山东省临沂市苍山县2014-2015学年高二下学期期中考试数学(文)试题
- 格式:doc
- 大小:515.00 KB
- 文档页数:8
山东省临沂市苍山县2012-2013学年高二数学下学期期中质量检测试题理(扫描版)苍山县2012-2013学年第二学期期中质量检测高二数学(理)答案一、选择题1 C2 A3 B4 C5 B6 A7 D8 A9 C 10 A 11 D 12 B二、填空题13 2 14 1 15 ln2 16 ②③④三、解答题17.解:)3)(1(3963)(2-+=--='x x x x x f ,……………4分令0)(='x f ,得11-=x ,32=x .……………5分x 变化时,)(x f '的符号变化情况及)(x f 的增减性如下表所示:……………8分(1)由表可得函数的递减区间为)3,1(-.……………10分(2)由表可得,当1-=x 时,函数有极大值为16)1(=-f ;当3=x 时,函数有极小值为16)3(-=f .……………12分18.解:设虚数yi x z +=(R y x ∈、,且0≠y ),……………2分z z 5+yi x yi x +++=5iy x y y y x xx )5(52222+-+++=,……………6分由已知得⎪⎩⎪⎨⎧-=+=+-.3,0522y x y x yy ……………10分∵0≠y ,⎩⎨⎧-=+=+,3,522y x y x 解得⎩⎨⎧-=-=,2,1y x 或⎩⎨⎧-=-=.1,2y x∴存在虚数i z 21--=或i z --=2满足以上条件.……………12分19.解:(1)∵0≥+b a ,∴b a -≥.……………1分由已知函数的单调性,得)()(b f a f -≥.……………4分又0≥+b a )()(a f b f a b -≥⇒-≥⇒.……………5分两式相加,得)()()()(b f a f b f a f -+-≥+.……………6分(2)逆命题:)()()()(b f a f b f a f -+-≥+⇒0≥+b a .……………7分 下面用反证法证之.假设0<+b a ,那么 ……………8分⎩⎨⎧-<⇒-<⇒<+-<⇒-<⇒<+)()(0)()(0a f b f a b b a b f a f b a b a)()()()(b f a f b f a f -+-<+⇒.……………10分这与已知矛盾,故只有0≥+b a .逆命题得证.……………11分综上所述,可知0≠bc .……………12分20. 解:设参加旅游的人数为x ,旅游团收费为y 则依题意有()f x =1000x-5(x-100)x (100≤x ≤180)……………4分令()1500100f x x '=-=得x=150……………8分又(100)100000f =, (150)112500f =,(180)108000f =……………10分所以当参加人数为150人时,旅游团的收费最高,可达112500元。
2015学年第二学期高二期中考试数学参考答案一、选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)9.200x x m m +-=>若有实数根,则, 2 10. -6 ,34y x =±11. 18y =-,12 12. 16,23π 13. y=3x+114. -2 15.三、解答题(本大题共5小题,第16题14分,第17—20题每题15分,共40分,解答应写出文字说明、证明过程或演算步骤.)16. (本小题满分14分)解答: 解:由题意得: (Ⅰ),解得:,∴P (﹣1,﹣1).∵所求直线与直线l 3:3x+2y ﹣1=0平行, ∴所求直线方程为:3x+2y+5=0. (Ⅱ)直线MN 所在直线的斜率为3, ∵所求直线与两点M (1,2),N (﹣1,﹣4)所在直线垂直, ∴k=13-, 则所求直线方程为:x+3y+4=0.17. (本小题满分15分)解:(1)()(2)'(),0x a x a f x x x-+=-> 。
由于a>0,所以增区间为(0,a),减区间为(,)a +∞ (2)(1)11,f a e a e =-≥-∴≥。
由(1)知f(x)在[1,e]上单调递增,故只要222(1)11()f a e f e a e ae e=-≥-⎧⎨=-+≤⎩,解得a=e 。
18、(本小题满分15分)解:(3)1019.(本小题满分15分)解:(Ⅰ)由于点A ,A '关于平面PBC 对称,则连线AA '⊥面PBC ,所以有BC ⊥AO ①延长PO 交BC 于E ,连结AE ,由PA ⊥平面ABC 知:BC ⊥PA ② 由①②知: BC ⊥平面PAE 且PO ⊆平面PAE ,所以BC ⊥PO 得证.(Ⅱ)由(Ⅰ)知:BC ⊥AE ,因为AB=AC=BC=1,所以E 是BC的中点,故可求2AE =, 在Rt PAE ∆中,利用等面积法可求:12PA AE AO PE ⋅===则21AA AO '==(Ⅲ)根据对称易求:''1A B AC==,从而知'A ABC 为正四面体.取AB 中点为G ,连',AG CG ,易证:'AGC∠即为二面角A AB C '--的平面角 在'AGC ∆中,''12AG CG AC ===,由余弦定理知: '22'2''1cos 23AG CG AC AGC AG CG +-∠==⋅ 故二面角A AB C '--的余弦值为13.20、(本小题满分15分)解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),因为e =22,所以c a =22据题意⎝ ⎛⎭⎪⎫c ,22在椭圆上,则c 2a 2+12b 2=1,于是12+12b 2=1,解得b =1, 因为a =2c ,a 2-c 2=b 2=1,则c =1,a = 2 故椭圆的方程为x 22+y 2=1(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,点P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,得(2k 2+1)x 2+4kmx +2m 2-2=0 所以x 1+x 2=-4km 2k +1,x 1x 2=2m 2-22k +1于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2·2m 2-22k 2+1+km ·-4km 2k 2+1+m 2=m 2-2k 22k 2+1因为OP →⊥OQ →,所以x 1x 2+y 1y 2=2m 2-22k 2+1+m 2-2k 22k 2+1=3m 2-2k 2-22k 2+1=0,即3m 2-2k 2-2=0,所以m 2=2k 2+23设原点O 到直线l 的距离为d ,则d =|m |k 2+1=m 2k 2+1=2k 2+23k 2+1=63当直线l 的斜率不存在时,因为OP →⊥OQ →,根据椭圆的对称性,不妨设直线OP ,OQ 的方程分别为y =x ,y =-x 可得P ⎝⎛⎭⎪⎫63,63,Q ⎝ ⎛⎭⎪⎫63,-63或者P ⎝ ⎛⎭⎪⎫-63,-63,Q ⎝ ⎛⎭⎪⎫-63,63.此时,原点O 到直线l 的距离仍为63综上分析,点O 到直线l 的距离为定值63。
2014-2015学年度⾼⼆第⼆学期期中考试(⽂科)数学试题(带答案)2014-2015学年⾼⼆第⼆学期期中考试数学试卷(⽂)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。
第Ⅰ卷1⾄2页,第Ⅱ卷3⾄4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。
第Ⅰ卷1⾄2页,第Ⅱ卷3⾄4页。
2. 答题前,考⽣务必将⾃⼰的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上⽆效。
