2011中考数学全真模拟试题(2)及答案
- 格式:doc
- 大小:629.00 KB
- 文档页数:12
2011年中考数学模拟试卷 试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请在答题卷中把正确选项的字母涂黑.注意可以用多种不同的方法来选取正确答案.1.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为( ) A .9105.8⨯元B .10105.8⨯元C .11105.8⨯元D .12105.8⨯元2.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333 C .01=+-aa D .323211=⎪⎭⎫⎝⎛÷- 3.有2名男生和2名女生,王老师要随机地、两两一对地排座位,一男一女排在一起的概率是( )A. 14B. 23C. 12D. 13 4.如图,一束光线与水平面成60°的角度照射地面,现在地面AB 上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光线,则平面镜CD 与地面AB 所成角∠DCB 的度数等于 ( ) A .30° B .45° C .50° D .60°5.抛物线y=-x 2+2x -2经过平移得到y=-x 2,平移方法是( )﹒A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位6.如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是(A. ①② B .②③C .②④ D . ③④ 7.如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A⊥O 2A ,则图中阴影部分的面积是( )A.4π-8B. 8π-16C.16π-16D. 16π-32①正方体②圆柱③圆锥④球第4题第7题8.已知函数y=―t 3 ―2010|t|,则在平面直角坐标系中关于该函数图像的位置判断正确的是( )A .必在t 轴的上方B .必定与坐标轴相交C .必在y 轴的左侧D .整个图像都在第四象限9.如图,△ABC 的三边分别为a 、b 、c ,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD ∶OE ∶OF = ( )A . a ∶b ∶cB . a 1∶b 1∶c 1C . cosA ∶cosB ∶cosCD . sinA ∶sinB ∶sinC 10.现在把一张正方形纸片按如图方式剪去一个半径为40 2 厘米的14 圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米﹒(不计损耗、重叠,结果精确到1厘米,2 ≈1.41, 3 ≈1.73) A . 64 B . 67 C . 70 D . 73二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 函数21-=x y 的自变量x 取值范围是 .12.右图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC 改建为坡度1:0.5的迎水坡AB ,已知AB=4 5 米, 则河床面的宽减少了 米.(即求AC 的长)13.已知矩形OABC 的面积为3100,它的对角线OB 与双曲线x k y =相交于点D ,且OB ∶OD =5∶3,则k =__________.14.已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴有且只 有2个交点,则m =A B C O E F D 第9题ACB.5 = i 1:第12题第10题15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,2正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= .三. 全面答一(本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本题满分6分)先化简,再求值:aa a a --÷--224)111(,其中a 是整数,且33<<-a 18.(本题满分6分)如图,在平面直角坐标系中,点A ,B ,C ,P 的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P 成中心对称;(2)若一个二次函数的图像经过(1)中△A′B′C′的三个 顶点,求此二次函数的关系式;19. (本题满分6分) 如图,AB 为⊙O 的弦,C 为劣弧AB 的中点,(1)若⊙O 的半径为5,8AB =,求tan BAC ∠; (2)若DAC BAC ∠=∠,且点D 在⊙O 的外部,判断AD 与⊙O 的位置关系,并说明理由.20.(本题满分8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计18题19题…① ② ③ ④第16题算机辅助电话访问系统”(简称CATI 系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(2)(部分)(1)被抽查的居民中,人数最多的年龄段是 岁;(2)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.21.(本题满分8分)如图,AB//CD,∠ACD=72°﹒⑴用直尺和圆规作∠C 的平分线CE ,交AB 于E ,并在CD 上取一点F ,使AC =AF ,再连接AF ,交CE 于K ; (要求保留作图痕迹,不必写出作法)⑵依据现有条件,直接写出图中所有相似的三角形﹒ (图中不再增加字母和线段,不要求证明)﹒22.(本题满分10分)一列火车由A 市途经B 、C 两市到达D市.如图,其中A 、B 、C 三市在同一直线上,D 市在A 市的北偏东45°方向,在B 市的正北方向,在C 市的北偏西60°方向,C 市在A 市的北偏东75°方向.已知B 、D 两市相距100km .问该火车从A 市到D 市共行驶了多少路程?(保留根号)23.(本题满分10分)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租A B C D第21题 第22题出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? (3)275万元是否为最大年收益?若是,说明理由;若不是,请求出当每间的年租金定为多少万元时,达到最大年收益,最大是多少?24.(本题满分12分)如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒. (1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度; ②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围); (2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.2011年中考数学模拟试卷 参考答案C第24题一.仔细选一选(本题有10个小题,每小题3分,共30分.)二.认真填一填 (本题有6个小题, 每小题4分, 共24分.)11 x >2 12. 4 13. 12 ,14.15.16.三.