干细胞治疗糖尿病:科学新方法
- 格式:pdf
- 大小:610.13 KB
- 文档页数:6
母义明教授干细胞治疗糖尿病的现状与未来在当今医学领域中,干细胞治疗被认为是一种革命性的新方法,可以为多种疾病的治疗提供新的希望。
糖尿病作为一种常见而严重的慢性病,已经引起了广泛关注。
母义明教授作为干细胞研究的专家,一直在致力于探索干细胞治疗糖尿病的有效途径。
本文将探讨母义明教授干细胞治疗糖尿病的现状和未来发展。
一、干细胞治疗糖尿病的现状目前,糖尿病的治疗方法主要包括胰岛素注射和药物治疗两种。
然而,这些方法只能缓解症状和控制血糖水平,而无法根治疾病。
而干细胞治疗作为一种新的治疗模式,具有潜在的转化疗效果。
干细胞主要分为胚胎干细胞和成体干细胞两种。
胚胎干细胞具有多能性,可以分化为各种类型的细胞;而成体干细胞则存在于成年组织中,具有一定的分化潜力。
母义明教授的研究关注的是成体干细胞在糖尿病治疗中的应用。
以胰岛素产生细胞为例,母教授利用成体干细胞可以通过分化为胰岛素产生细胞,以满足糖尿病患者胰岛素产生不足的需求。
通过在动物模型上的实验研究,母教授成功地将成体干细胞分化为胰岛素产生细胞,并成功实现了血糖水平的正常控制。
这为干细胞治疗糖尿病的临床应用提供了重要的依据。
二、干细胞治疗糖尿病的前景虽然干细胞治疗糖尿病的前景充满希望,但仍然存在一些挑战和限制。
首先,干细胞的分化和成熟过程需要时间,糖尿病患者需要较长的时间来等待治疗效果的显现。
此外,干细胞治疗还涉及到免疫排斥等问题,需要具体的个体化治疗方案。
然而,随着科学技术的不断进步,母义明教授认为干细胞治疗糖尿病的前景非常乐观。
首先,干细胞分化技术的不断改进和创新,将使干细胞分化为胰岛素产生细胞的效率得到大幅提高。
其次,借鉴干细胞技术在其他领域的应用经验,可以开展更深入的研究,以找到更好的治疗方案。
未来,糖尿病的干细胞治疗将更加个体化和精准化。
通过对患者的干细胞进行提取和分化,可以实现定制化的治疗方案,提高治疗效果和患者的生存质量。
此外,干细胞治疗还可以与其他治疗手段相互配合,形成多元化的综合治疗模式。
干细胞移植治疗糖尿病详解干细胞治疗糖尿病是通过干细胞移植的方法来治疗糖尿病。
针对的主要是长期受糖尿病而影响到健康和生活质量的患者,干细胞移植对于一型糖尿病和二型糖尿病都有不错的疗效。
糖尿病的治疗现状:药物治疗、胰岛细胞移植、人工胰腺移植、干细胞移植胚胎组织干细胞治疗糖尿病的适应症:胚胎组织干细胞移植适用于任何阶段的糖尿病病人,尤其在以下病人中效果更明显:1、近期发现的胰岛素依赖型糖尿病。
2、糖尿病合并肾小球硬化,慢性肾功能不全(1和2级)。
3、不稳定糖尿病。
4、糖尿病相关的感染合并症,免疫系统功能低下。
5、对各种治疗无效的营养缺乏性软组织溃疡。
6、继发性磺脲类药物抵抗及需要胰岛素治疗的II型糖尿病。
干细胞治疗糖尿病的机制1、干细胞对胰岛β细胞的修复胰岛β细胞是人体胰岛素分泌的主流分泌细胞。
干细胞通过对胰岛的修复,可以使胰岛产生新的胰岛β细胞;通过对胰岛β细胞的直接修复,使其具有分泌胰岛素的功能;通过干细胞所产生的因子,刺激胰岛β细胞再生。
2、干细胞对其他胰岛素分泌细胞的修复在人体内除了胰岛β细胞分泌胰岛素外,在身体其他器官和组织中还存在一些胰岛素分泌细胞,也有分泌胰岛素的作用。
通过干细胞对这些细胞的修复及再生作用,可以提高体内胰岛素的分泌量,可以起到降血糖的作用。
3、干细胞对胰岛素抵抗的作用通过干细胞的移植,可以增加细胞内运糖蛋白的敏感性,促进胰岛受体与胰岛素的结合,降低胰岛素的抵抗作用。
干细胞治疗糖尿病的特点干细胞技术的飞速发展,及其日新月异的研究成果,为糖尿病的治疗提供了一条崭新的途径:干细胞移植后不仅可以修复患者胰岛组织,使其重新产生胰岛β细胞,并可修复原来受损或失去功能的胰岛β细胞。
使自体能正常调节糖代谢,可以抑制血糖上升趋势,降低血糖指标,相当于重建了患者的胰岛素分泌功能,由此来治疗糖尿病。
1)治疗后“三多一少”症状获得显著改善或消失2)治疗后高血压、高血脂、肾脏以及神经系统损害等并发症获得改善和恢复3)干细胞治疗糖尿病效果肯定,安全可靠,无任何副作用。
干细胞移植治疗糖尿病的步骤与方法干细胞移植治疗糖尿病是一种新兴的治疗方法,通过将干细胞注入患者体内,修复受损或功能丧失的胰岛细胞,从而恢复胰岛功能,改善糖尿病症状。
本文将介绍干细胞移植治疗糖尿病的步骤与方法。
干细胞移植治疗糖尿病的步骤通常可以分为以下几个阶段:干细胞采集、干细胞培养和扩增、干细胞注射或植入、后续调节与随访。
首先是干细胞的采集。