第Ⅰ卷⼀、选择题:该题共12个⼩题,每个⼩题有且只有⼀个选项是正确的,每题5分,共60分。
1.已知△ABC 中,tan A =-512,则cos A 等于()A.1213B.513 C .-513 D .-12132.函数y =A sin(ωx +φ) (ω>0,|φ|<π2,x ∈R)的部分图象如图所⽰,则函数表达式为 ( )A .y =-4sin π8x +π4B .y =4sin π8x -π4C .y =-4sin π8x -π4D .y =4sin π8x +π43.若2α+β=π,则y =cos β-6sin α的最⼤值和最⼩值分别是( )A .7,5B .7,-112C .5,-112D .7,-54、已知某⼏何体的三视图如图所⽰,则该⼏何体的体积为()( )A.8π3 B .3π C.10π3 D .6π5.P 为ABC ?所在平⾯外⼀点,PB PC =,P 在平⾯ABC 上的射影必在ABC ?的()A .BC 边的垂直平分线上B .BC 边的⾼线上 C .BC 边的中线上D .BAC ∠的⾓平分线上6.有⼀块多边形的菜地它的⽔平放置的平⾯图形的斜⼆测直观图是直⾓梯形,如图所⽰45ABC ∠=2,1AB AD DC BC ,==,⊥,则这块菜地的⾯积为.()A .2+B .C .22+D . 21+7. 下列条件中,能判断两个平⾯平⾏的是()A .⼀个平⾯内的⼀条直线平⾏于另⼀个平⾯;B .⼀个平⾯内的两条直线平⾏于另⼀个平⾯C .⼀个平⾯内有⽆数条直线平⾏于另⼀个平⾯D .⼀个平⾯内任何⼀条直线都平⾏于另⼀个平⾯8.正四棱锥(顶点在底⾯的射影是底⾯正⽅形的中⼼)的体积为12,底⾯对⾓线的长为26,则侧⾯与底⾯所成的⼆⾯⾓为( ) A .30° B .45° C .60° D .90° 9.已知函数sin()y A x m ω?=++的最⼤值为4,最⼩值为0,最⼩正周期为2π,直线3x π=是其图象的⼀条对称轴,则下列各式中符合条件的解析式为()A .4sin(4)3y x π=+B .2sin(2)23y x π=++C .2sin(4)23y x π=++D .2sin(4)26y x π=++10.已知函数()cos (0)f x x x ωωω+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是()A .5[,],1212k k k Z ππππ-+∈B .511[,],1212k k k Z ππππ++∈C .[,],36k k k Z ππππ-+∈D .2[,],63k k k Z ππππ++∈11.实数x 、y 满⾜3x 2+2y 2=6x ,则x 2+y 2的最⼤值为()A 、27 B 、4 C 、29D 、512.极坐标⽅程52sin42=θρ表⽰的曲线是( )A 、圆B 、椭圆C 、双曲线的⼀⽀D 、抛物线第Ⅱ卷⼆、填空题:该题共4个⼩题,每题5分,共20分,请将答案规范书写在答题卡的相应位置。
山东省临沂市苍山县2012-2013学年高二数学下学期期中质量检测试题文(扫描版)苍山县2012-2013学年第二学期期中质量检测答案高二数学(文) 201304一.选择题1.C 2.A 3.D 4.C 5.C 6.B 7.B 8.D 9.D . 10. C 11. D 12. B .二、填空题13.1.5 14.815. 811312111098765=++++++++ 16. i 21+三、解答题17.证明:Q ,,a b c ,都是正实数,∴要证a a c b b c +<+.只要证()()a b c b a c +<+,即证ab ac ab bc +<+,也就是a b <,Q a b <,∴原不等式成立。
18.19.解::设01242≤--x x 的解集为[]62,A -= ,)m ()m x )(m x (2101>≤-+-的解集为[]m ,m B -=1,p ⌝Q 是q ⌝充分不必要条件, p ∴是q 的必要不充分条件,B ∴A , ⎩⎨⎧≤-≥-∴621m m , 又21>m ,321≤<∴m .20.(1).解析: )1(122i i z z +-+=---+-=)1)(1()1(2i i i i i i 2)11()1()1(-=+--=+. (2).解析: 因为i i z 46)32(+=-,所以i i z 3246-+=,所以=||z 2|32||23|2=-+i i . 21.解:(1)列联表如下:--------------------------------------------------4分(2) 提出假设0H :“休闲方式与性别无关”,------------------6分由公式算得k =124(43×33-27×21)270×54×64×60≈6.201,----------------9分 即我们有95%的把握认为“休闲方式与性别有关”.------------------------------12分22.证明:(1)任取211x x <<-,则 )()(21x f x f -)12(12221121+-+-+-+=x x a x x a x x +-=-)1(212x x x a a )1)(1()1)(2()1)(2(211221+++--+-x x x x x x +-=-)1(212x x x a a )1)(1()(32121++-x x x x , 因为211x x <<-,所以021<-x x .又1>a ,所以121<-x x a,且02>x a ,011>+x ,012>+x 所以+--)1(212x x x a a 0)1)(1()(32121<++-x x x x ,即)()(21x f x f <. 所以函数)(x f 在),1(+∞-上为增函数.(2)设存在)1(000-=/<x x 满足0)(0=x f ,则12000+--=x x a x ,且100<<x a ,所以112000<+-<x x ,解得2210<<x .与假设00<x 矛盾,故方程0)(=x f 没有负数根.。
2014—2015学年度下期期中考试高二数学试题(文科)时间:120分钟 总分:150分一、选择题(每小题5分,共50分)1.设集合}5,4,3,2,1{=U ,}2,1{=A ,}4,3,2{=B ,则)(B A U 等于( ) A .}2{B .}5{ C.}4,3,2,1{D .}5,4,3,1{2.211i i-+=( )A.iB. i - C .1i + D. 1i -3.命题“若00,022===+b a b a 且则”的逆否命题是( )A .若0,0022≠+≠≠b a b a 则或B .若00,022≠≠≠+b a b a 或则C .若0,0022≠+==b a b a 则且D .若00,022≠≠≠+b a b a 且则4.下列命题正确的是( )A .若两个平面都垂直于第三个平面,则这两个平面平行B .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C .若两条直线和同一个平面所成的角相等,则这两条直线平行D .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 5.圆1)3()1(22=++-y x 的一条切线方程是( ) A .0x y -=B .0x y +=C .0x =D .0y =6.若,x R ∈则4x <成立的一个必要不充分条件是( ) A .33x -<< B .02x << C .4x < D .216x < 7.已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于( ) A .πB .4πC .8πD .9π8.