全面答一答 (本题有8个小题, 共66分.) 17. (本题6分) 解:原式=2)2)(2()1(12+=+--⋅--a aa a a a a a ……… 3分 当a=-1时, …………….2分 原式= -1 …………….1分18. (本题6分) 解:(1)图略 ………… ………………………………3分(2)()()1212y x x =-+ ………… ……………………………3分19. (本题6分) (1)解: ∵AB 为⊙O 的弦,C 为劣弧AB 的中点,8AB = ∴OC AB ⊥于E ∴ 142AE AB == ……1分 又 ∵5AO = ∴3OE ==∴ 2CE OC OE =-= ……1分 在Rt △AEC 中,21tan 42EC BAC AE ∠=== ……1分 (2)AD 与⊙O 相切. ……1分 理由如下:∵OA OC = ∴C OAC ∠=∠∵由(1)知OC AB ⊥ ∴ ∠C+∠BAC =90°. ……1分 又∵BAC DAC ∠=∠ ∴90OAC DAC ∠+∠=︒ ……1分 ∴AD 与⊙O 相切.E20. (本题8分) (1) 被抽查的居民中,人数最多的年龄段是21~30岁…………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) …………………………………2分图略…………………………………1分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈………………………1分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈………………………1分∴41~50岁年龄段比31~40岁年龄段对博览会总体印象的满意率高…………1分21. (本题8分)解:⑴CE作法正确得2分,F点作法正确得1分,K点标注正确得1分;⑵△CKF∽△ACF∽△EAK;△CAK∽△CEA(注:共4对相似三角形,每正确1对可各得1分)22. (本题10分)解:过点B分别作B E⊥CD于E,B F⊥AD于F.由题,∠BDE=60°,∠BCE=45°,∠BDF=45°,∠BAF=30°.………………2分∴DE=50,…………………………………1分BE=1分CE=1分∴BC=1分∵BF=1分∴AB=…………………………………1分∴50394AB BC CD km++==.……………1分EF∴该火车从A 市到D市共行驶了(50394AB BC CD km ++==)km .………1分 23.(本题10分)解:(1)∵ 30 000÷5 000=6, ∴ 能租出24间. ……………2分 (2)设每间商铺的年租金增加x 万元,则 (30-5.0x )×(10+x )-(30-5.0x )×1-5.0x×0.5=275, ………2分 2 x 2-11x +5=0, ∴ x =5或0.5,∴ 每间商铺的年租金定为10.5万元或15万元. ……………2分 (3)275万元不是最大年收益 ……………1分 当每间商铺的年租金定为12.5万元或13万元. ……………2分 达到最大年收益,最大是285万元 ……………1分 24.(本题12分) . 解:(1)①由题意得∠BAO=30°,AC ⊥BD ∵AB=2 ∴OB=OD=1,∴……………2分②过点E 作EH ⊥BD ,则EH 为△COD 的中位线∴12EH OC ==∵DQ=x ∴BQ=2-x∴)323)(2(21x x S BPQ --⨯=∆ …………………………1分 23)2(21⨯-⨯=∆x S BEQ …………………………1分 ∴233431132+-=+=∆∆x x S S y BEQ BPQ …………………………2分 (2)能成为梯形,分三种情况:当PQ ∥BE 时,∠PQO=∠DBE=30°∴tan 30o OP OQ==即13x =- ∴x=25C注意事项 :1.请先填写班级、姓名、学号及试场号、座位号2.请保持答卷卷面清洁,不要折叠、破损。
2011年中考模拟考试数学试卷及答案2011年平顶山市第二次中考模拟考试数学试卷及答案考生注意:1.本试卷共8页,三个大题,满分120分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个正确的,将正确答案的代号字母填入题后的括号内.1.平方根等于本身的数是()A.0B.1C.-1D.0和1有意义,则x应满足的条件是()2.若分式3x1A.x=1B.x≠1C.x>1D.x<13.某班数学活动小组5位同学的家庭人口数分别为3、2、4、3、3.设这组数据的平均数为a,中位数为b,则下列各式正确的是()A.a=b<cB.a<b<cC.a<b=cD.a=b=c4.下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是()A.①②B.②③C.①③ D.①②③– 2 的正整5.不等式组()A.1个B.2个C.3个D.4个6.如图,已知⊙01与⊙02关于y轴对的坐标为(- 4,0).两圆相交称,点01于A、B,且01A ⊥02A,则图中阴影部分的面积是()A.4π– 8B.8π– 16C.16π– 16D.16π– 32二、填空题(每小题3分,共27分)7.数轴上到原点距离等于2的点表示为 .8.如图l1∥l2,则∠1=一个60°角,使其两边分别交AB 于M 交AC 于点N ,连接MN ,则△AMN 的周长为 .三、解答题(本大题共8个大题,共754分) 16.(8分)计算:310124(2)()(31)sin 60cos 45.3-÷--+-+︒︒17.(9分)已知,如图,EG ∥AF .请你从①DE = DF ;②AB = AC ③BE = CF 中,选择两个作为已知条件,剩余一个作为结论,写出一个真命题(只需写出一种情况,)并加以证明.已知:EC∥AF, , , 求证: .证明18.(9分)如图,在平面直角坐标系中,△ABC与△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出E、A、C的坐标;(2)P(a,b)是△ABC的边上AC上一点,△ABC经平移后,点P的对应点是P2(A+6,B+2),请画出上述平移后的△A2B2C2,并判断△A2B2C2与△A1B1C1的位置关系(直接写出结果).19.(9分)某种子培育基地用A、B、C、D、四种型号的小麦种子共2000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%。
2011年北京市四中中考数学全真模拟试卷(二)2011年北京市四中中考数学全真模拟试卷(二)一、选择题(共14小题,每小题3分,满分42分)D.4.(3分)(2008•天河区一模)一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,.C D.5.(3分)(2006•临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().C9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)13.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是_________.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为_________.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为_________cm2(不考虑接缝等因素,计算结果用π表示).18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为_________.19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=_________(n是整数,且1≤n<7).三、解答题(共7小题,满分63分)20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?23.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.2011年北京市四中中考数学全真模拟试卷(二)参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)D.4.(3分)(2008•天河区一模)一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,.C D...5.(3分)(2006•临沂)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().CBD+DF=×9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)OC=BC=.,﹣)ABC==60ABC==3013.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()∠∠PCB=((+∠(﹣BCP=∠∠﹣∠(﹣二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣..观察数轴知其解集为∴.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为.AC==,=r=.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为300πcm2(不考虑接缝等因素,计算结果用π表示).=18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为3.∴BE=﹣)+4x19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=2(n是整数,且1≤n<7).三、解答题(共7小题,满分63分)20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?=16x+32023.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)∴.7.2=解得.y=y=3.2=.25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.,a=xa=y=y=a aNS=a(∴MR=.x+bc=0∴SR=2.∴∴MT=PQ=∴参与本试卷答题和审题的老师有:Liuzhx;zhehe;feng;Linaliu;lf2-9;wdxwwzy;jpz;lanchong;zhjh;蓝月梦;hbxglhl;csiya;kuaile;hnaylzhyk;cook2360;算术;张超。