干细胞可以从多个来源中获得,包括胎盘、脐带血、骨髓等。
其中脐带血和骨髓是常用的来源。
脐带血采集相对简单,无需手术,可以在婴儿出生后进行采集。
而骨髓干细胞的采集需要进行手术,通常是采用骨髓穿刺的方式获取。
采集到的干细胞需要经过严格的检测和筛选,确保其质量和安全性。
接下来是干细胞培养和扩增的过程。
采集到的干细胞数量有限,需要通过培养和扩增来得到足够的细胞数量。
在培养的过程中,需要提供适当的培养基和生长因子,为干细胞提供良好的生长环境。
同时,需要控制培养条件,以确保细胞的纯度和质量。
培养和扩增的时间会根据干细胞来源和治疗需求而有所差异。
然后是干细胞的注射或植入过程。
干细胞可以通过不同的方式注射或植入到患者体内,以达到治疗的目的。
常见的方式包括静脉注射、动脉注射、脑脊液注射、组织植入等。
选择合适的方式取决于病情和治疗需求。
注射或植入过程需要在临床医生的指导下进行,以确保操作的安全性和有效性。
最后是后续调节与随访。
干细胞移植治疗后,患者需要进行一定的后续调节和随访工作。
调节工作包括药物治疗、饮食控制、生活习惯的调整等,以保持治疗效果和预防并发症的发生。
随访工作包括定期复查、评估治疗效果和观察患者病情的变化。
这些工作需要医生和患者之间的密切合作,以确保治疗的持续性和有效性。
干细胞移植治疗糖尿病的方法主要有两种:自体干细胞移植和同种异体干细胞移植。
自体干细胞移植是指将患者自身的干细胞采集后进行治疗,这种方法避免了排斥反应和移植后供体抗体的产生,但干细胞质量和数量有限。
同种异体干细胞移植是指将其他同种族或同种类的干细胞进行治疗,这种方法可以获得更多的干细胞资源,但存在排斥反应和移植后供体抗体的风险。
干细胞移植治疗糖尿病让患者看到希望糖尿病是一种多病因的代谢疾病,特点是慢性高血糖,伴有因胰岛素分泌缺陷或作用缺陷引起的碳水化合物、脂肪、和蛋白质代谢紊乱。
糖尿病属于“代谢疾病”,其本质就是碳水化合物、蛋白质、脂肪三大营养素的代谢发生异常。
碳水化合物的代谢发生问题,出现血糖升高;蛋白质代谢出现问题,导致人体的蛋白质不能正常合成,使伤口不易愈合、免疫力低下、小儿的生长和发育受限——这些过程都需要有足够的蛋白质;脂肪的代谢出现问题,导致脂肪分解增加,合成受限,人就会越来越瘦,甚至出现酮症酸中毒。
血糖异常升高是其最突出的特点,也可以说是糖尿病的特征。
那么在科学如此发达的今天,糖尿病依然是难以治愈吗?带着这样的疑问,我们咨询了武警广西总队医院糖尿病覃主任专家,覃主任告之我们,近年来治疗糖尿病的方法层出不穷,但真正能有效治疗糖尿病的方法却寥寥无几,这让很多糖尿病患者心灰意冷,深感生活无望。
为了改善和解决患者的困扰,武警广西总队医院糖尿病治疗中心引进了干细胞移植术,给广大患者带来了希望。
覃主任说:近年来干细胞治疗糖尿病越来越热门,它是治疗糖尿病最为有效的方法,也是根治糖尿病的唯一希望,目前为更多的糖尿病患者所热衷。
干细胞是具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞,是形成人体各种组织器官的原始细胞。
在一定条件下,它可以分化成多种功能细胞或组织器官,医学界称其为“万用细胞”。
干细胞治疗是把健康的干细胞移植到病人或自己体内,以达到修复病变细胞或重建功能正常的细胞和组织的目的。
干细胞疗法就像给机体注入新的活力,是从根本上治疗许多疾病的有效方法。
从理论上说,应用干细胞技术能治疗神经系统、循环系统等多种系统的各种疾病,且较很多传统治疗方法具有无可比拟的优点:(1)安全:低毒性(或无毒性);(2)在尚未完全了解疾病发病的确切机理前也可以应用;(3)治疗材料来源充足;(4)治疗范围广阔;(5)是最好的免疫治疗和基因治疗载体;(6)传统疗法认为是“不治之症”的疾病,又有了新的疗法和新的希望。
干细胞移植治疗糖尿病肾病
目前,干细胞在治疗糖尿病肾病中有了新的研究进展。
用胰岛干细胞治疗糖尿病,比以往很多传统治疗方法无法比拟的优点:
①能够获得大量胰岛B细胞的最佳种子细胞,高度增殖和多向分化的潜能干细胞,能极大的解决胰岛细胞来源不足的问题;
②干细胞分化的胰岛细胞能够对血糖的生理性起到调节作用;
③用自身干细胞分化的胰岛干细胞,可降低免疫排斥,而且不受应用胚胎干细胞的社会伦理方面的制约;
④随着细胞学、分子生物学等基础医学的飞速发展和应用,多种类型的干细胞作为种子细胞诱导分化为B细胞成为现实。
2.在治疗肾病中,目前认为,骨髓来源细胞参与各种肾细胞的修复,包括肾系膜细胞、内皮细胞、足细胞和小管细胞。
在治疗糖尿病肾病中间充质干细胞有哪些优势?