已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,直线2a x c =与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则双曲线的离心率为( )A .1B .2CD9.(,)Z x yi x y R =+∈,当1Z =时,,x y 满足20y kx k -+=,则k 的取值范围( )A.⎡⎢⎣⎦B.30,3⎡⎫⎛⎤⎪⎢⎥⎣⎭⎝⎦ C .⎡⎣D .)(0,3⎡⎤⎣⎦10. 定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[]2,0时,f (x ) =x 2-2x ,若x ∈[]4,2-- 时,13()()018f x t t--≥恒成立,则实数t 的取值范围是( ) A .(-∞,-1]∪(0,3] B .(-∞,-3]∪(0,3] C .[-1,0) ∪[3,+∞)D .[-3,0) ∪[3,+∞)二、填空题(每小题5分,共25分)11.在等差数列{}n a 中,1910a a +=,则5a 的值为 .12.已知向量(43)a =,,(12)b =-,,那么a 与b 夹角的余弦值为 .13.若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为__________.14.已知A (4,0)、B (2,2)是椭圆192522=+y x 内的点,M 是椭圆上的动点,则|MA |+|MB |的最大值为 . 15.函数321()233f x x x x m =-++,则以下四个结论: ①若()y f x =有三个不同的零点,则403m -<<;②m R ∃∈,使得()y f x =的图像与x 轴没有交点; ③m R ∃∈,使得()y f x =的图像关于点(1,1)成中心对称;④m R ∀∈,在()y f x =的图像上都存在四个点A,B,C,D ,使得四边形ABCD 是一个菱形.其中真命题的序号是 .三、解答题(本大题共6个小题,满分75分,解答题应写出必要的文字说明、解答过程或推理步骤)16.(本题12分) 在ABC ∆中,cos 105B C == (1)求sin A ; (2)设BC =求CA CB 值.17.(本题12分) 顶点在原点,焦点在y 轴的抛物线经过点11,4A ⎛⎫⎪⎝⎭. (Ⅰ)求抛物线的焦点F 的坐标; (Ⅱ)求抛物线在点A 处的切线方程.18.(本题12分) 已知数列{}n a 的前n 项和为n S ,且213*n n S a (n N )=+∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n a n 的前n 项和为n T ,求数列{}n T 的通项公式.19.(本题12分)如图所示,PD ⊥底面ABCD ,四边形ABCD 是正方形,PD =DC ,E 是PC 的中点.(1)证明:PA ∥平面BDE ;(2)求二面角B —DE —C 的平面角的余弦值.20.(本题满分13分) 已知函数)ln 3(1)(x a xx x f -+-=(0>a ). BCEDAP(Ⅰ)若1=a ,求)(x f 在(]1,0上的最大值; (Ⅱ)若)1,0(∈x ,求)(x f 的单调区间.21.(本小题满分14分) 设函数sin ()x xf x x+=. (1)判断)(x f 在区间),0(π上的增减性并证明之;(2)若不等式0≤a ≤x x -+-43对]4,3[∈x 恒成立, 求实数a 的取值范围M. (3)设0≤x ≤π,若a M ∈,求证:[](21)sin (1)sin (1)0a x a a x -+--≥.。
2014-2015学年第二学期期中测试高二文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,第Ⅰ卷为1-12题,共60分,第Ⅱ卷为13-22题,共90分. 全卷共计150分. 考试时间为120分钟. 注意事项:1、答第一卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上.3、考试结束,监考人员将答题卡收回. 附:(1)回归直线方程:y a b x ∧∧∧=+ ;(2)回归系数:1221ni ii ni i x y nx yb x nx∧==-=-∑∑,a y b x ∧∧=-,11n i i x x n ==∑ ,11ni i y y n ==∑.第I 卷 (本卷共计60 分)一、选择题:(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若p ⌝是q ⌝的必要不充分条件,则p 是q 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分且必要条件D.既不充分也不必要条件2.下列函数中,定义域是R 且为增函数的是 ( )A .xy e-= B .3y x = C . y lnx = D .y x = 3.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点。
以上推理中 ( )A .结论正确B .大前提错误C .小前提错误D .推理形式错误4.若复数21(1)()z a a i a R =-++ ∈是纯虚数,则1z a+的虚部为 ( ) A .25- B .25i - C .25 D .25i5.定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为 ( ) A .0 B .2 C .3 D .66.函数243,[0,3]y x x x =-+∈的值域为 ( ) A. [0,3] B. [1,0]- C. [1,3]- D. [0,2]7.如图所示,圆O 的直径6AB =,C 为圆周上一点, 3BC =过C 作圆的切线l , 过A 作l 的垂线AD ,垂足为D ,则DAC ∠ =( )A.15︒B.30︒C.45︒D.60︒8.已知()f x 、()g x 均为[]1,3-上连续不断的曲线,根据下表能判断方程()()f x g x =有实数解的区间是 ( )A. (-C . (0,1)D .(2,3)9.直线12(t )2x ty t=+⎧⎨=+⎩是参数被圆229x y +=截得的弦长等于( )A.125 B. C. 5 10.若,{1,0,1,2}a b ∈-,则函数2()2f x ax x b =++有零点的概率为 ( )A .316B .78C .34D .5811.若32()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值范围是 ( )A .12a -<<B .2a >或1a <-C .2a ≥或1a ≤-D .12a a ><-或12. 已知()f x 是定义在R 上周期为4的奇函数,当(0,2]x ∈时,2()2log xf x x =+,则(2015)f = ( )A .2-B .21C .2D .5第II 卷 (本卷共计90 分)注意事项:请用黑色墨水签字笔在答题卡...上作答,在试题卷上答题无效. 二、填空题:(本大题共4小题,每小题5分,满分20分)13.在极坐标系中,点()20P ,与点Q关于直线2sin θ=对称,则PQ = . 14.已知复数122,34,z m i z i =+=-若12z z 为实数,则实数m 的值为 。
高二学分认定考试语文试题本试卷分第Ⅰ卷和第II卷两部分,共8页。
满分150分。
考试用时150分钟。
第Ⅰ卷(选择题,36分)一、(15分,每小题3分)1.下列各句中,没有错别字的一句是A.臧克家先生在《往事忆来多》一文中曾经说过,他崇拜鲁迅、郭沫若、茅盾先生,因为在他的眼里,他们是万众景仰的革命先驱,文坛巨擘。