2011年大兴区中考数学综合练习(二)学校 姓名 准考证号 考生须知 1.本试卷共4页,共四道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.6的倒数是A .-6B .6C .61- D .61 2.我国是缺水国家,目前可利用淡水资源总量仅约为8.99×105亿米3,则8.99×105 所表示的原数是 A .8990B .89900C .899000D .89900003.已知()02b 3a 2=++-,则ab 等于A .-6B .6C .-2D .3 4.若一个多边形的内角和是外角和的2倍,则这个多边形的边数是A .8B .6C .5D .4 5.为参加2011年“北京市初中毕业生升学体育考试”,小红同学进行了刻苦的练习,在测仰卧起坐时,记录下5次的成绩(单位:个)分别为:OM DCB A 40,45,45,46,48.这组数据的众数、中位数依次是A .45,45B .45,45.5C .46,46D .48,45.56.如图1是由五个相同的小正方体组成的几何体,则它的左视图是7. 下列事件中是必然事件的是A.一个直角三角形的两个锐角分别是40°和60° B .抛掷一枚硬币,落地后正面朝上C .当x 是实数时,20x ≥D .长为5cm 、5cm 、11cm 的三条线段能围成一个三角形8.如图,在边长为1的正方形ABCD 内作等边三角形DCG ,并与正方形的对角线交于E 、F 点. 则图标中阴影部分图形AEGFB 的面积为A .)32(43- B .213-C .33D .331-二、填空题(本题共16分,每小题4分)9.若分式2x 4x 2--的值为0,则x 的值为 .10.如果关于x 的方程0522=--x kx 有实数根,那么k 的取值范围是_____11.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于M , CD=10cm ,DM ∶CM=1∶4,则弦AB 的长为 .12.如图,是两块完全一样的含30°角的三角板,分别记作△ABC与 △A ′B ′C ′,现将两块三角板重叠在一起,设较长直角边的中点为M , 绕中点M 转动上面的三角板ABC ,使其直角顶点C 恰好落在三角板 A ′B ′C ′的斜边A ′B ′上,当∠A=30°,AC=10时,则此时两直角顶点C 、C ’间的距离是 .GF E DC图ABCDEF三、解答题(本题共50分,每小题5分) 13. 计算: ︒+-+-60sin 2232823.14.先化简,再求值:已知a2+2a=4,求121111122+-+÷--+a a a a a 的值. 15.如图,F 、C 是线段BE 上的两点,BF=CE ,AB=DE ,∠B=∠E ,QR ∥BE.试判断△PQR 的形状,并说明理由. 16.已知:点P(1,a )在反比例函数xk y =的图象上,它关于y42+=x y2008500050%4个8W 和3个24W 的节能灯,一共用了29元,王叔叔买了2个8W和2个24W 的节能灯,一共用了17元.求:(1)财政补贴50%后,8W 、24W 节能灯的价格各是多少元?(2)2009年某市已推广通过财政补贴节能灯850万只,预计该市一年可节约电费2.3亿元左右,减排二氧化碳43.5万吨左右,请你估算一下全国一年大约可节约电费多少亿元?大约减排二氧化碳多少万吨?(结果精确到0.1)18.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE 。
数学模拟试题(二) 第 1 页 共 11 页2011年中考数学模拟试题 (二) 注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本大题共10小题,每小题4分,共40分。
请将答案填入表格中) 题号 1 2 3 4 5 6 7 8 9 10 答案 1.下列各组数中,互为相反数的是…………………………………………………………【 】 A.2与21 B.22-与 C.2与|-2| D.π与14.3- 2.下列计算正确的是…………………………………………………………………………【 】 A.325x x x += B.44x x x ÷= C.325x x x ⋅= D.226)3x x =( 3.如图,直线a ∥b, a 、b 被AB 、AC 所截,∠1=70°,∠2=40°,则∠BAC=…………【 】 A.40° B.50° C.60° D.70° 4. 2011年4月28日国家统计局公布2010年第六次全国人口普查结果,其中我国内地总人口达13.39亿 ,用科学记数法表示“13.39亿”正确的是………………………………………【 】 A.81.33910⨯ B.813.3910⨯ C.91.33910⨯ D.913.3910⨯ 5.如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视图中面积最小的是………………………………………………………………………………………………【 】 A. 主视图 B. 左视图 C. 俯视图 D. 面积一样 6.若几个能唯一确定一个三角形的量称为三角形的“基本量”。
下列各组量中一定能成为三角形的基本量的是…………………………………………………………………………………【 】 A.三个内角 B.两条边与一个内角 C.周长和两条边 D.面积与一条边 7.如图,在 Rt △ABC 中,∠ACB=90°, ∠BCD=30°,CD ⊥AB 于点D ,则△BCD 与△ACD 的面积比为……………………………………………………………………………………………【 】 A.1∶2 B.1∶3 C.1∶4 D.1∶5题号 一 二 三 四 五 六 七 八 总分 得分得分 学校 班级 姓名考号密 封 线 内 不 要 答 题第3题图 第5题图数学模拟试题(二) 第 2 页 共 11 页8.若二次函数522+-=x x y 配方后为k h x y ++=2)(,则k h +的值为……………【 】A.3B.5C.-3D.-59.反比例函数x ky =在第一象限的图象如图所示,则整数k 的值可能是………………【 】A.1B.2C.3D.410.如图,将边长为12的正方形纸片ABCD 折叠,使得点A 落在边CD 上的E 点,折痕为MN ,若MN 的长为13,则CE 的长为…………………………………………………………………【 】A. 6B.7C.8D.10二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:2(7)123--⨯= .12.若一组数据2,4,x ,6,8的平均数是5,则这组数据的方差是 .13.如图,⊙A 过原点O ,与坐标轴交与C 、D 两点,OC=OD ,点B 在劣弧OC 上(不与点O 重合),BD 是⊙A 的一条弦.则∠OBD= 度.14.已知二次函数2y ax bx c =++的图象如图所示,下列说法正确的是 .(将所有正确答案的序号填在横线上)① 0>ac② 关于x 的方程20++=ax bx c 的解是1x = -1,2x =3 ③ 当0>x 时,y 随x 增大而减小④ 20b a +<得分第7题图 第9题图 第10题图 第13题图 第14题图1 2数学模拟试题(二) 第 3 页 共 11 页三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:22321122a a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中2a =.16.