《反比例函数的图像与性质》教案
- 格式:pdf
- 大小:14.58 KB
- 文档页数:2
反比例函数的图像和性质【教学目标】1.了解反比例函数图像的形状特征。
2.会画反比例函数的图像。
3.经历探究反比例函数性质的过程,掌握反比例函数的性质。
4.学会利用反比例函数的性质解决简单的实际问题。
【教学重难点】1.会画反比例函数的图像。
2.学会利用反比例函数的性质解决简单的实际问题。
【教学过程】1.复习导入(1)反比例函数是怎样定义的?(2)确定反比例函数的解析式需要什么条件?2.课前热身请同学们展示各自在上节课实践活动中所画出的问题2的函数图像,比一比谁画得最好?(学生互评在上节课的实践活动中所画出的问题2的函数图像,形成对反比例函数图像的初步感形认识。
)3.合作探究(1)整体感知我们知道一次函数y=kx+b(k≠0)的图像是直线,其性质随着k的正负发生变化,那么反比例函数y=kx(k≠0)的图像又具有什么特征?其性质是否随着k的正负发生变化呢?本课我们着重探讨这两个问题。
(2)四边互动互动1师:利用多媒体演示幻灯片。
例1:画出函数y=6x的图像。
师:在未知函数图像的形状特征时,我们画函数的图像通常用什么方法?这个函数自变量的取值范围是什么?由此猜想这个函数的图像是连在一起的吗? 用描点法画该函数的图像,在列表应注意哪些? 生:逐个举手回答问题,达成共识。
师:利用多媒体展现画图过程。
(1)列表:这个函数中自变量x 的取值范围是不等于零的一切实数,列出x 与y 的对应值表:──┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬── x │…│-6│-3│-2│-1│…│1 │2 │3 │6 │… ──┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼── y │…│-1│-2│-3│-6│…│6 │3 │2 │1 │… ──┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴──(2)描点:由这些有序实数对,可以在直角坐标系中描出相应的点(-6,-1),(-3,-2),(-2,-3)等。
(3)连线:用光滑曲线将各点依次连起来,就得到反比例函数的图像,如图所示:师:请同学们用透明纸放在课本的该函数图像上复制这个图像,并用大头钉固定上下坐标系原点,再把上面的图像绕着原点旋转180°,结果你发现什么现象?生:动手操作,并提出发现的问题。
《反比例函数的图象和性质》教案李太生第一课时★新课标要求一、知识与技能1.会用描点法画反比例函数的图象.2.探索并理解反比例函数的性质.二、过程与方法1.经历探索反比例函数图象的过程,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.2.运用类比和数形结合的数学思想方法观察、猜测、归纳总结出反比例函数的性质.三、情感、态度与价值观1.由图象的画法和分析,体验数学活动中的探索性和创造性,感受数学美,并通过图象的直观教学激发学习兴趣.2.认识类比的数学思想方法和数形结合的思想方法在数学学习中的广泛应用.★教学重点理解并掌握反比例函数的图象和性质.★教学难点反比例函数图象是平滑双曲线的理解及对图象特征的分析.★教学方法鼓励学生自主学习,通过自己动手画图观察、猜测、归纳结论.★教学过程一、引入新课教师活动:我们已经知道一次函数y=kx+b(k≠0)的图象是一条直线,那么你猜测反比例函数y=k(k?0)的图象是什么样的呢? x学生活动:猜测、交流.二、进行新课1.反比例函数的图象教师活动:出示自学指导:①用“描点”法画反比例函数图象时应怎样取点?②反比例函数y=k中,x、y的取值能是0吗?函数图象与x轴、y轴有交点吗? x③反比例函数的两个分支能连在一起吗?④反比例函数图象的名称是什么?学生活动:对照自学指导,自学例2和反比例函数性质.教师活动:出示例2.例2 画出反比例函数y?66与y??的图象. xx学生活动:讨论、交流,用描点法画函数图象.教师活动:强调:(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值;。
反比例函数的图象与性质教案•相关推荐反比例函数的图象与性质教案范文(通用8篇)作为一名教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。
那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的反比例函数的图象与性质教案范文,欢迎阅读与收藏。