B.当年,第一次去五台山旅游,没用任何交通工具,一步一步走上去,一种征服感灌注全身。
希望五台山这个佛教圣地,不要遭到金钱的坫污。
C.今日新闻界,固然涌现了不少崭露头角的新秀,但真正被全社会认可的名记者却屈指可数,至于宏观天下大势、纵论四海风云的记者,更是寥若辰星。
D.春暖花开时节,随着游客纷至踏来,沂蒙革命老区的乡村农家乐门庭若市。
到访的游客带动了旅游消费的的增长,大大提高了这一地区的经济活跃度。
2.依次填入下列横线处的词语,最恰当的一组是①中国和韩国的梦想都是社会和谐、国民幸福,这就如同两国江水在同一片大海中一样,中国梦和韩国梦合二为一就形成了东北亚的梦想。
②对于中国综艺的未来出路,业内人士认为,他山之石只能借鉴,未来3到5 年,将是中国原创综艺节目自主研发的时期。
③日本海上保安厅巡逻艇要求韩方船只停船并接受,但韩方船只“因为机械故障无法听从停船指令”。
双方船只发生紧张对峙。
A.汇合暴发检查B.会合暴发检察C.汇合爆发检查D.会合爆发检察3.下列各句中,加点的成语使用不恰当的一项是A.赵俊方不远千里,自费远赴他乡,将一个素昧平生....、在异乡去世的李贵有老人的骨灰盒送回吉林省榆树市正阳街榆树村入土为安,让其“落叶归根”。
B.在西甲第30轮,凭借葡萄牙人的一传一射,“臼衣军团”在客场以2:0的比分战胜巴列卡诺队。
在这场比赛中,C罗当仁不让....,依旧是比赛的主角。
C.7米多长的独木桥,其他新兵练上两三次,就能跑步通过,而他勤学苦练一周后,也还是只能战战兢兢....地在独木桥上挪动,气得班长找到连长大吐苦水。
2014—2015学年度第二学期模块测试一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若复数z 满足(2i)7i z -=-,则z 等于( )A .13i +B .13i -C . 3i -D .3i +1.复数52i=+ A .2i - B .21i 55+ C .105i - D .105i 33- 5.已知函数()f x 的导函数为()f x ',且满足()2(e)ln f x xf x '=+,则(e)=f 'A .1B .-1C .-e -1D .-e 6.若220a x dx =⎰,230b x dx =⎰,20sin c xdx =⎰,则,,a b c 的大小关系是A .a c b <<B .a b c <<C .c b a <<D .c a b << 7.曲线311y x =+在点(1,12)处的切线与两坐标轴围成的三角形面积是A .75B .752C .27D .2728.已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===,现给出如下结论:①(0)(1)0f f ⋅>;②(0)(1)0f f ⋅<;③(0)(3)0f f ⋅>;④(0)(3)0ff ⋅<其中正确结论的序号是A .①③B .①④C .②③D .②④9.设a R ∈,若函数e ,x y ax x R =+∈有大于零的极值点,则A .1a <-B .1a >-C .1e a >-D .1ea <- 10.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则 A .ππ3()2()43f f > B .(1)2()sin16πf f < C .ππ2()()64f f > D .ππ3()()63f f < 2.函数1()f x x =的图象在点(2,(2))f 处的切线方程是( ) A. 40x y -= B. 420x y --= C. 210x y --= D .440x y +-= 3.已知一个二次函数的图象如图所示,那么它与x 轴所围成的封闭图形的面积等于( A. 54 B .π2 C .43 D. 324.()f x '是函数()y f x =的导函数,()y f x '=图象如右图所示,则()y f x =的图象最有可能是( )yO 1 x-1 -1 (A) (B ) (C ) (D )5.函数2()e x f x x =⋅的单调递减区间是( )(A )(2,0)- B )(,2)-∞-,(0,)+∞(C )(0,2)(D )(,0)-∞,(2,)+∞6.“1b ≥-”是“函数21([1,))y x bx x =++∈+∞为增函数”的( )A )充分但不必要条件B )必要但不充分条件 (C )充要条件(D )既不是充分条件也不是必要条件8. 设函数)(x f 的定义域为R ,如果存在函数()(g x ax a =为常数),使得)()(x g x f ≥对于一切实数x 都成立,那么称)(x g 为函数)(x f 的一个承托函数. 已知()g x ax =是函数()e x f x =的一个承托函数,那么实数a 的取值范围是( ) A. 1(0,]e B .1[0,]eC .(0,e]D .[0,e]二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 9. 已知复数1i 1iz -=+,其中i 为虚数单位,那么||z =________. 11. 如果函数()sin f x x =,那么ππ()()66f f '+= ___________. 12.已知322()f x x ax bx a =+++在1x =处有极值10,则a b ⋅=__________.13.已知函数3()3f x x x c =-+的图像与x 恰有两个公共点,则c =__________.14.已知函数()y f x =在定义域3,32⎛⎫-⎪⎝⎭上可导,其图象如图,记()y f x =的导函数()y f x '=,则不等式()0xf x '≤的解集是__________. 15.若函数21()43ln 2f x x x x =-+-,x 在[],1t t +上不单调,则t 的取值范围是__________. 16.若关于x 的不等式(21)ln 0ax x -≥对任意的(0,)x ∈+∞恒成立,则实数a 的值为__________.12. 函数ln ()x f x x=的最大值为___________. 13. 过点)6,25(,与抛物线2x y =相切的直线方程为 .14.设函数()1n n f x x x =+-,其中*n ∈N ,且2n ≥. 给出下列三个结论:①函数3()f x 在区间1(,1)2内不存在零点;②函数4()f x 在区间1(,1)2内存在唯一零点;③设(4)n x n >为函数()n f x 在区间1(,1)2内的零点,则1n n x x +<.其中所有正确结论的序号为___________.三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤 .18.已知函数21()e 2x f x x -=-.(Ⅰ)求函数()f x 的单调区间; (Ⅱ)设b ∈R ,求函数)(x f 在区间[,1]b b +上的最小值.19.设*n ∈N ,函数ln ()n x f x x =,函数e ()xn g x x =,(0,)x ∈+∞. (Ⅰ)当1n =时,写出函数()1y f x =-零点个数,并说明理由;(Ⅱ)若曲线()y f x =与曲线()y g x =分别位于直线1l y =:的两侧,求n 的所有可能取值.17.已知函数()e 1x f x x =--(1)求函数()f x 的最小值;(2)设21()2g x x =,求()y f x =的图象与()y g x =的图象的公共点个数。
苍山县2012-2013学年第二学期期中质量检测答案高二数学(文) 201304一.选择题1.C 2.A 3.D 4.C 5.C 6.B 7.B 8.D 9.D . 10. C 11. D 12. B .二、填空题13.1.5 14.815. 811312111098765=++++++++ 16. i 21+三、解答题17.证明:,,a b c ,都是正实数,∴要证a a c b b c+<+. 只要证()()a b c b a c +<+,即证ab ac ab bc +<+,也就是a b <,a b <,∴原不等式成立。