如图是儿童乐园的滑梯平面示意图,为确保安全性,管理人员决定减小滑梯与地面的夹角,由45°改为30°.已知原滑梯AB 长为6米.求改建后滑梯AC 的长度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)四、(本大题共2小题,每小题8分,满分16分) 17. 给出下列命题:命题1:点(1,-1)是直线x y -=与双曲线xy 1-=的一个交点; 命题2:点(1,-2)是直线x y 2-=与双曲线xy 2-=的一个交点; 命题3:点(1,-3)是直线x y 3-=与双曲线xy 3-=的一个交点; 命题4:点(1,-4)是直线x y 4-=与双曲线x y 4-=的一个交点; ……得分 得分 第16题图数学模拟试题(二) 第 4 页 共 11 页 (1) 请观察上面命题,写出命题5. (2) 试写出命题n. 18.如图在平面直角坐标系中有菱形ABCD ,将菱形ABCD 分别作三种变换:①以x 轴为对称轴,在第三象限作菱形1111D C B A ;②以O 点为位似中心,位似比为1:2,将菱形ABCD 放大,在第四象限作放大后的菱形2222D C B A ;③以O 点为旋转中心,顺时针旋转90 在第一象限作菱形3333D C B A 。
2011年中考数学模拟二一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算-2-1的结果是( )(A )-1 (B )1 (C )3 (D )-3 2.如左图,这个几何体的主视图是( )3.Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( ) A .1 B .2 C .3 D .4 4.估计10+1的值是( )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间5.《茂名日报》(2007年5月18日)报道,刚刚投产半年的茂名百万吨乙烯工程传来喜讯,正在创造全国最好的效益,每月为国家创利30 000万元,这个数用科学记数法表示是( )A .3310⨯万元B .4310⨯万元C .40.310⨯万元D .50.310⨯万元 6.设一元二次方程2750x -=的两个根分别是12x x ,,则下列等式正确的是( )A.12x x +=B.12x x += C.12x x +=D.12x x +=7.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中A 8.不等式组11224(1)x x x -⎧⎪⎨⎪-<+⎩≤的解集是( )A .23x <≤B .23x -<<C .23x -<≤D .23x -<≤9.如图,一扇形纸片,圆心角AOB ∠为120,弦AB 的长为,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A .23cm B .2π3cmC .32cmD.3π2cm 10.在平行四边形ABCD中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 的面积为A .B .C .D .O1 2 3 4 C C C( ) A .2B .35C .53D .1511.如图,小亮在操场上玩,一段时间内沿M A B M →→→的路径匀速散步,能近似刻画小亮到出发点M 的距离..y 与时间x 之间关系的函数图象是( )12.如图,记抛物线21y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为1P ,2P ,…,1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点1Q ,2Q ,…,1n Q -,再记直角三角形11OPQ ,122PP Q ,…的面积分别为1S ,2S ,…,这样就有21312n S n -=,22342n S n -=,…;记121n W S S S -=+++…,当n 越来越大时,你猜想W 最接近的常数是( ) A .23 B .12 C .13 D .14二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中横线上) 13.分解因式:分解因式:224a ab -= .14.如图,PA 与半圆O 相切于点A ,如果∠P =35°,那么∠AOP =_____°. 15.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴,y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点A '的位置.若OB =,1tan 2BOC =∠,则点A '的坐标为____________. 16.下图是一组数据的折线统计图,这组数据的极差是 ,平均数是 . 17.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形=4厘米,则边AD 的长是___________厘米.三、解答题(本大题共7个小题,共57分.明过程或演算步骤)B .C .D .18.(本小题满分7分)(1)计算:先化简,再求值:22(3)(2)(2)2x x x x +++--,其中13x =-.(2)解分式方程:解方程:11322x x x-+=--.19.(本小题满分7分)(1)如图,在平行四边形ABCD 中,B ∠,D ∠的平分线分别交对边于点E F ,,交四边形的对角线AC 于点G H ,.求证:A H C G =.(2)如图,PA ,PB 是⊙O 的切线,点A ,B 为切点,AC 是⊙O 的直径,∠ACB =70°. 求∠P 的度数.20.(本小题满分8分) 在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①AB DC = ②ABE DCE ∠=∠ ③AE DE = ④A D ∠=∠ 小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定BEC △是等腰三角形吗?说说你的理由; (2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使BEC △不能..构成等腰三角形的概率.21.(本小题满分8分)今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:A BD CE G H F信息一:这三个班的捐款总金额是7700元; 信息二:(2)班的捐款金额比(3)班的捐款金额多300元; 信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元. 请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元; (2)求出(1)班的学生人数. 22.(本小题满分9分) 如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xky =的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. 23.(本小题满分9分)如图①,在边长为的正方形ABCD 中,E F ,是对角线AC 上的两个动点,它们分别从点A ,点C 同时出发,沿对角线以1cm/s 的相同速度运动,过E 作EH 垂直AC 交Rt ACD △的直角边于H ;过F 作FG 垂直AC 交Rt ACD △的直角边于G ,连接HG ,EB .设HE ,EF ,FG ,GH 围成的图形面积为1S ,AE ,EB ,BA 围成的图形面积为2S (这里规定:线段的面积为0).E 到达C F ,到达A 停止.若E 的运动时间为s x ,解答下列问题:(1)当08x <<时,直接写出以E F G H ,,,为顶点的四边形是什么四边形,并求x 为何值时,12S S =.(2)①若y 是1S 与2S 的和,求y 与x 之间的函数关系式.(图②为备用图) ②求y 的最大值.24.(本小题满分9分)如图,已知平面直角坐标系xoy 中,有一矩形纸片OABC ,O 为坐标原点,AB x ∥轴,B (3,现将纸片按如图折叠,AD ,DE 为折痕,30OAD ∠=︒.折叠后,点O 落在点1O ,点C 落在点1C ,并且1DO 与1DC 在同一直线上.(1)求折痕AD 所在直线的解析式; (2)求经过三点O ,1C ,C 的抛物线的解析式;(3)若⊙P 的半径为R ,圆心P 在(2)的抛物线上运动,⊙P 与两坐标轴都相切时,求⊙P 半径R 的值.。