(1)作为成体干细胞,MSCs与胚胎干细胞相比,它规避了人类的伦理问题。
(2)MSCs只少量表达MHC-I型分子,极少表达或不表达MHC-II型或T细胞共刺激分子。
间充质干细胞的低免疫原性,能够逃避宿主的免疫监视系统在宿主体内长期存活,能够抑制树突状细胞成熟,抑制T 细胞增殖,是一类免疫特许细胞。
(3)间充质干细胞的特性具有多向分化潜能,并且来源广泛,取材方便,展现了在细胞替代治疗中的良好应用前景,也期待成为构建肾脏修复的种子细胞。
(4)应用原位杂交法测MSCs端粒酶活性,细胞呈阳性反应,但强度弱于作为对照的大肠癌细胞株的端粒酶活性,说明MSCs较幼稚,生命周期长,不具有恶性肿瘤的无限增殖能力,作为移植细胞有安全保障。
干细胞移植治疗糖尿病为人类治疗糖尿病提供一种全新的解决方法,糖尿病人又多了一线希望,我相信在不久的将来,干细胞能够治疗更多的疾病。
干细胞移植术治疗2型糖尿病效果显著糖尿病是常见的一种疾病,我们通常把它分为两类:1型糖尿病和2型糖尿病。
2型糖尿病的症状困扰了很多的患者,带来的危害也特别大,对于2型糖尿病患者来说,常常会感到口渴、尿频,也容易出现饥饿的症状,而且体重也可能会日渐减轻,常常感觉疲倦。
有不少的患者在确诊了2型糖尿病后会出现一些并发症,这些并发症可损害眼睛、肾脏、心脏、血管和神经,常见的症状有:手足麻木、刺痛、肿胀(神经病变引起);视物模糊,视力缺失或感觉光线刺眼(视网膜病变引起);胸痛或短气(心血管病变)等。
2型糖尿病的高致残率,高死亡率早已引起国家卫生部门的高度重视,但目前,临床上对糖尿病的治疗尚无彻底的治愈方法,主要依赖于体外给予胰岛素和降糖治疗,同时配合饮食治疗,体育锻炼来控制并发症。
近年来,人们也尝试着对糖尿病患者进行胰岛及胰腺细胞移植,但后来发觉排斥反应是个非常突出的问题,尽管移植技术非常成功,但多数由于移植排斥反应而抵消了治疗效果。
为了改变糖尿病患者目前的窘境,武警广西总队医院糖尿病诊疗中心引进干细胞移植技术,针对一型糖尿病、二型糖尿病、以及糖尿病并发症糖尿病肾病、糖尿病眼病进行科研攻关,取得可喜的成果;据统计,武警广西总队医院糖尿病诊疗中心采用的干细胞移植治疗糖尿病方法,治愈率已经达到90%以上。
这些振奋人心的科学发现,为糖尿病治疗带来了新的希望。
糖尿病患者不再需要注射胰岛素,不再需要节制饮食的日子将由干细胞移植技术而实现。
干细胞治疗糖尿病使用的是重组人粒细胞集落刺激因子,首先是将人体的骨髓中的造血干细胞动员到外周血中,然后使用血细胞分离机将造血干细胞从外周血中分离出来,分离出来后应当按照一定的比例配成干细胞悬液,然后用于糖尿病治疗。
干细胞治疗糖尿病没有免疫排斥,避免了传统的药物治疗所引起的毒副作用;干细胞治疗糖尿病是一种有效、简单和安全的方法。
干细胞治疗糖尿病是世界范围内、糖尿病治疗的前沿,目前国内开展此疗法的医院很有限。
治疗糖尿病的新技术——干细胞移植疗法本网7月22日讯随着糖尿病患者的逐年增多,糖尿病已经成为威胁人类健康的三大杀手之一,糖尿病的治疗是一个世界难题。
近几年,武警北京市总队第三医院的干细胞移植探索取得重大突破,并用于临床。
武警北京市总队第三医院新推出的治疗糖尿病的干细胞移植疗法,在临床的实验上主要采用细胞渗透修复技术。
相比起其他治疗方法,干细胞移植法有治疗效果好,有效率达85%左右、治疗过程微创、风险小、痛苦小;副作用小、费用低和无免疫排斥及伦理问题等优势。
干细胞在医学界被称为“万能细胞”。
武警北京市总队第三医院运用大量的试验证明,干细胞具有极强的自我更新能力与多向分化潜能,在胰腺微环境下可分化为胰岛素分泌细胞,并促进内源性胰岛细胞的再生,从而重建胰岛功能,是一种从根本上或本质上根治糖尿病的方法。
其实,随着现代医学的发展,糖尿病早已不是“不治之症”。
而此次武警北京市总队第三医院干细胞移植疗法的跟进与成功运用,则是近几年来政府与医院各方力量数次权衡、努力的结果。
据悉,我国在干细胞移植疗法研究领域属刚刚起步的前沿科学研究,在我国“十二五”863计划中,干细胞移植疗法研究被列为重要的研究方向之一。
武警北京市总队第三医院干细胞移植疗法在治疗多种疑难疾病的领域上,日趋成熟,以其特有的疗效得到了广大业内人士和患者的一致好评,同时也为所有患者开辟了新的治疗路径。
近年来,随着细胞生物学快速发展,细胞替代治疗方法(cell replacement therapy)备受瞩目。
使得干细胞疗法展示了其在干预糖尿病(diabetes mellitus, DM)方面的优势。
间充质干细胞(mesenchymal stem cells, MSCs)由于具有多向分化潜能,低免疫原性、免疫调节作用、抗炎作用和抗凋亡作用等特性,目前被认为是干预糖尿病理想候选细胞类型。
糖尿病传统治疗效果并不明显近几十年来,糖尿病(diabetes mellitus, DM)已成为全球重要公共卫生保健问题之一。
数据显示,2017年全球约4.25亿成人患糖尿病,预计到2045年糖尿病患者人数将达6.29亿。
糖尿病正在威胁着人们生命健康。
2型糖尿病(type 2 diabetes mellitus, T2DM)的主要特征是胰岛β细胞功能障碍和不同程度的胰岛素抵抗,导致无法维持血糖稳态。
传统干预方法通常包括口服和注射抗糖尿病药物,可减轻高血糖症或暂时改善目标组织中胰岛素敏感性,但它们既不能逆转胰岛素抵抗,也不能逆转进展性和必然性β细胞功能障碍。
干细胞移植干预2型糖尿病理想干预2型糖尿病方法是改善外周胰岛素抵抗同时促进胰岛β细胞再生。
补偿和恢复分泌胰岛素的胰岛β细胞的功能是较有前景的方法。
这种方法能控制血糖水平,并从成体细胞再生出具有分泌胰岛素功能的胰岛β细胞。
近年来,来自不同成人组织的间充质干细胞在干预糖尿病方面引起很高关注。
因其具有低免疫原性,免疫调节和抗凋亡作用。
干细胞能通过提供由旁分泌因子分泌或细胞外基质沉积驱动的支持性微环境,促进胰岛β细胞再生,保护内源性胰岛β细胞免于凋亡,并改善外周组织胰岛素抵抗。
为干预2型糖尿病提供了新途径。
干细胞移植促进胰岛β细胞再生科学家研究证实,干细胞能够改善2型糖尿病高血糖的主要机制是它具有分化为胰岛素分泌细胞(IPCs)的潜能。
研究证实,干细胞是产生胰岛β样细胞的潜在来源,尽管这些细胞中的IPCs的数量和胰岛素含量比较低。
糖尿病新治疗方法的研究进展糖尿病是一种慢性疾病,世界卫生组织的数据显示,全球有4亿人口患有糖尿病,而中国的糖尿病患病率更是居高不下。
糖尿病患者需要长期注重饮食、锻炼和药物治疗,但是治疗效果并不如人意。
近年来,越来越多的科学家和研究人员开始关注新型的糖尿病治疗方法,希望能够找到更加有效的治疗方式。
本文将会讲述一些糖尿病新治疗方法的研究进展。
一. 细胞治疗细胞治疗是一种新兴的治疗糖尿病的方法。
该方法以胰岛细胞为主要研究对象,通过植入胰岛细胞的方式来改善病情。
许多实验室都已经成功地利用干细胞技术培育出能够分泌胰岛素的胰岛细胞。
众所周知,胰岛素是糖尿病治疗中最为重要的一种药物。
因此,细胞治疗被认为是未来治疗糖尿病的一种重要手段。
二. 基因治疗基因治疗的主要原理是通过修复、替换或更改人体细胞内的缺陷基因来改善糖尿病患者的病情。
许多研究表明,糖尿病是一种基因缺陷引起的疾病,因此基因治疗有望成为一种有效的治疗方式。
近年来,基因治疗研究取得了一些突破性进展,包括使用CRISPR/CAS9技术对基因进行编辑,阻止胰岛素受体的自我攻击等。
三. 免疫治疗免疫治疗是一种通过调节免疫系统来治疗糖尿病的方法。
目前,免疫治疗的主要方法是采用免疫抑制剂来抑制自身免疫系统的反应,从而减少胰岛细胞的破坏。
然而,使用免疫抑制剂的方法并不完美,因为长期服用免疫抑制剂会导致许多副作用,如感染、恶性肿瘤等危险。
四. 新型胰岛素胰岛素是糖尿病治疗的核心药物之一,但是现有的胰岛素在使用过程中存在一些缺陷,比如剂量调节不精确、作用时间短等。
因此,新型胰岛素的研究正在受到越来越多的关注。
五. 肠蠕动调节治疗肠道是人类体内最为复杂的器官之一,它的功能对于人体的健康至关重要。
研究表明,肠蠕动调节可以改善胰岛素的分泌水平,因此肠蠕动调节治疗已成为治疗糖尿病的一种新型方法。
这个方法在国内尚在处于实验室阶段。
总结糖尿病是一种慢性疾病,在世界范围内都有很高的患病人群。
糖尿病生物治疗方法糖尿病是一种常见的慢性代谢性疾病,其特征是血糖水平长期高于正常范围。
目前,传统的治疗方法包括饮食控制、运动、药物治疗和胰岛素注射等,但对于一些患者来说,这些方法可能效果不佳或存在一定的局限性。
随着医学技术的不断发展,生物治疗方法为糖尿病的治疗带来了新的希望。
生物治疗是指利用生物制剂或生物技术来治疗疾病的方法。
在糖尿病的治疗中,生物治疗主要包括胰岛细胞移植、干细胞治疗、基因治疗和免疫治疗等。
胰岛细胞移植是一种较为直接的生物治疗方法。
胰岛是胰腺中分泌胰岛素的细胞群,对于 1 型糖尿病患者来说,由于自身免疫反应导致胰岛细胞受损,胰岛素分泌严重不足。
通过将健康的胰岛细胞移植到患者体内,可以恢复胰岛素的分泌功能,从而有效地控制血糖。
然而,胰岛细胞移植面临着一些挑战,如供体来源有限、免疫排斥反应以及移植后的长期存活等问题。
为了克服免疫排斥反应,科学家们正在研究使用免疫抑制剂、诱导免疫耐受以及采用新型的封装技术来保护移植的胰岛细胞。
干细胞治疗是近年来备受关注的糖尿病治疗方法之一。
干细胞具有自我更新和多向分化的潜能,可以分化为胰岛细胞或促进胰岛细胞的再生。
目前,研究中的干细胞来源包括胚胎干细胞、诱导多能干细胞和间充质干细胞等。
胚胎干细胞具有强大的分化能力,但由于伦理和法律问题,其应用受到一定的限制。
诱导多能干细胞可以通过对成体细胞进行重编程获得,具有与胚胎干细胞相似的特性,但技术尚不成熟。
间充质干细胞则具有免疫调节和组织修复的作用,在糖尿病治疗中主要通过改善胰岛微环境、减轻炎症反应等机制发挥作用。
然而,干细胞治疗糖尿病仍处于临床研究阶段,需要进一步解决细胞分化效率、安全性和长期疗效等问题。
基因治疗是通过改变患者的基因表达来治疗疾病的方法。
在糖尿病的基因治疗中,主要策略包括修复或替代缺陷的基因、调节胰岛素信号通路以及抑制免疫反应等。
例如,通过基因编辑技术修复导致 1 型糖尿病的基因突变,或者将正常的胰岛素基因导入患者体内,使其能够自主分泌胰岛素。