18.19.解::设01242≤--x x 的解集为[]62,A -= ,)m ()m x )(m x (2101>≤-+-的解集为[]m ,m B -=1, p ⌝是q ⌝充分不必要条件, p ∴是q 的必要不充分条件,B ∴A, ⎩⎨⎧≤-≥-∴621m m , 又21>m , 321≤<∴m .20.(1).解析: )1(122i i z z +-+=---+-=)1)(1()1(2i i i i i i 2)11()1()1(-=+--=+. (2).解析: 因为i i z 46)32(+=-,所以i i z 3246-+=,所以=||z 2|32||23|2=-+i i . 21.解:(1)列联表如下:--------------------------------------------------4分(2) 提出假设0H :“休闲方式与性别无关”,------------------6分由公式算得k =124(43×33-27×21)270×54×64×60≈6.201,----------------9分 即我们有95%的把握认为“休闲方式与性别有关”.------------------------------12分22.证明:(1)任取211x x <<-,则)()(21x f x f -)12(12221121+-+-+-+=x x a x x a x x +-=-)1(212x x x a a )1)(1()1)(2()1)(2(211221+++--+-x x x x x x +-=-)1(212x x x a a )1)(1()(32121++-x x x x , 因为211x x <<-,所以021<-x x .又1>a ,所以121<-x x a,且02>x a ,011>+x ,012>+x 所以+--)1(212x x x a a 0)1)(1()(32121<++-x x x x ,即)()(21x f x f <. 所以函数)(x f 在),1(+∞-上为增函数.(2)设存在)1(000-=/<x x 满足0)(0=x f ,则12000+--=x x a x ,且100<<x a , 所以112000<+-<x x ,解得2210<<x .与假设00<x 矛盾,故方程0)(=x f 没有负数根.。
山东省临沂市苍山县2014-2015学年高二下学期期中数学试卷(文科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(5分)已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈A B.3∉B C.A∩B=B D.A∪B=B3.(5分)用反证法证明命题:“已知a、b∈N*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为()A.a、b都能被5整除B.a、b都不能被5整除C.a、b不都能被5整除D.a不能被5整除4.(5分)已知x,y的取值如下表所示:x 2 3 4y 6 4 5如果y与x呈线性相关,且线性回归方程为,则b=()A.B.C.D.5.(5分)如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列6.(5分)集合M={x|(x﹣1)(x﹣2)<0},N={x|x<a},若M⊆N,则实数a的取值范围是()A.,存在x0∈,使g(x1)=f(x0),则a的取值范围是()A.B.C.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上.. 11.(5分)的共轭复数为.12.(5分)函数y=的定义域是.13.(5分)已知函数y=a x﹣2+3(a>0且a≠1),无论a取何值,该函数的图象恒过一个定点,此定点坐标为.14.(5分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)=.15.(5分)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知z为复数,z+2i和均为实数,其中i是虚数单位.(Ⅰ)求复数z;(Ⅱ)若复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.17.(12分)已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)当a>1时,求使f(x)>0的x的取值范围.18.(12分)已知函数f(x)=b•a x(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x);(2)若不等式()x+()x﹣m≥0在x∈(﹣∞,1]时恒成立,求实数m的取值范围.19.(12分)从某大学中随机选取7名女大学生,其身高x(单位:cm)和体重y(单位:kg)数据如表:编号 1 2 3 4 5 6 7身高x 163 164 165 166 167 168 169体重y 52 52 53 55 54 56 56(1)求根据女大学生的身高x预报体重y的回归方程;(2)利用(1)中的回归方程,分析这7名女大学生的身高和体重的变化,并预报一名身高为172cm的女大学生的体重.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,.20.(13分)已知命题:“∃x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,(1)求实数m的取值集合M;(2)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值范围.21.(14分)已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=+f(x)恒成立.(1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M;(2)证明函数f(x)=log2x属于集合M,并找出一个常数k;(3)已知函数f(x)=log a x( a>1)与y=x的图象有公共点,证明f(x)=log a x∈M.山东省临沂市苍山县2014-2015学年高二下学期期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i考点:复数相等的充要条件.专题:数系的扩充和复数.分析:根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z 的值.解答:解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈A B.3∉B C.A∩B=B D.A∪B=B考点:元素与集合关系的判断.专题:集合.分析:先求出集合A,从而找出正确选项.解答:解:∵|x|≥0,∴|x|﹣1≥﹣1;∴A={y|y≥﹣1},又B={x|x≥2}∴A∩B={x|x≥2}=B.故选C.点评:注意描述法所表示集合的元素.3.(5分)用反证法证明命题:“已知a、b∈N*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为()A.a、b都能被5整除B.a、b都不能被5整除C.a、b不都能被5整除D.a不能被5整除考点:反证法.专题:证明题;反证法;推理和证明.