2011年中考数学模拟考试参考答案一、选择题:DCAB DCDB二、填空题:9、略 10、1 11、a 2)1(+a 12、-313、21 14、110° 15、3 16、11+n +)1(1+n n 三、解答题:17、1x =0,2x =31 18、10边形19、-220、-25﹤x ≤3,数轴表示略 21、BE ∥DF ,BE =DF ,证明略22、(1)50人 (2)10人,补齐图形略 (3)160人23、在Rt ABC ∆中,∵10=BC ,︒=∠45CAB ,∴AB=45tan 10=10(米) ……3分 在Rt DBC ∆中,∵︒=∠30CDB ∴30tan 10=DB =310米 ……6分 则DA=DB-AB=10310-≈10×1.73210-= 7.32米. ……8分 ∵3 + DA 10>,所以离原坡角10米的建筑物应拆除. ……9分 答:离原坡角10米的建筑物应拆除. ……10分24、⑴解:∵B 点坐标为(0.2),∴OB =2,∵矩形CDEF 面积为8,∴CF=4.∴C 点坐标为(一2,2).F 点坐标为(2,2)。
设抛物线的解析式为2y ax bx c =++,因过三点A(0,1),C(-2.2),F(2,2)得1242242a b c a b c ⎧⎪=-+⎨⎪=++⎩解这个方程组,得1,0,14a b c === ∴此抛物线的解析式为 2114y x =+ ………… (3分) (2)解:①过点B 作BN BS ⊥,垂足为N .∵P 点在抛物线y=214x 十l 上.可设P 点坐标为21(,1)4a a +. ∴PS =2114a +,OB =NS =2,BN =a ∴PN=PS —NS=2114a - ………………………… (4分)在Rt △PNB 中.PB 2=222222211(1)(1)44PN BN a a a +=-+=+∴PB =PS =2114a +………………………… (5分) ②根据①同理可知BQ =QR ∴12∠=∠,又∵ 13∠=∠,∴23∠=∠,同理∠SBP =5∠………………………… (6分)∴2523180∠+∠=︒ ∴5390∠+∠=︒∴90SBR ∠=︒∴ △SBR 为直角三角形.………………………… (7分) ③ 若以P 、S 、M 为顶点的三角形与以Q 、M 、R 为顶点的三角形相似,∵90PSM MRQ ∠=∠=︒,∴有∆PSM ∽∆MRQ 和∆PSM ∽△QRM 两种情况。
2011年河南省中招考试第二次模拟考试试卷数 学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟. 请用钢笔或圆珠笔直接答在试卷上.2.答题前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1.(2的平方根是【 】(A )2± (B ) (C (D ) 1.414±2.为支援青海地震灾区,中央电视台于2010年4月19日晚举办了《情系玉树,大爱无疆》赈灾募捐晚会,晚会现场募得善款达2175000000元.2175000000用科学计数法表示正确的是【 】(A )6217510⨯ (B )821.7510⨯ (C )92.17510⨯ (D )102.17510⨯ 3.如图,是关于x 的不等式21x a --≤的解集,则a 的取值是【 】 (A )1a -≤ (B )2a -≤ (C )1a =- (D )2a =-4.如图,正方体的展开图不可能...是【 】 (A ) (B ) (C )(D )5.已知点A (m ,2m )和点B (3,23m -),直线AB 平行于x 轴,则m 等于【 】(A )−1 (B )1 (C )−1,或3 (D )3(第3题)6题)6.如图,已知A (4,0),点1A 、2A 、…、1n A -将线段OA n 等分,点1B 、2B 、…、1n B -、B 在直线0.5y x =上,且11A B ∥22A B ∥…∥11n n A B --∥AB ∥y 轴.记△11OA B 、△122A A B 、…、△211n n n A A B ---、△1n A AB -的面积分别为1S 、2S 、…1n S -、n S .当n 越来越大时,猜想12n S S S +++ 最近的常数是【 】(A )1 (B )2 (C )4 (D )8 二、填空题(每小题3分,共27分)7__________. 8.函数y =中,自变量x 的取值范围是______________. 9.如果a >b >c >0,且满足211b a c=+,则称a 、b 、c 为一组调和数.现有一组调和数为x 、5、3(x > 5),则x 的值是__________.10.如图,直线AB ∥DC ,BE 平分∠ABC ,∠CDE =150°,则∠C 的度数是 __________.11.如图,是某班赈灾捐款统计图,该班人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反应了不同捐款数的人数占班级总人数的比例,那么该班同学平均每人捐款 __________ 元.12.如图,在梯形ABCD 中,AD ∥BC ,∠C =∠D =90°,AB =1,∠ABC 是锐角.点E 在CD 上,且AE ⊥EB ,设∠ABE =x ,∠EBC =y .则sin()x y +=___________________________.(用x 、y 的三角函数表示)13.如图,坐标系的原点为O ,点P 是第一象限内抛物线2114y x =-上的任意一点,P A (第12题)ABCDEx y1(第10题)ABCDE(第11题)100 5 10元20元 50元 44% 20%16% 12% 8%⊥x 轴于点A .则OP PA -=__________.14.如图,分别过点P i (i ,0)(i =1、2、…、n )作x 轴的垂线,交212y x =的图象于点A i ,交直线12y x =-于点B i .则1122111n n A B A B A B +++= _________. 15.如图,在△ABC 中,∠C =90°,AB =10,3tan 4A =,经过点C 且与边AB 相切的动圆与CA 、CB 分别交于点D 、E ,则线段DE 长度的最小值是__________.三、解答题(本大题共8个小题, 满分75分) 16.(8分)先化简2228224a a a a a a +-⎛⎫+÷⎪--⎝⎭,然后从33a -<<的范围内选取一个你认为合适的整数作为a 的值代入求值.(第14题)(第13题)(第15题)17.(9分)如图,等腰梯形ABCD 中,AD ∥BC ,延长BC 到E ,使CE =AD .⑴ 用尺规作图法,过点D 作DM ⊥BE ,垂足为M (不写作法,保留作图痕迹); ⑵判断BM 、ME 的大小关系,并说明理由.18.(9分)某超市有A 、B 、C 三种型号的甲种品牌饮水机和D 、E 两种型号的乙种品牌饮水机,某中学准备从甲、乙两种品牌的饮水机中各选购一种型号的饮水机安装到教室.⑴ 写出所有的选购方案,如果各种选购方案被选中的可能性相同,那么A 型号饮水机被选中的概率是多少?⑵ 如果该学校计划用1万元人民币购买甲、乙两种品牌的饮水机共24台(价格如表格所示),其中甲种品牌饮水机选为A 型号的,请你算算该中学购买到A 型号饮水机共多少台?(第17题)AECBD19.(9分)某高级中学要印制宣传册,联系了甲、乙两家印刷厂.甲厂的优惠条件是:按每份定价1.5元的8折收费,另收900元的制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元则按4折优惠,且甲、乙两厂都规定:一次印刷数量不低于1000份.⑴分别求出两家印刷厂收费y(元)与印刷数量x(份)的函数关系式,并指出自变量x 的取值范围;⑵如何根据印刷数量选择比较合算的方案?如果该中学要印制3000份宣传册,那么应当选择哪家印刷厂?需要多少费用?20.(9分)如图,气象部门预报:在海面上生成了一股较强台风,在距台风中心60千米的圆形区域内将会受严重破坏.台风中心正从海岸M点登陆,并以72千米/时的速度沿北偏西60°的方向移动.已知M点位于A城的南偏东15°方向,距A城千米;M点位于B城的正东方向,距B城假设台风在移动过程中,其风力和方向保持不变,请回答下列问题:⑴A城和B城是否会受到此次台风的侵袭?