REVIEW ARTICLEJournal of Drug Discovery and Therapeutics 1 (4) 2013, 28-33*Corresponding author: Prof. Satyanand Tyagi2Page8 ISSN: 2320 - 4230TREATMENT AND MANAGEMENT OF DIABETES WITH STEM CELL THERAPY: A NEWERSCIENTIFIC APPRAOCHProf. Satyanand Tyagi*1, Patel Chirag J2, Dr. Ruchika Nandha3, Dr. Kavita Sekhri3, Dr. Suruchi Aditya3, Dr. Ravpreet Singh4, Anil Kumar Gupta5,Dr. Shweta Tyagi6*1President & Founder, Tyagi Pharmacy Association & Scientific Writer (Pharmacy), Chattarpur, New Delhi, India-110074.2Editor-in-Chief, Tyagi Pharmacy Association (TPA) & Scientific Writer (Pharmacy), Chattarpur, New Delhi, India-110074.3Department of Pharmacology, Dr. Harvansh Singh Judge Institute of Dental Sciences, Chandigarh, Punjab, India-160014.4P.G. Research Scholar, Department of Homoeopathy, Sri Sai Nath Post Graduate Insti. of Homoeopathy, Allahabad, Uttar Pradesh, India-211002.5Research Scholar, Bhagwant University, Institute of Pharmacy & Research Cen t er, Ajmer, Rajasthan, India-305004 6Sri Sri College of Ayurvedic Science and Research Hospital, Kanakapura Road, Udayapura, Bangalore, Karnataka, India-560082. ABSTRACTDiabetes is usually a lifelong (chronic) disease in which there are high levels of sugar in the blood. Diabetes, often referred to by doctors as diabetes mellitus, describes a group of metabolic diseases in which the person has high blood glucose (blood sugar), either because insulin production is inadequate, or because the body's cells do not respond properly to insulin, or both. Patients with high blood sugar will typically experience polyuria (frequent urination); they will become increasingly thirsty (polydipsia) and hungry (polyphagia). Insulin, a hormone produced by the pancreas helps in the control of blood sugar. While Diabetes can be caused by too little insulin, resistance to insulin or both, its treatment becomes mandatory for patients as a large part of the Indian population is gradually being detected with high blood sugar. Stem cells are mother cells that have the potential to become any type of cell in the body. One of the main characteristics of stem cells is their ability to self-renew or multiply while maintaining the potential to develop into other types of cells. Stem cells can become cells of the blood, heart, bones, skin, muscles, brain etc. Within recent years, stem cell research has become a very important part of the scientific understanding of type 1 diabetes. Research has demonstrated that stem cells can be grown in the lab. In 2004, the University of Pittsburgh grew insulin producing beta cells by introducing two genes ‘cdk’ and ‘cyclin d’ via a virus. The researchers were able to deactivate the virus and also prevent stem cells from growing further. The research could lead to a better availability of beta cells for future research purposes. Type 1 and type 2 diabetes results when beta cells in the pancreas fail to produce enough insulin, the hormone that regulates blood sugar. One approach to treating diabetes is to stimulate regeneration of new beta cells. The current short communication elucidate about probable treatment of diabetes with the help of stem cell therapy.KEY-WORDS: Diabetes, Stem cells, Beta cells, Insulin.INTRODUCTION:Diabetes, often referred to by doctors as diabetes mellitus, describes a group of metabolic diseases in which the person has high blood glucose (blood sugar), either because insulin production is inadequate, or because the body's cells do not respond properly to insulin, or both. Patients with high blood sugar will typically experience polyuria (frequent urination), they will become increasingly thirsty (polydipsia) and hungry (polyphagia).There are three types of diabetes1:1.Type 1 Diabetes:In this condition, the body does not produce insulin. Some people may refer to this type as insulin-dependent diabetes, juvenile diabetes, or early-onset diabetes.People usually develop type 1 diabetes before their 40th year, often in early adulthood or teenage years. Type 1 diabetes is nowhere near as common as type 2 diabetes. Approximately 10% of all diabetes cases are type 1. Patients with type 1 diabetes will need to take insulin injections for the rest of their life. They must also ensure proper blood-glucose levels by carrying out regular blood tests and following a special diet. Between 2001 and 2009, the prevalence of type 1 diabetes among the under 20s in the USA rose 23%, according to SEARCH for Diabetes in Youth data issued by the CDC (Centers for Disease Control and Prevention) 2.2. Type 2 Diabetes:In this condition, the body does not produce enough insulin for proper function, or the cells in the body do not react to insulin (insulin resistance). Approximately 90% of all cases of diabetes worldwide