分析:反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.解答:解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b 都不能被5整除”.故选:B.点评:反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.4.(5分)已知x,y的取值如下表所示:x 2 3 4y 6 4 5如果y与x呈线性相关,且线性回归方程为,则b=()A.B.C.D.考点:线性回归方程.专题:计算题.分析:估计条件中所给的三组数据,求出样本中心点,因为所给的回归方程只有b需要求出,利用待定系数法求出b的值,得到结果.解答:解:∵线性回归方程为,又∵线性回归方程过样本中心点,,∴回归方程过点(3,5)∴5=3b+,∴b=﹣故选A.点评:本题考查线性回归方程,考查样本中心点满足回归方程,考查待定系数法求字母系数,是一个基础题,这种题目一旦出现是一个必得分题目.5.(5分)如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列考点:设计程序框图解决实际问题.专题:操作型.分析:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此不难推断程序的功能.解答:解:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此程序的功能为求a,b,c三个数的最小数.故答案选B点评:算法是新课程中的新增加的内容,也必然是新2015届高考中的一个热点,应高度重视.要判断程序的功能就要对程序的流程图(伪代码)逐步进行分析,分析出各变量值的变化情况,特别是输出变量值的变化情况,就不难得到正确的答案.6.(5分)集合M={x|(x﹣1)(x﹣2)<0},N={x|x<a},若M⊆N,则实数a的取值范围是()A.专题:计算题;集合.分析:由题意化简集合M={x|(x﹣1)(x﹣2)<0}=(1,2),再由集合子集运算.解答:解:M={x|(x﹣1)(x﹣2)<0}=(1,2),∵M⊆N,∴2≤a;故实数a的取值范围是7.(5分)由无理数引发的数学危机已知延续带19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴金德分割.试判断,对于任一戴金德分割(M,N),下列选项中不可能恒成立的是()A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素考点:子集与真子集.专题:计算题;集合.分析:由题意依次举例对四个命题判断,从而确定答案.解答:解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<},N={x∈Q|x≥};则M没有最大元素,N也没有最小元素;故B正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;故选C.点评:本题考查了学生对新定义的接受与应用能力,属于基础题.8.(5分)已知条件p:x>1或x<﹣3,条件q:5x﹣6>x2,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:阅读型.分析:通过解二次不等式化简条件q,求出¬q,求出¬p;由于¬p与¬q对应的数集无包含关系,判断出非p是非q的什么条件.解答:解:q:x2﹣5x+6<0解得2<x<3,所以¬q:x≥3或x≤2,又p:x>1或x<﹣3,所以¬p:﹣3≤x≤1,¬p是¬q的充分不必要条件,故选:A.点评:解决一个条件是另一个的什么条件常先化简各个条件,将判断条件问题转化为判断集合的包含关系问题,属于基本知识的考查.9.(5分)有10个乒乓球,将它们任意分成两堆,求出这两堆乒乓球个数的乘积,再将每堆乒乓球任意分成两堆并求出这两堆乒乓球个数的乘积,如此下去,直到不能再分为止,则所有乘积的和为()A.45 B.55 C.90 D.100考点:归纳推理.专题:等差数列与等比数列;推理和证明.分析:用特殊值法,假设每次分出一个,分别求出每一次的乘积,然后等差数列的性质相加可得答案.解答:解:假设每次分堆时都是分出1个球,第一次分完后应该一堆是1个球,另一堆n﹣1个,则乘积为1×(n﹣1)=n﹣1;第二次分完后应该一堆是1个球,另一堆n﹣2个,则乘积为1×(n﹣2)=n﹣2;依此类推最后一次应该是应该一堆是1个球,另一堆1个,则乘积为1×1=1;设乘积的和为T n,则T n=1+2+…+(n﹣1)=n(n﹣1)当n=10时,T10=×10×(10﹣1)=45故选:A点评:本题主要考查等差数列的求和.属基础题.在解答选择填空题时,特殊值法是常用方法之一.解决本题的关键在于特殊值法的应用.10.(5分)f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈,存在x0∈,使g(x1)=f(x0),则a的取值范围是()A.B.C.考点:函数的值域;集合的包含关系判断及应用.专题:计算题;压轴题.分析:先求出两个函数在上的值域分别为A、B,再根据对任意的x1∈,存在x0∈,使g (x1)=f(x0),集合B是集合A的子集,并列出不等式,解此不等式组即可求得实数a的取值范围,注意条件a>0.解答:解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在上的值域分别为A、B,由题意可知:A=,B=∴∴a≤又∵a>0,∴0<a≤故选:A点评:此题是个中档题.考查函数的值域,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上.. 11.(5分)的共轭复数为﹣i.考点:复数的基本概念.专题:计算题.分析:根据复数的除法法则,化简得=+i,再由共轭复数的定义即可得到答案.解答:解:∵==+i,∴的共轭复数为﹣i故答案为:﹣i点评:本题给出复数,求它的共轭复数,着重考查了复数的四则运算和共轭复数的概念等知识,属于基础题.12.(5分)函数y=的定义域是(﹣∞,0].考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由函数y的解析式得,二次根式的被开方数大于或等于0,列出不等式,求解集即可.解答:解:∵函数y=,∴0.2x﹣1≥0,∴0.2x≥1,∴x≤0;∴函数y的定义域是(﹣∞,0].故答案为:(﹣∞,0].点评:本题考查了求函数定义域的问题,解题时应根据函数的解析式,列出使函数解析式有意义的不等式(组),求出解集,得出函数的定义域,是基础题.13.(5分)已知函数y=a x﹣2+3(a>0且a≠1),无论a取何值,该函数的图象恒过一个定点,此定点坐标为(2,4).考点:指数函数的单调性与特殊点.专题:函数的性质及应用.分析:利用指数函数过定点的性质进行求解即可.解答:解:∵y=a x过定点(0,1),∴将函数y=a x向右平移2个单位,再向上平移3个单位得到y=a x﹣1+3,此时函数过定点(2,4),故答案为:(2,4).点评:本题主要考查指数函数过定点的性质,如果x的系数为1,则可以使用平移法,但x的系数不为1,则用解方程的方法比较简单.14.(5分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)=﹣2.考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:运用奇函数的定义,已知解析式,可得f(0)=0,f(2)=﹣2,即可得到结论.