并说明理由;⑵若受到此次台风侵袭,该城受到台风侵袭的持续时间有多少小时?(第20题)B M21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,点P是斜边AB 上一个动点,点D是CP的中点,延长BD至E,使DE=BD,连结AE.⑴求四边形PCEA的面积;⑵当AP的长为何值时,四边形PCEA是平行四边形;⑶当AP的长为何值时,四边形PCEA是直角梯形.(第21题)22.(10分)某超市计划上两个新项目:项目一:销售A 种商品,所获得利润y (万元)与投资金额x (万元)之间存在正比例函数关系:y kx =.当投资5万元时,可获得利润2万元;项目二:销售B 种商品,所获得利润y (万元)与投资金额x (万元)之间存在二次函数关系:2y ax bx =+.当投资4万元时,可获得利润3.2万元;当投资2万元时,可获得利润2.4万元.⑴ 请分别求出上述的正比例函数表达式和二次函数表达式;⑵ 如果超市同时对A 、B 两种商品共投资12万元,请你设计一个能获得最大利润的投资方案,并求出按此方案获得的最大利润是多少?23.(11分)如图,已知二次函数215442y x x =-+-的图象与x 轴相交于点A 、B ,与y 轴相交于点C ,连结AC 、CB .⑴ 求证:AOC COB △∽△;⑵ 过点C 作CD ∥x 轴,交二次函数图象于点D ,若点M 在线段AB 上以每秒1个单位的速度由点A 向点B 运动,同时点N 在线段CD 上也以每秒1个单位的速度由点D 向点C 运动,连结线段MN ,设运动时间为t 秒(0<6t ≤).① 是否存在时刻t ,使MN AC =?若存在,求出t 的值;若不存在,请说明理由; ② 是否存在时刻t ,使MN BC ⊥?若存在,求出t 的值;若不存在,请说明理由.(第23题)2011年河南省中招考试第二次模拟考试试卷数学参考答案一、选择题:1.B ;2.C ;3.C ;4.C ;5.A ;6.B (2(1+1/n )).二、填空题:7.2;8.x ≥−2,x ≠0;9.15;10.120°;11.31.2元;12.sin cos cos sin x y x y ⋅+⋅; 13.2;14.2n /(n +1).15.4.8(ED =CO +OP ≥CH 垂线段).三、解答题:16.原式2228(2)81(2)(2)(2)2(2)(2)2a a a a a a a a a a a a ⎛⎫+-+-=+⨯== ⎪--+--++⎝⎭. 在33a -<<范围的整数中,只有±1可取,若令1a =-,则原式=1.17.⑴略;⑵BM =ME .证明△ABD ≌△CDE (SAS ),得等腰△BDE .三线合一,可知BM =ME .18.⑴ 选购方案:(AD )、(AE )、(BD )、(BE )、(CD )、(CE );P =2/6=1/3;⑵ 设购买A 型号饮水机x 台,方案1:(A 、D ),则600500(24)10000x x +-=;解得20x =-,不合题意舍去;方案2:(A 、E ),则600200(24)10000x x +-=,解得13x =.答:能买到A 型号饮水机13台.19.⑴ y 甲=1.2900x +,x ≥1000,且x 是整数;y 乙=1.5360x +,x ≥1000,且x 是整数;⑵ 若y 甲> y 乙,即1.2900 1.5360x x +>+,1800x <;若y 甲= y 乙,则1800x =;若y 甲< y 乙,则1800x >.所以,当10001800x <≤时,选择乙厂合算;当1800x =时,两厂收费相同;当1800x >时,选择甲厂合算.当3000x =时,选择甲厂,费用是y 甲=4500元.20.⑴ A 到MN 的距离为61>60,不受台风影响;B 到MN 的距离为,受台风影响; ⑵ 以B 为圆心,以60为半径的圆截MN 得线段长为60,受到台风影响时间为60/72=5/6小时.21.作CH ⊥AB ,垂足为H ,则CH 连结EP ,因为CD =DP ,BD =DE ,得□PBCE .则CE =PB ,EP =CB =2.⑴ ()22APCE S CE AP CH AB CH =+÷=⋅÷=;⑵当AP=2时,得□PCEA,∵AP=2=PC=EC,且EC∥AP;⑶当AP= 3时,P、H重合,EC∥AP,∠CPA=90°,AP=3≠1= PB =EC,得直角梯形PCEA;当AP= 1时,△APE是直角三角形,∠EAP=90°,EC∥AP,AP=1≠3=PB=EC,得直角梯形PCEA.22.⑴y A=0.4x;y B=−0.2x2+1.6x;⑵设投资B种商品x万元,则投资A种商品(12−x)万元.W=−0.2x2+1.6x+0.4(12−x)=−0.2(x−3)2+6.6.投资A、B两种商品分别为9、3万元可获得最大利润6.6万元23.⑴A(2,0),B(8,0),C(0,−4).∵OC/OA=OB/OC=2,∠AOC=∠COB=90°,∴△∽△;AOC COB⑵D(10,−4),CD=10.BM=6−t,CN=10−t.①当四边形ACNM是平行四边形时,AM=CN.此时,t=10−t,得t=5;当四边形ACNM是等腰梯形时,MB=ND.6−t=t,得t=3;②∵BC2=80,BD2=AC2=20,CD2=100,∴BC2+BD2=AC2,∴BC⊥BD.只需MN∥BD.此时,四边形MNDB是平行四边形,6−t=t,得t=3.。
考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题纸上认真填写学校名称、班级和姓名。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4.在答题纸上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题纸和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.16 的算术平方根是 A .4± B .8± C .4 D .4- 2. 如果一个角等于72︒,那么它的补角等于A .18︒B .36︒C .72︒D .108︒ 3.若点(,2)M a 与点(3,)N b 关于x 轴对称,则,a b 的值分别是A .3,2-B .3,2-C .3,2--D .3,2 4. 把多项式2288x x -+分解因式,结果正确的是 A .()222x +B .()222x -C .()224x -D .()224x -5. 下列计算正确的是A .44a a a ÷= B .325(2)4a a = C .223355+= D .1025÷=6.从1~9这九个自然数中任取一个,是3的倍数的概率是 A .13 B .32 C .92 D . 94 7.如图是一个几何体的三视图,已知正视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为A .2πB .3πC .23πD .()123π+8.如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB BC CD DA →→→连续翻转(小正方形起始位置在AB 边上),那么这个小正方形翻转到DA 边的终点位置时,它的方向是DCBAA .B .C .D .二、填空题(本题共16分, 每小题4分)9. 若分式22123x x x -+-的值为零 , 则x = .10.某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:等级 非常了解 比较了解 基本了解 不太了解频数 40 120 36 4 频率0.2m0.180.02本次问卷调查抽取的样本容量为_______,表中m 的值为_______11. 已知两圆内切,圆心距2d = ,一个圆的半径3r =,那么另一个圆的半径为 12. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(5)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:011271tan 60( 3.14)()2π--︒+--14.求不等式组32451233x x x -≥-⎧⎪-⎨>-⎪⎩ 的正整数解.15. 已知13x x-=,求代数式2(23)(1)(4)x x x --+-的值. 16. 已知:如图,四边形ABCD 是平行四边形,BE AC ⊥于E ,DF AC ⊥于F .求证:BE DF =.(1) (2) (3)……17. 