are of this type. Some people may be able to control their type 2 diabetes symptoms by losing weight, following a healthy diet, doing plenty of exercise, and monitoring their blood glucose levels. However, type 2 diabetes is typically a progressiveVol.1 Issue 4. April-2013P a g e29disease - it gradually gets worse - and the patient will probably end up have to take insulin, usually in tablet form. Overweight and obese people have a much higher risk of developing type 2 diabetes compared to those with a healthy body weight. People with a lot of visceral fat, also known as central obesity, belly fat, or abdominal obesity, are especially at risk. Being overweight/obese causes the body to release chemicals that can destabilize the body's cardiovascular and metabolic systems. 3. Gestational Diabetes This type affects females during pregnancy. Some women have very high levels of glucose in their blood, and their bodies are unable to produce enough insulin to transport all of the glucose into their cells, resulting in progressively rising levels of glucose. Diagnosis of gestational diabetes is made during pregnancy. The majority of gestational diabetes patients can control their diabetes with exercise and diet. Between 10% to 20% of them will need to take some kind of blood-glucose-controlling medications. Undiagnosed or uncontrolled gestational diabetes can raise the risk of complications during childbirth. The baby may be bigger than he/she should be. Scientists from the National Institutes of Health and Harvard University found that women whose diets before becoming pregnant were high in animal fat and cholesterol had a higher risk for gestational diabetes, compared to their counterparts whose diets were low incholesterol and animal fats 3.DIABETES COMPLICATIONS:4Two types of diabetes complications (Figure 1) were observed: 1. Macrovascular complication 2. Microvascular complicationFigure 1: Diabetes Complications 4STEM CELLS: Stem cells are biological cells found in all multicellular organisms, that can divide (through mitosis) and differentiate into diverse specialized cell types and can self-renew to produce more stem cells. In mammals, there are two broad types of stem cells (Figure 2): embryonic, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells (these are called pluripotent cells), but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues.Figure 2: Multiple sources of stem cells that have been developed to produce insulin5Vol.1 Issue 4. April-2013P a g e30There arethree accessible sources of autologous adult stem cells in humans:1. Bone marrow, which requires extraction by harvesting,that is, drilling into bone (typically the femur or iliac crest),2. Adipose tissue (lipid cells), which requires extraction byliposuction, and3. Blood, which requires extraction through pheresis,wherein blood is drawn from the donor (similar to a blood donation), passed through a machine that extracts the stem cells and returns other portions of the blood to the donor.Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Highly plastic adult stemcells are routinely used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated) into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture. Embryonic cell lines and autologous embryonic stem cells generated through therapeutic cloning have also been proposed as promising candidates for future therapies 6.Research into stem cells grew out of findings by Ernest A. McCulloch and James E. Till at the University of Toronto in the 1960s 7, 8.Figure 3: Strategies to obtain β cells from organ -specific stem or progenitor cells 9Figure 4: Process of stem cell to become beta cell 10CLINICAL APPLICATIONS OF STEM CELLSMedical researchers anticipate that adult and embryonic stem cells will soon be able to treat cancer, Type 1 diabetes mellitus, Parkinson's disease, Huntington's disease, Celiac Disease, cardiac failure, muscle damage and neurological disorders, and many others (Figure 5). Nevertheless, before stem cell therapeutics can be applied in the clinical setting, more research is necessary to understand stem cell behavior upon transplantation as well as the mechanisms of stem cell interaction with the diseased/injured microenvironment 11. Medical researchers believe that stem cell therapy (Figure 6) has the potential to dramatically change the treatment of human disease. A number of adult stem cell therapies already exist, particularly bone marrow transplants that are used to treat leukaemia 12.Figure 5: Diseases and conditions where stem cell