2+1k +1-1k +1>1324+12k +1+12k +2-1k +1=1324+1-1=13+1>13.由(1)(2)可知,原不等式成立.n n +1n n (1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2.【思路探究】 令n =1,2,3,求a 2,a 3,a 4→由a 2,a 3,a 4的式子结构猜想a n→数学归纳法证明【自主解答】 (1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1). (2)证明:①当n =1时,a 1≥3=1+2,不等式成立.②假设当n =k (k ≥1)时不等式成立,即a k ≥k +2, 那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3. 即n =k +1时,a k +1≥(k +1)+2.由①②可知,对n ≥1,都有a n ≥n +2.1.本题用数学归纳法证明数列问题的思路为:归纳—猜想—证明.2.数列是定义在N +上的特殊函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中不少问题常用数学归纳法解决.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N +). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)证明你的猜想,并求出a n 的表达式.【解】 (1)∵a n =S n -S n -1(n ≥2),S n =n 2a n , ∴S n =n 2(S n -S n -1).∴S n =n 2n 2-1S n -1(n ≥2),∵a 1=1,∴S 1=a 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.(2)证明:①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N +)时,等式成立,即S k =2kk +1,当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2kk +1,∴a k +1=2(k +2)(k +1),∴S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1,∴n =k +1时等式也成立,得证.∴根据①②可知,对于任意n ∈N +,等式均成立.又∵a k +1=2(k +2)(k +1),∴a n =2n (n +1).放缩法在不等式证明中的应用(12分)已知S n =1+12+13+…+1n(n >1,n ∈N *).求证:S 2n >1+n2(n ≥2,n ∈N *).【思路点拨】 先弄清S 2n 的含义,然后用数学归纳法证明,在由n =k 推证n =k +1时,要注意已有代数式和目标的区别,适当放缩.【规范解答】 (1)当n =2时,S 2n =1+12+13+14=2512>1+22,即n =2时命题成立.3分(2)假设n =k (k ≥2,k ∈N *)时命题成立,4分即S 2k =1+12+13+…+12k >1+k2,5分则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k 1>1+k 2+12k +1+12k +2+…+12k 1 8分>1+k 2+2k 2k +2k =1+k 2+12=1+k +12,10分故当n =k +1时,命题也成立.11分由(1)(2)知,对于一切n ≥2的正整数不等式都成立.12分1.此题容易犯两个错误,一是由n =k 到n =k +1项数变化弄错,认为12k 的后一项为121,实际上应为12+1,二是12+1+12+2+…+12+1共有多少项,实际上2k +1到2k +1是自然数递增,项数为2k +1-(2k +1)+1=2k.2.由n =k 推证n =k +1的过程中,用上归纳假设后,要有目标意识,如本题得到1+k 2+12k +1+12k +2+…+12k 1后,注意到目标为1+k +12,故只需证12k +1+12k +2+…+12k 1≥12即可,故考虑将12k +m 缩小为12k +2k,从而得出目标.。