反比例函数的图象与性质教案篇1教学目标知识与技能:1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力、情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重难点1) 重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键:教师画图中要规范,为学生树立一个可以学习的模板。
教学方法:激发诱导,探索交流,讲练结合三位一体的教学方式。
教学手段:教师画图,学生模仿。
教具:三角板,小黑板。
学法:学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。
教学过程一:课前检测:1、什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。
)2、反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零。
二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
反比例函数的图像和性质教案一、引言反比例函数是数学中的一种常见函数类型,其图像及性质对于学生理解函数的变化规律和数学建模非常重要。
本教案将以图像和性质为切入点,逐步引导学生理解反比例函数的特点和相关概念。
二、教学目标1. 了解反比例函数的定义和表示形式;2. 掌握绘制反比例函数的图像的方法;3. 理解反比例函数的性质和特点。
三、教学内容1. 反比例函数的定义和表示形式反比例函数被定义为当自变量x发生变化时,与y的乘积保持不变的函数。
其一般表示形式为:y = k/x,其中k为常数。
2. 绘制反比例函数的图像为了绘制反比例函数的图像,我们可以选择一些特定的点进行画线。
首先,我们可以选择k的不同值,然后找几个x和y的值来计算并绘制。
例如,当k为1时,选择x为1、2、3,分别计算y,得到的结果为1、1/2、1/3。
可以将这些点连接起来,得到反比例函数y = 1/x的图像。
3. 反比例函数的性质和特点(1)x越大,y越小;x越小,y越大。
这是因为反比例函数中,当自变量x增大时,与y相乘的分母x变大,整体的值减小,所以y也随之减小。
当自变量x减小时,与y相乘的分母x变小,整体的值增大,所以y也随之增大。
(2)反比例函数的图像关于一、三象限对称。
例如,当绘制y = 2/x时,点(1, 2)在图像上,对称到第三象限点(-1, -2)上。
(3)反比例函数的图像经过第一、第三象限的原点(0,0)。
这是因为当x为0时,y无定义,也就是说y不存在。
四、教学步骤1. 引入概念,解释反比例函数的定义和表示形式;2. 通过实例演示,教学绘制反比例函数的图像的方法;3. 讲解反比例函数的性质和特点,并与学生一起讨论其背后的数学原理;4. 通过练习,巩固学生对反比例函数的理解。
五、教学资料1. 反比例函数的定义和表示形式的板书;2. 绘制反比例函数图像的步骤和方法的PPT;3. 反比例函数性质和特点的总结表格。
六、教学评估1. 在绘制反比例函数图像的练习中,观察学生对于选择点的准确性和图像的正确性;2. 在性质和特点讨论环节中,关注学生的参与度和思考能力。
18.3反比例函数的图像与性质
教学目的:能用描点法作出反比例函数图像并能掌握特征及利用反比例函数图像讨论反比例函数的性质。
教学重点:1、反比例函数图像的作图方法。
2、反比例函数图像的特征及性质。
教学难点:画反比例函数图像和掌握及灵活运用函数的性质。
教学过程:
(2)描点(3)连线得图像
(学生分两组分别作图)
1、有2个分支
2、图像是延伸的
3、无限接近x、y轴但不相交
4、光滑曲线(第3条需通过解析式做适当解释)
得出两个反比例函数的正确图像并由此得到反比例函数图像名称:双曲线
观察x和y的值,当x变化时,y是如何变化的?当x<0时x越大y越小,
我们把这种将抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,这种数学思想方法叫做数形结合。
初中数学《反比例函数的图象和性质》教学设计一. 教材分析《反比例函数的图象和性质》是初中数学的重要内容,主要让学生了解反比例函数的图象和性质,理解反比例函数在实际生活中的应用。
通过学习,学生能够掌握反比例函数的定义,了解反比例函数的图象特点,理解反比例函数的性质,并能运用反比例函数解决实际问题。
二. 学情分析学生在学习《反比例函数的图象和性质》之前,已经学习了函数的概念,比例函数和一次函数的图象和性质。
但学生在学习过程中可能对反比例函数的概念和性质理解不深,对反比例函数的图象特点把握不准。