treatment is promising or emerging 13.Vol.1 Issue 4. April-2013P a g e31Figure 6: Stem cell therapy14DIABETES AND STEM CELLS:Patients with type 1 diabetes take insulin shots afew times a day after checking their blood sugar. But a normal pancreas tests the blood sugar every second of the day and adjusts the precise amount of insulin needed. So the problem is that most of the day, the diabetes patient's blood sugar is out of control 15.Although researchers have made enormous stridestoward using stem cells as a potential treatment for type 1 diabetes, there are a number of issues that need to be addressed. These include concerns of both a scientific and societal nature.Issues related to the use of stem cells in the treatment of type 1 diabetes1. Potential risks, including teratomas.2. Challenges related to the transplantation ofisolated cells lacking vascular and neural support. 3. Need for immunosuppression. 4. Ethical acceptance.5. Engraftment of a non-marginal mass of insulin-producing cells for human use (exceeding 15 000 IE/kg of body weight).First, before any new treatment is used in the human population, it of course needs to undergo rigorous testing and screening for potential side effects. This concern for safety is probably even more heightened when it comes to stem cells. One complication that has already arisen in the mouse models is the formation of teratomas with the potential for malignancy.This is especially a concern with ESCs (EmbryonicStem Cell), where groups have already observed teratoma formation when grafts were histologically assessed. These tumors form due to the implantation of undifferentiated cell populations into an immunodeficient host; such as would be the case if these cells were introduced into a patient on necessary immunosuppressives. It would be difficult to treat patients with a cell-replacement productfor diabetes if it could not be demonstrated to be safe with respect to teratoma formation. Future protocols will therefore need some form of purification or screening step in order to eliminate and screen for the presence of unsafe cells respectively. Of course, if the replacement therapy could be administered without immunosuppressive drugs, the possibility of teratoma formation would no doubt be lessened. The pancreas is a very complex organ with many functions both endocrine and exocrine in nature. Endogenous β-cells develop through a regulated pathway to eventually become the insulin-producing cells which regulate euglycaemia. The mature cells are part of an integrated milieu of cells and cellular signals together with their cellular products. Even the islets transplanted in current clinical islet-transplant programmes contain β-cells along with α- and δ-cells. In addition, endogenous islets are situated in a complex array of vascular and neural supports. How will stem-cell-derived products behave once transplanted? Depending on the transplant site, will they be able to develop these same vascular and neural connections? Even though some groups have shown the production of glucagon and somatostatin in their cell populations, how will these cells interact once transplanted into an unfamiliar environment? Will it be necessary to have a complete islet structure with the appropriate endocrine hormone composition or will it be sufficient to have appropriate numbers of β-cells?Recent studies have demonstrated that purified β-cell preparations are sufficient to treat the diabetic condition in rodents. In addition, it is likely that β-cells are able to adapt to changes in their glucose environment and adapt to insulin resistance through both neogenesis and cell replication. Will stem-cell-derived β-cells have these abilities or, even worse, will increased insulin resistance cause these β-cells to expand uncontrollably? Further studies will no doubt need to address these issues. Although a cellular-based replacement therapy for diabetes would overcome one of the major limitations of our current islet transplantation protocol, it is still likely to be subject to the other major limitation.Unless a protocol is developed where stem cellsare derived from a patient’s own cellular population (and even here the issue of the autoimmune insult which caused the disease needs to be addressed), some form of immunosuppression or an immuno-isolation delivery strategy will be required. Clearly our knowledge of the immune system and therapies targeted at diminishing its effects has made great strides, but patients are faced with unpleasant and, at times, unbearable