列方程或方程组解应用题:在“彩虹读书”活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人, 甲班学生读书480本,乙班学生读书 360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45倍.求甲、乙两班各有多少人? 18.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A ,与y 轴的交点为(0,2)C ,与反比例函数在第一象限内的图象交于点(2,)B n ,连结BO ,若S 4=.(1)求直线AB 的解析式和反比例函数的解析式;(2).求tan ABO ∠的值.四、解答题(本题共20分,每小题5分)19.已知:如图,矩形ABCD 中, 4AB =,7BC =,点P 是AD 边上一个动点,PE PC ⊥,PE 交AB 于点E ,对应点E 也随之在AB 上运动,连结EC .(1)若PEC ∆是等腰三角形,求PD 的长; (2)当30PEC ∠=︒时,求AP 的长.20. 已知:如图,AB 是O ⊙的直径,10AB =, DC 切O ⊙于点C AD DC ⊥,,垂足为D ,AD 交O ⊙于点E .BE PDCBA DCBAFEDCBA(1)求证:BC EC =; (2)若4cos 5BEC ∠=, 求DC 的长.21. 为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.(1)根据图1提供的信息,补全图2中的频数分布直方图;(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是 米3,众数是 米3,中位数是 米3;(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每 月的用水量是多少米3? 22.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x (x >0). 依题意,割补前后图形面积相等, 有52=x , 解得5=x .由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.550 500600 650 700 800 750 4 7 9 10 11 O•月总用水量(米3) • ••• • •• •• ••图1请你参考小东同学的做法,解决如下问题:(1) 如图4,是由边长为1的5个小正方形组成,请你通过分割,把它拼成一个正方形(在图4上画出分割线,在图4的右侧画出拼成的正方形简图);(2)如图5,是由边长分别为a 和b 的两个正方形组成,请你通过分割,把它拼成一个正方形(在图5上画出分割线,在图5的右侧画出拼成的正方形简图).五、解答题(本题共22分,第23题8分,第24题7分,第25题7分) 23.已知关于x 的方程2(31)220mx m x m --+-=. (1)求证:无论m 取任何实数时,方程恒有实数根;(2)若m 为整数,且抛物线2(31)22y mx m x m =--+-与x 轴两交点间的距离为2,求抛物线的解析式;(3)若直线y x b =+与(2) 中的抛物线没有交点,求b 的取值范围.24. 已知:如图,ABC ∆内接于O e , AB 为O e 的直径,=52AC BC =点D 是»AC 图3图2图1图3图2图1上一个动点,连结AD 、CD 和BD , BD 与AC 相交于点E , 过点C 作PC CD ⊥于C ,PC 与BD 相交于点P ,连结OP 和AP .(1) 求证:AD BP =; (2)如图1,若1tan 2ACD ∠=, 求证:DC AP P ; (3) 如图2,设AD x = , 四边形APCD 的面积为y ,求y 与x 之间的关系式.25.已知,如图,抛物线24(0)y ax bx a =++≠与y 轴交于点C ,与x 轴交于点A B ,,点A 的坐标为(40)-,,对称轴是1x =-.(1)求该抛物线的解析式; (2)点M 是线段AB 上的动点,过点M 作MN ∥AC ,分别交y 轴、BC 于点P 、N ,连接CM .当CMN △的面积最大时,求点M 的坐标; (3)在(2)的条件下,求CPNABCS S ∆∆的值.图1图2O CD E P ABBAPEDC O。
中考数学模拟试卷四中一、选择题(每小题3分,共计30分)1、「的值是()A. —2B. 2C. 4D. —42、下列计算中,正确的是()A. = a a3 =a3C.屮一「=FD.(-ab)3= a2b23、若一个多边形的每个外角都等于45°,则它的边数是()A. 11B. 10C. 9D. 84、方程* 1的根为()A. x = lB. x = 0C. Xi-O^x^ -1D. x:-0,x2 --15、把一个小球以20m/s的速度竖直向上弹出,它在空中的高度h (m与时间t (S)满足关系:人加当..时,小球的运动时间为()A. 20sB. 2sC (2^2 + 2)sD (2屈一2)s6、某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()A 1 D 3 1 3A、 B C、D、一4 4 8 87、下列各图中,是中心对称图形的是()8、图中的图象(折线OBCD)描述的是一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km②汽车在行驶途中停留了0.5h ;SO, 一血③汽车在整个行驶过程中的平均速度为^ ;④汽车出发后3~4.5h之间行驶的速度在逐渐减少。
其中正确的说法共有()A. 1个B. 2个C. 3个D. 4个9、某装修公司到建材市场买同样一种多边形的地砖密铺地面,在以下四种地砖中,该公司不能买()A、正三角形地砖B正方形地砖C正五边形地砖D、正六边形地砖10、如图,矩形ABC(11)与矩形CDEF全等,点B, C, D在同一条直线上,△ APE的顶点P在线段BD上移动,使厶APE为直角三角形的点P的个数是()A. 5B. 4C. 3D. 2A”、填空题(每小题3分,共计30 分)11、2007年中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球。
中考数学全真模拟试题(2)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.第1卷l 至4页,第Ⅱ卷5至12页.满分120分.考试时间120分钟.第1卷(选择题 共42分)一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1.一3的绝对值是( )(A)3 (C)±3 (B) 3 (D)±132.2004年聊城市的国民生产总值为1012亿元,用科学记数法表示正确的是( ) (A)1012×108元 (B)1.012×1110元 (C)1.0×1110元. (D)1.012×1210元. 3.下列各式计算正确的是( ) (A)527()a a =.(B)22122xx-=(C)236326a a a = (D)826a a a ÷=。
4.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是( )(A)18 (B) 13 (C) 38 (D) 355.如图,将两根钢条'AA 、'BB 的中点O 连在一起,使'AA 、'BB 可以绕着点0自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB ≅△''A OB 的理由是( )(A)边角边 (B)角边角 (C)边边边 (D)角角边6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范围是( ) (A)r>2 (13)2<r<14 (C)l<r<8 (13)2<r<87.化简24()22a a a a a a---+ 的结果是( ) (A)一4 (B)4 (C)2a (13) 2a +48.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为( )(C)6. (D)9.9.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm 幻灯片到屏幕的距离是1.5m ,幻灯片上小树的高度是10cm ,则屏幕上小树的高度是( )(A)50cm . (B)500cm . (C)60 cm . (D)600cm .10.多边形的内角中,锐角的个数最多有( ) (A)1个. (B)2个. (C)3个. (D)4个.第5题图第九题图11.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动, 当线段AB 最短时,点B 的坐标为( ) (A)(0,0). (B)11(,)22-.(C) (D) 11(,)22-.12.等腰三角形一腰上的高与另一腰的夹角为30。