解答:解:f(x)为R上的奇函数,则f(﹣x)=﹣f(x),即有f(0)=0,f(﹣2)=﹣f(2),当x<0时,f(x)=log2(2﹣x),f(﹣2)=log2(2+2)=2,则f(0)+f(2)=0﹣2=﹣2.故答案为:﹣2.点评:本题考查函数的奇偶性的运用:求函数值,考查运算能力,属于基础题.15.(5分)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是甲.考点:进行简单的合情推理.专题:探究型;推理和证明.分析:利用反证法,即可得出结论.解答:解:假设甲说的是假话,即丙考满分,则乙也是假话,不成立;假设乙说的是假话,即乙没有考满分,又丙没有考满分,故甲考满分;故答案为:甲.点评:本题考查进行简单的合情推理,考查学生分析解决问题的能力,比较基础.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知z为复数,z+2i和均为实数,其中i是虚数单位.(Ⅰ)求复数z;(Ⅱ)若复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.考点:复数代数形式的混合运算;复数的代数表示法及其几何意义.专题:计算题.分析:(I)设出复数的代数形式,整理出z+2i和,根据两个都是实数虚部都等于0,得到复数的代数形式.(II)根据上一问做出的复数的结果,代入复数(z+ai)2,利用复数的加减和乘方运算,写出代数的标准形式,根据复数对应的点在第一象限,写出关于实部大于0和虚部大于0,解不等式组,得到结果.解答:解:(Ⅰ)设复数z=a+bi(a,b∈R),由题意,z+2i=a+bi+2i=a+(b+2)i∈R,∴b+2=0,即b=﹣2.又,∴2b+a=0,即a=﹣2b=4.∴z=4﹣2i.(Ⅱ)由(Ⅰ)可知z=4﹣2i,∵(z+ai)2=(4﹣2i+ai)2=2=16﹣(a﹣2)2+8(a﹣2)i对应的点在复平面的第一象限,∴解得a的取值范围为2<a<6.点评:本题考查复数的加减乘除运算,考查复数的代数形式和几何意义,考查复数与复平面上点的对应,考查解决实际问题的能力,是一个综合题.17.(12分)已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)当a>1时,求使f(x)>0的x的取值范围.考点:函数奇偶性的判断;对数的运算性质;对数函数的定义域;对数函数的单调性与特殊点.专题:计算题.分析:(1)根据对数的性质可知真数大于零,进而确定x的范围,求得函数的定义域.(2)利用函数解析式可求得f(﹣x)=﹣f(x),进而判断出函数为奇函数.(3)根据当a>1时,f(x)在定义域{x|﹣1<x<1}内是增函数,可推断出f(x)>0,进而可知进而求得x的范围.解答:解:(1)f(x)=log a(x+1)﹣log a(1﹣x),则解得﹣1<x<1.故所求定义域为{x|﹣1<x<1}.(2)f(x)为奇函数由(1)知f(x)的定义域为{x|﹣1<x<1},且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣=﹣f(x),故f(x)为奇函数.(3)因为当a>1时,f(x)在定义域{x|﹣1<x<1}内是增函数,所以.解得0<x<1.所以使f(x)>0的x的取值范围是{x|0<x<1}.点评:本题主要考查了函数的定义域,奇偶性的判断和单调性的应用.要求考生对函数的基本性质熟练掌握.18.(12分)已知函数f(x)=b•a x(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x);(2)若不等式()x+()x﹣m≥0在x∈(﹣∞,1]时恒成立,求实数m的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数单调性的应用.专题:计算题;综合题;转化思想;待定系数法.分析:(1)根据函数f(x)=b•a x(其中a,b为常量,且a>0,a≠1)的图象经过点A (1,6),B(3,24),把A(1,6),B(3,24)代入f(x)=b•a x,解此方程组即可求得a,b,的值,从而求得f(x);(2)要使()x+()x≥m在(﹣∞,1]上恒成立,只需保证函数y=()x+()x在(﹣∞,1]上的最小值不小于m即可,利用函数的单调性求函数的最小值,即可求得实数m的取值范围.解答:解:(1)把A(1,6),B(3,24)代入f(x)=b•a x,得结合a>0且a≠1,解得:∴f(x)=3•2x.(2)要使()x+()x≥m在(﹣∞,1]上恒成立,只需保证函数y=()x+()x在(﹣∞,1]上的最小值不小于m即可.∵函数y=()x+()x在(﹣∞,1]上为减函数,∴当x=1时,y=()x+()x有最小值.∴只需m≤即可.点评:此题是个中档题.考查待定系数法求函数的解析式,和利用指数函数的单调性求函数的最值,体现了转化的思想,同时考查学生灵活应用知识分析解决问题的能力.19.(12分)从某大学中随机选取7名女大学生,其身高x(单位:cm)和体重y(单位:kg)数据如表:编号 1 2 3 4 5 6 7身高x 163 164 165 166 167 168 169体重y 52 52 53 55 54 56 56(1)求根据女大学生的身高x预报体重y的回归方程;(2)利用(1)中的回归方程,分析这7名女大学生的身高和体重的变化,并预报一名身高为172cm的女大学生的体重.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,.考点:线性回归方程.专题:应用题;概率与统计.分析:(1)计算平均数,求出b,a,即可求出回归方程;(2)b>0,可得这7名女大学生的身高和体重的变化具有正的线性相关关系,代入公式,预报一名身高为172cm的女大学生的体重.解答:解:(1)∵==166,==54,∴b==,∴a=54﹣=﹣70.5,∴y=x﹣70.5;(2)∵b>0,∴这7名女大学生的身高和体重的变化具有正的线性相关关系,x=172时,y=×172﹣70.5=58.5(kg).点评:本题考查回归方程,考查学生的计算能力,正确求出回归方程是关键.20.(13分)已知命题:“∃x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,(1)求实数m的取值集合M;(2)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值范围.考点:复合命题的真假;必要条件、充分条件与充要条件的判断;一元二次不等式的解法.专题:计算题.分析:(1)利用参数分离法将m用x表示,结合二次函数的性质求出m的取值范围,从而可求集合M;(2)若x∈N是x∈M的必要条件,则M⊆N分类讨论①当a>2﹣a即a>1时,N={x|2﹣a <x<a},②当a<2﹣a即a<1时,N={x|a<x<2﹣a},③当a=2﹣a即a=1时,N=φ三种情况进行求解解答:解:(1)由x2﹣x﹣m=0可得m=x2﹣x=∵﹣1<x<1∴M={m|}(2)若x∈N是x∈M的必要条件,则M⊆N①当a>2﹣a即a>1时,N={x|2﹣a<x<a},则即②当a<2﹣a即a<1时,N={x|a<x<2﹣a},则即③当a=2﹣a即a=1时,N=φ,此时不满足条件综上可得点评:本题主要考查了二次函数在闭区间上的值域的求解,集合之间包含关系的应用,体现了分类讨论思想的应用.21.(14分)已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=+f(x)恒成立.(1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M;(2)证明函数f(x)=log2x属于集合M,并找出一个常数k;(3)已知函数f(x)=log a x( a>1)与y=x的图象有公共点,证明f(x)=log a x∈M.