第二章 z变换-作业
- 格式:ppt
- 大小:1.04 MB
- 文档页数:17
作 业第二章:2-6某水槽如题图2-1所示。
其中A 1为槽的截面积,R 1、R 2均为线性水阻,Q i 为流入量,Q 1和Q 2为流出量要求:(1)写出以水位h 1为输出量,Q i 为输入量的对象动态方程;(2)写出对象的传递函数G(s)并指出其增益K 和时间常数T 的数值。
图2-1解:1)平衡状态: 02010Q Q Q i +=2)当非平衡时: i i i Q Q Q ∆+=0;1011Q Q Q ∆+=;2022Q Q Q ∆+= 质量守恒:211Q Q Q dthd A i ∆-∆-∆=∆ 对应每个阀门,线性水阻:11R h Q ∆=∆;22R h Q ∆=∆ 动态方程:i Q R hR h dt h d A ∆=∆+∆+∆2113) 传递函数:)()()11(211s Q s H R R S A i =++ 1)11(1)()()(211+=++==Ts KR R S A s Q s H s G i2Q11这里:21121212111111R R A T R R R R R R K +=+=+=;2-7建立三容体系统h 3与控制量u 之间的动态方程和传递数,见题图2-2。
解:如图为三个单链单容对像模型。
被控参考△h 3的动态方程: 3233Q Q dth d c ∆-∆=∆;22R h Q ∆=∆;33R hQ ∆=∆; 2122Q Q dth d c ∆-∆=∆;11R h Q ∆=∆ 111Q Q dth d c i ∆-∆=∆ u K Q i ∆=∆ 得多容体动态方程:uKR h dth d c R c R c R dt h d c c R R c c R R c c R R dt h d c c c R R R ∆=∆+∆+++∆+++∆333332211232313132322121333321321)()(传递函数:322133)()()(a s a s a s Ks U s H s G +++==; 这里:32132133213213321321332211232132131313232212111;c c c R R R kR K c c c R R R a c c c R R R c R c R c R a c c c R R R c c R R c c R R c c R R a ==++=++=2-8已知题图2-3中气罐的容积为V ,入口处气体压力,P 1和气罐 内气体温度T均为常数。
自动控制原理第二章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换 (1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。
解:211(1)()(1)()0(0.8)(0.1)lim lim limt z z z z f t z E z z z →∞→→-=-==-- 2-3* 已知()(())E z L e t =,试证明下列关系成立:(1)[()][];n z L a e t E a =证明:0()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。
证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。
第二章 序列的Z 变换与傅里叶变换 2.1 引言信号与系统的分析方法:时域分析;变换域分析 信号与系统的分析方法有多种连续时间信号与系统:拉普拉斯变换、傅里叶变换;信号用时间 t 的函数表示;系统用微分方程描述。
离散时间信号与系统:z 变换、傅里叶变换;信号用序列表示;系统用差分方程描述。
z 变换是一个很重要数学工具,可用于求解差分方程,同时它也可以从不同的侧面和方法对离散信号的频域特征进行分析,还能很方便地分析系统的因果性、稳定性等方面的特性。
2.2 Z 变换的定义与收敛域 一、z 变换的定义序列x(n)的Z 变换定义:双边Z 变换单边Z 变换因果序列的Z 变换: 单边Z 变换可以看成因果序列情况下的双边Z 变换z 是一个复变量, 它所在的复平面称为z 平面。
z 是一个连续复变量,具有实部和虚部。
变量z 的极坐标形式 单位圆:在Z 平面上|z|= 1为半径的圆 单位圆上的参数可表示为例2.1 求序列 的Z 变换。
解:序列x (n )是因果序列,根据Z 变换的定义分析收敛性:X (z )是无穷项幂级数。
当|z|≤a 时级数发散,当|z|>|a|时级数收敛。
X(z)可用封闭形式,即解析函数形式表示为二、z 变换的收敛域收敛域: 对于给定的任意序列x (n ),使其Z 变换收敛的所有z 值的集合组成的区域。
Z 变换存在的条件是等号右边级数收敛, 要求级数绝对可和, 即使上式成立的Z 变量取值的域称为收敛域。
根据罗朗级数性质,收敛域一般是某个环域收敛半径Rx -可以小到0,Rx +可以大到∞收敛域以原点为中心,Rx -和Rx +为半径的环域()()nn X z x n z ∞-=-∞=∑∞<=∑∞-∞=-M z n x n n )(110()[()]()(2.2)n n X z x n x n z +∞-==Z =∑j ||e z z ω=j e z ω=()()n x n a u n =10011213()()()1()()n n n nn n n X z x n z a z az az az az +∞+∞+∞---=-∞==---====++++⋅⋅⋅∑∑∑1101()(),||||1n n zX z az z a az z a +∞--====--∑>不同形式的序列x(n)其收敛域形式不同。