,则顶角的度数为( )(A)60︒. (B)120︒. (C)60︒或150︒. (D)60︒或120︒13.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为( ) (A)4. (B)6. (C)12. (D)1514.已知△ABC ,(1)如图l ,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=1902A ︒+∠; (2)如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90A ︒-∠;(3)如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=1902A ︒-∠。
图3图2图1EBCC上述说法正确的个数是( )(A)0个 (B)1个 (C)2个 (D)3个第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用钢笔或园珠笔直接答在试卷上。
2.答卷前将密封线内的项目及座号填写清楚。
二、填空题(本大题共5小题.每小题3分,共15分)把答案填在题中横线上.15.关于x 的不等式3x 一2a ≤一2的解集如图所示,则a 的值是_______________。
(第15题图)16.若圆周角α所对弦长为sin α,则此圆的半径r 为___________。
17.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的 面积___________cm 2。
(不考虑接缝等因素,计算结果用π表示)第18题图CD18.如图,Rt △ABC 中,∠A =90︒,AB =4,AC =3,D 在BC 上运动(不与B 、C 重合),过D 点分别向AB 、Ac 作垂线,垂足分别为E 、F ,则矩形AEDF 的面积的最大值为___________。
19.判断一个整数能否被7整除,只需看去掉一节尾...(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的”倍的差能否被7整除来判断,则n =___________(n 是整数,且1≤n<7). 三、开动脑筋.你一定能做对20.(本小题满分6分)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l 95 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(本小题满分7分)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.A B22.(本小题满分8分)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?四、认真思考,你一定能成功!23.(本小题满分9分)如图l ,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)求证:OE=OF ;(2)如图2,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE=OF ”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图1C B24.(本小题满分10分)某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投人技改资金5万元. ①预计生产成本每件比2004年降低多少万元?②如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元(结果精确到0.01万元)?五、相信自己。
加油呀 25.(本小题满分10分)△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。
若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.图1CB图2CB图3CB26.(本小题满分13分)如图1,已知抛物线的顶点为A(O ,1),矩形CDEF 的顶点C 、F 在抛物线上,D 、E 在x 轴上,CF 交y 轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P 点为抛物线上不同于A 的一点,连结PB 并延长交抛物线于点Q ,过点P 、Q 分别作x 轴的垂线,垂足分别为S 、R .①求证:PB =PS ; ②判断△SBR 的形状;③试探索在线段SR 上是否存在点M ,使得以点P 、S 、M 为顶点的三角形和以点Q 、R 、M 为顶点的三角形相似,若存在,请找出M 点的位置;若不存在,请说明理由.中考数学模拟试题(2)参考答案及评分标准注:第三、四、五题给出了一种解法或两种解法.考生若用其它解法.应参照本评分标准给分二、填空题(每小题3分.共15分l1 5.一12; 16.12; 17. 300π; 18 .3; 19 .2。
三、开动脑筋,你一定能做对(共21分)20.解:由题中7周的数据.可知小亮家平均每周日常生活消费的费用为:17(230+195+180+250+270+455+170)=250(元) …………(4分)∴小亮家每年日常生活消费总赞用为:250×52=13000(元)答:小亮家平均每年的日常生活消费总费用约为13000元…………… (6分) 2l.解:作法:(1)作AB的垂直平分线CD交AB于点O;(2)分别以A、B为圆心,以AO(或BO)的长为半径画弧,分别交半圆干点M、N;(3)连结OM、ON即可.说明:本小题满分7分。
画图正确得4分;写出作法,每步各1分,共3分。
22.解:根据题意,可有三种购买方案;方案一:只买大包装,则需买包数为:48048 505=;由于不拆包零卖.所以需买10包.所付费用为30×10=300(元) … (1分)方案二:只买小包装.则需买包数为:48016 30=所以需买1 6包,所付费用为1 6×20=320(元) ……… (2分)方案三:既买大包装.又买小包装,并设买大包装x 包.小包装y 包.所需费用为W 元。
则50304803020x y W x +=⎧⎨=+⎩…………(4分)103203W x =-+…………(5分) ∵050480x <<,且x 为正整数, ∴x =9时,最小W =290(元).∴购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少.为290元。
………………………………………………………………(7分)答:购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少为290元。
……………………………………………………………… (8分) 四、认真思考.你一定能成功!(共19分)23(1)证明:∵四边形ABCD 是正方形.∴∠BOE=∠AOF =90︒.OB =OA ……………… (1分) 又∵AM ⊥BE ,∴∠MEA+∠MAE =90︒=∠AFO+∠MAE ∴∠MEA =∠AFO ………………(2分)∴Rt △BOE ≌ Rt △AOF ……………… (3分) ∴OE=OF ………………(4分)(2)OE =OF 成立 ……………… (5分) 证明:∵四边形ABCD 是正方形,∴∠BOE=∠AOF =90︒.OB =OA ……………… (6分) 又∵AM ⊥BE ,∴∠F+∠MBF =90︒=∠B+∠OBE 又∵∠MBF =∠OBE∴∠F =∠E ………………(7分)∴Rt △BOE ≌ Rt △AOF ……………… (8分) ∴OE=OF ………………(9分)24.(1)解:设其为一次函数,解析式为y kx b =+ 当 2.5x =时,7.2y =; 当x =3时,y =6.7.2 2.563k bk b =+⎧⎨=+⎩解得 2.4k =-,13.2b =∴一次函数解析式为 2.413.2y x =-+ 把4x =时, 4.5y =代人此函数解析式,左边≠右边.∴其不是一次函数.同理.其也不是二次函数. ………… (3分)(注:学生如用其它合理的方式排除以上两种函数,同样得3分)设其为反比例函数.解析式为k y x=。