考点:对数函数的图像与性质;元素与集合关系的判断.专题:压轴题;新定义.分析:(1)假设g(x)∈M,即:存在k≠0,使g(kx)=+g(x)得出a(k﹣1)x=恒成立,与假设矛盾,从而得出结论;(2)由于当log2(kx)=+log2x成立时,等价于log2k=,此式显然当k=4时此式成立,可见,存在非零常数k=4,使g(kx)=+g(x),从而得出答案.(3)因为y=log a x( a>1)与y=x有交点,由图象知,y=log a x与y=必有交点.从而存在k,f(kx)=log a(kx)=log a k+log a x=+f(x),成立.解答:解:(1)若f(x)=ax+b∈M,则存在非零常数k,对任意x∈D均有f(kx)=akx+b=+f (x),即a(k﹣1)x=恒成立,得无解,所以f(x)∉M.(2)log2(kx)=+log2x,则log2k=,k=4,k=2时等式恒成立,所以f(x)=log2x∈M.(3)因为y=log a x( a>1)与y=x有交点,由图象知,y=log a x与y=必有交点.设log a k=,则f(kx)=log a(kx)=log a k+log a x=+f(x),所以f(x)∈M.点评:本小题主要考查元素与集合关系的判断、对数的运算法则、对数函数的性质、方程式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.。
高 二 学 分 认 定 考 试
数学(文)试题
第Ⅰ卷
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、已知复数z 满足(34)25i z +=,则z =( )
A .34i -
B .34i +
C .34i --
D .34i -+
2、已知集合{|1,},{|2}A y t x x R B x x ==-∈=≥,则下列结论正确的是( ) A .3A -∈ B .3B ∈ C .A
B B = D .A B B =
3、用反证法证明命题:“已知,a b N *∈,如果ab 可被5整除,那么,a b 中至少有一个能被5整除”时,假设的内容应为( )
A .,a b 都能被5整除
B .,a b 都不能被5整除
C .,a b 不都能被5整除
D .,a b 不能被5整除 4、已知,x y 的取值如下表所示:
如果y 与x 显线性相关,且线性回归方程为13ˆˆ2
y
bx =+,则ˆb
=( ) A .110 B .12 C .110
- D .12-
5、如图给出一个算法程序框图,该算法程序框图的功能是( )
A .求,,a b c 三数的最大数
B .求,,a b c 三数的最小数
C .将,,a b c 按从小到大排列
D .将,,a b c 按从大到小排列
6、集合{|(1)(2)0},{|}M x x x N x x a =--<=<,若M N ⊆,则实数a 的取值范围是( )
A .(1,)+∞
B .(2,)+∞
C .[1,)+∞
D .[2,)+∞ 7、由无理数引发的数学危机已知延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割“,才结束了持续2000年的数学史上的第一次危机,所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足,M
N Q M N φ==,M 中的每一个元素都
小于N 中的每一个运算,则称(,)M N 为戴金德分割,试判断,对于任一个戴金德分割(,)M N ,下列选项中不可能成了的是( )
A .M 没有最大元素,N 有一个最小元素
B .M 没有最大元素,N 没有最小元素
C .M 有一个最大元素,N 有一个最小元素
D .M 有一个最大元素,N 没有最小元素 8、已知条件:1p x >或3x <-,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件
9、由10个乒乓球,将它们任意分成两组,求出这两组乒乓球个数的乘积,再将每组乒乓球任意分成两组,求出这两组乒乓球个数的乘积,如此下去,直到不能分为止,则所有乘积的和为( )
A .55
B .45
C .90
D .100
10、已知()()2
2,2(0)f x x x g x ax a =-=+>,若对任意的[]11,2x ∈-,存在[]01,2x ∈-,
使()()10g x f x =,则a 的取值范围是( )
A .[3,)+∞
B .1
[,3]2 C .
10,]2
( D .(0,3]
第Ⅱ卷
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
. 11、
1
1i
-的共轭复数为
12、函数y =的定义域为 13、已知函数2
3(0x y a
a -=+>且1)a ≠,无论a 为何值,该函数的图象恒过一个定点,此
定点的坐标为
14、若()f x 为R 上的奇函数,当0x <时,()2log (2)f x x =-,则()0(2)f f +=
15、甲乙丙三名同学中有一个人考了满分,当他们被问到谁考了满分时, 甲说:丙没有考满分; 乙说:是我考的; 丙说:甲说真话。
实施证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是
三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤 16、(本小题满分12分) 已知z 为复数,2z i +和2z
i
-均为实数,其中i 是虚数单位。
(1)求复数z ;
(2)若复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围。
17、(本小题满分12分)
已知函数()log (1)log (1),(0a a f x x x a =+-->且1)a ≠ (1)求()f x 的定义域;
(2)判断()f x 的奇偶性并给予证明;
(3)当1a >时,求使()0f x >的x 的取值范围。
18、(本小题满分12分)
已知函数()x
f x b a =⋅(其中,a b 为常数,且0,1a a >≠)的图象经过点(1,6),(3,24)A B 。
(1)求()f x ;
(2)若不等式11()()0x
x
m a b
+-≥在(],1x ∈-∞时恒成立,求实数m 的取值范围。
19、(本小题满分12分)
从某大学中堆积选取7名女大学生,其身高x (单位:cm )和体重y (单位:kg )数据如表:
(1)求根据女大学生的身高x 预报体重y 的回归方程;
(2)利用(1)中的回归方程,分析这7名女大学生的升高和体重的变化,并预报一名升高
为172cm 的女大学生的体重。
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
20、(本小题满分13分)
已知命题:“{|11}x x x ∃∈-<<,使等式2
0x x m --=成立“是真命题。
(1)求实数m 的取值集合M ;
(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围。
21、(本小题满分14分)
已知集合M 是满足下列形式的函数()f x 的全体:存在非零常数k ,对定义域中的任意x ,等式()()2
k
f kx f x =
+恒成立。
(1)判断一次函数()(0)f x ax b a =+≠是否属于集合M ; (2)证明:函数()2log f x x =属于集合M ,并找出一个常数k ;
(3)已知函数()log (1)a f x x a =>与y x =的图象有公共点,证明:()log a f x x M =∈。