side effects from immunosuppressive agents. Thus, although stem cells could conceivably circumvent the need to rely on organ donation for a source of insulin-producing tissue, they mayVol.1 Issue 4. April-2013P a g e32do nothing to relieve the toxicity associated with the post-implantation drug therapy, unless additional immunomodulatory regulatory stem cells are co-transplanted or specific tolerization strategies are developed. Any future stem-cell-related therapies will no doubt be facilitated by improvements in the tolerance of our current anti-immune therapies. Underlying this point is the need to continue with the current research into islet transplantation, as any further advances made there will no doubt have a positive impact upon the development of any cellular-based diabetes therapy. When considering current clinical islet transplantation programmes another interesting issue arises.Current guidelines employ a minimal islet implantmass of 10000 IE (islet equivalent)/kg of body weight, usually obtained by harvesting two pancreases. Even with this amount of islets, most patients need to return to a small amount of insulin at the 2–3-year mark. It still remains to be seen how stem cells can compare, in terms of insulin production and potency, to this amount of islets. Although Kroon et al. have stated that their stem-cell-derived products are achieving a production rate of C-peptide equivalent to 3000–5000 human islets in their mouse model; this is far short of the levels needed to support an adult human. The scale-up potential of stem cells will, therefore, need to be studied further to provide an excess of transplanted cellular reserve. The last issue, and certainly by no means the least important, is the intense ethical debate that forms from any discussion of stem cells. Beginning with the cloning of Dolly the sheep in 1997, cultural fires have ignited with any mention of cloning or genetic engineering. These fires have now spread to the field of stem cell research. Here, it appears the issues revolve mainly around ESCs and their derivation. In short, ESCs are usually derived from unused embryos at in vitro fertilization clinics. Full informed consent needs to be given by the donor before these cells can be used. Unfortunately, the embryo, in most cases, needs to be destroyed to harvest the cells it contains. It appears that the majority of the controversy develops from this derivation process and the question of when life actually begins. On the one hand are those that believe that stem cell research violates the sanctity of life. They are of the mind that life is inviolable and begins when a sperm fertilizes an egg.They are in direct contrast with those that take amore utilitarian view on the issue where the potential benefits, in terms of cellular therapies for medical conditions, outweigh the potential costs. Although this debate continues, the full extent of its impact on research using stem cells remains to be seen. Even though adult stem cells will probably avoid much of the negativepublicity generated by their embryonic cousins, any potential clinical uses involving stem cells will need to be accompanied by a thorough explanation of their derivation. Although unlikely to end the debate, it will hopefully ease some of the tension that has built up around this topic. A longer-term solution to the human ESC ethical dilemma will probably be the induced pluripotent stem cell approach. In this case, adult cells are reprogrammed to the pluripotent state to be subsequently differentiated to functional β-cells. The further safety concerns associated with ex vivo gene therapy with oncogenes which, together with a better understanding of the genetic and epigenetic stability, adds a further safety burden probably to be solved in the future 5.STEM CELLS USE IN ISLET CELL TRANSPLANTS 16, 17To cure type 1 diabetes, stem cell replacementneeds to be more than simply a case of swapping insulin-producing cells from a healthy pancreas with those destroyed by diabetes in a diabetic patient. Numerous complications preclude this as a simple treatment. Islet cell transplants are one form of procedure that has proven effective. In type 1 diabetes, the body’s immune system becomes programmed to attack the beta cells, so the patient must take immuno-suppressant drugs to prevent this happening. In the future, it may be possible to grow islet cells from patient’s existing islet cells, however, a patient with type 1 diabetes would still need immune suppressants to prevent the cells