因此,在教学过程中,教师要注重引导学生理解反比例函数的概念,通过实际例子让学生感受反比例函数的图象和性质。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的图象和性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.反比例函数的定义2.反比例函数的图象和性质3.反比例函数在实际生活中的应用五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过自主学习、合作探讨,理解反比例函数的图象和性质,提高学生的数学思维能力和解决问题的能力。
六. 教学准备1.PPT课件2.教学案例和实际问题3.反比例函数的图象和性质的相关资料七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60km/h的速度行驶,行驶1小时,行驶的路程是多少?”让学生思考并回答问题,引导学生认识到反比例函数在实际生活中的应用。
2.呈现(15分钟)利用PPT课件,展示反比例函数的图象和性质,让学生直观地感受反比例函数的特点。
同时,教师讲解反比例函数的定义,解释反比例函数的图象和性质。
3.操练(15分钟)让学生通过自主学习,理解并掌握反比例函数的定义,然后进行一些相关的练习题,让学生在实际操作中加深对反比例函数的理解。
4.巩固(10分钟)通过一些实际问题,让学生运用反比例函数解决问题,巩固学生对反比例函数的理解。
反比例函数的图象与性质教案教学设计一、教学目标:1. 知识与技能:让学生掌握反比例函数的定义,理解反比例函数的图象和性质,能够运用反比例函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索反比例函数的图象与性质,培养学生的抽象思维能力和数形结合思想。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极进取的精神,使学生认识到数学在生活中的重要性。
二、教学重点与难点:1. 教学重点:反比例函数的定义,反比例函数的图象与性质。
2. 教学难点:反比例函数图象的理解,反比例函数性质的推导。
三、教学方法与手段:1. 教学方法:采用引导发现法、问题驱动法、合作交流法等。
2. 教学手段:利用多媒体课件、反比例函数图象软件、黑板等。
四、教学过程:1. 导入新课:通过展示实际问题,引导学生思考反比例函数的定义,引出本节课的内容。
2. 自主探究:让学生利用软件绘制反比例函数的图象,观察图象特征,引导学生发现反比例函数的性质。
3. 小组讨论:4. 教师讲解:对学生的探究结果进行点评,讲解反比例函数的图象与性质,引导学生深入理解。
5. 巩固练习:布置练习题,让学生运用所学知识解决问题,巩固反比例函数的图象与性质。
6. 课堂小结:五、课后作业:1. 完成练习册上的相关题目。
2. 调查生活中反比例函数的应用实例,下节课分享。
教学反思:课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
六、教学策略与实施1. 案例分析:通过分析生活中的实际案例,如化学实验中的浓度配比、经济学中的成本与产量关系等,让学生直观地感受到反比例函数的应用。
2. 数学软件辅助:利用数学软件或在线图形计算器,让学生实时观察不同反比例函数的图象,从而加深对函数性质的理解。
3. 分层教学:针对不同学生的学习水平,设计不同难度的教学内容和练习题,确保每个学生都能在课堂上得到有效的学习。
4. 互动式教学:鼓励学生在课堂上提问和分享自己的见解,通过问答和讨论,提高学生的参与度和思维能力。
《反比例函数的图像与性质》教案
教学目标
1、体会并了解反比例函数的图象的意义
.
2、能描点画出反比例函数的图象.
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质
教学重点.
本节教学的重点是反比例函数的图象及图象的性质.
教学难点
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点.
教学过程
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质
.转而导人关注新的函数——反比例函数的图象研究:反比例函数的图
象又会是什么样子呢?
2、探索活动探索活动1反比例函数x y
6的图象.由于反比例函数x y 6
的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因
此需要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x 的哪些值?
——x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零
为基准,左右均匀,对称地取值. 描点:依据什么(数据、方法)找点?。