being destroyed.Curative therapy for diabetes mellitus mainlyimplies replacement of functional insulin-producing pancreatic β cells, with pancreas or islet-cell transplants. However, shortage of donor organs spurs research into alternative means of generating β cells from islet expansion, encapsulated islet xenografts, human islet cell-lines, and stem cells. Stem cell therapy here implies the replacement of diseased or lost cells from progeny of pluripotent or multipotent cells. Both embryonic stem cells (derived from the inner cell mass of a blastocyst) and adult stem cells (found in the postnatal organism) have been used to generate surrogate β cells or otherwise restore β cell functioning.CONCLUSION:Diabetes mellitus (DM) is one of the prevailinghormonal diseases. It is often called a “non -infectious epidemic disease of the 21st century”. 200 million people have diabetes worldwide, and their number is increasing. By 2025, the number of diabetes mellitus sufferers is expected to increase by 50%. Diabetes mellitus is characterized by a high blood sugar (glucose) level resulting from either insufficient insulin production in the body (typeVol.1 Issue 4. April-2013P a g e33I diabetes) or body cells improper response to the produced insulin (type II diabetes). Stem cell treatment of diabetes leads to significant improvement in patient’s condition. In some cases at the early stages of the disease, it may result even in the full recovery. After the stem cell therapy, diabetes mellitus patients report normalization of immunological and haematological indices, reduced manifestations of micro- and macroangiopathy and trophic disturbances, restoration of workability. In case of treatment the disease progression is hindered, and periods of remission become 2–3 times longer. Severity and frequency of diabetes complications decrease. Life quality and average life expectancy increase. Indications for diabetes treatment with fetal stem cells.Stem cell treatment of diabetes is indicated at allstages of the disease. It is, however, the most effective in the cases of:►new-onset insulin-dependent diabetes mellitus;►diabetes mellitus complicated by diabetic glomerulosclerosis, chronic renal failure (grade 1 and 2) and anemic syndrome;►labile course of diabetes mellitus;►diabetes mellitus associated with infection complications and immune deficiency;►presence of resistant to treatment trophic ulcers of the soft tissues;►secondary sulfanilamide resistance and the need for patients with diabetes mellitus type II to transfer to insulin therapy.To cure type 1 diabetes, stem cell replacement needs to be more than simply a case of swapping insulin-producing cells from a healthy pancreas with those destroyed by diabetes in a diabetic patient. Numerous complications preclude this as a simple treatment. Islet cell transplants are one form of procedure that has proven effective. In type 1 diabetes, the body’s immune system becomes programmed to attack the beta cells, so the patient must take immuno-suppressant drugs to prevent this happening. In the future, it may be possible to grow islet cells from patient’s existing islet cells, however, a patient with type 1 diabetes would still need immune suppressants to prevent the cells being destroyed.REFERENCES:1. /info/diabetes/#.UJhTWDzqnf12. /releases/246471.php3. /releases/240833.php.4. /history-of-diabetes/diabetes-complications-diagram/5. Michael DM, Christian TOSO, Emmanuel EB, JamesAMS. Are stem cells a cure for diabetes? Clinical Science 2010; 118: 87–97.6. Tuch BE. Stem cells —a clinical update. AustralianFamily Physician,\ 2006; 35(9): 719–21.7. Becker AJ, McCulloch EA, Till JE. Cytologicaldemonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963; 197(4866): 452–454.8. Siminovitch L, McCulloch EA, Till JE. The distribution ofcolony-forming cells among spleen colonies. Journal of Cellular and Comparative Physiology 1963; 62(3): 327–336.9. /nrendo/journal/v6/n3/fig_tab/nrendo.2009.274_F2.html10. /index.cfm?page_id=10976011. Singec I, Jandial R, Crain A, Nikkhah G, Snyder EY. Theleading edge of stem cell therapeutics. Annu. Rev. Med. 2007; 58: 313-328.12. Csaki C, Matis U, Mobasheri A, Ye H, Shakibaei M.Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultra structural study. Histochem. Cell Biol. 2007; 128(6): 507–20.13. https:///wiki/Stem_cell 14. http://stemcelltherapy-india.blogspot.in/15. /viewarticle/776768 16. /Diabetes-And-Stem-Cell-Research.html17. Mehboob AH, Neil DT. Stem-cell therapy for diabetesmellitus. Lancet 2004; 364: 203–05.。