大型垃圾焚烧炉采用冷热二次风比较
- 格式:docx
- 大小:61.70 KB
- 文档页数:11
垃圾炉一次风温问题思考开炉先开一次风二次风垃圾炉一次风温问题分析一、锅炉一次风温问题的提出:锅炉一次风道具体设计如图(一)所示:空预器设计说明:锅炉采用蒸汽空气预热器来加热一次风,每台锅炉配一组一次风蒸汽空气预热器。
其受热面的布置形式为螺旋翅片管。
蒸汽在管内流动放热,空气在管外横向冲刷。
一次风蒸汽空气预热器均分二级,风量为39800Nm3/h,第一级把空气从15℃加热到140℃,第二级把上级的空气从140℃加热到230℃。
一级空气预热器用低压蒸汽对空气进行加热,加热蒸汽压力为1.1Mpa(g), 加热蒸汽温度为276℃;二级空气预热器用锅炉的饱和蒸汽进行加热,加热蒸汽压力为4.8Mpa(g), 加热蒸汽饱和温度为263℃。
设计230℃,实际只有180℃左右(必须开疏水器的旁路,如果不开旁路,只有120 ℃,可见疏水器明显存在问题)。
二、风温偏低的原因分析:1 、加热蒸汽偏离设计值:一级空预器的加热蒸汽设计值是1.1Mpa(g)的过热蒸汽,温度是276℃。
查汽轮机热力特性曲线图设计说明:汽轮机100%负荷(12000KWh)时抽汽压力1.074Mpa,温度275.6℃;汽轮机80%负荷(9600KWh)时抽汽压力只有0.841Mpa,温度258.8℃;汽轮机50%负荷(6000KWh)时抽汽压力只有0.515Mpa,温度仅有231℃(此时疏水都比较难疏到除氧器)。
由以上数据可见空预器设计是按汽轮机100%负荷设计的。
而我们机组运行受锅炉运行影响是达不到设计值的。
据统计我们的汽轮机负荷基本在10000 KWh左右,故抽汽压力只有0.85Mpa,温度260℃。
二级加热器的加热蒸汽设计值是按MCR(最大连续蒸发量)工况设计的:4.8Mpa(g)饱和蒸汽,263℃;而我们实际根据公司要求不超机械负荷,所以运行只有4.3Mpa,温度只有253.7℃。
(据观察锅炉厂设计时也存在问题:锅炉蒸汽出口压力在4.0 Mpa,出力在30.5t/h时,汽包压力也只有4.4Mpa。
论述生活垃圾焚烧发电厂的炉型选择【摘要】本文对设计中焚烧炉炉型的选择进行了探讨与分析。
分析认为,炉排炉及循环流化床焚烧炉与机械炉排焚烧炉相比,在燃料的适应性、二次污染物排放、灰渣综合利用,以及低热值垃圾焚烧处理方面具有明显优势。
建议垃圾焚烧应尽可能选用循环流化床锅炉。
【关键词】垃圾发电;垃圾焚烧;循环流化床;焚烧炉;炉排炉目前,世界上焚烧炉的种类较多,主要为四大类型:炉排型垃圾焚烧炉、流化床垃圾炉、回转窑垃圾焚烧炉和垃圾热解气化焚烧炉。
下面对这四种炉型分别进行介绍。
1 炉排炉型焚烧炉机械炉排炉技术作为世界主流的垃圾焚烧炉技术,技术成熟、可靠,其应用前景广阔,发展空间较大。
这种焚烧炉因为具有对垃圾的预处理要求不高,对垃圾热值适应范围广,运行及维护简便等优点,是目前在处理城市垃圾中使用最为广泛的焚烧炉。
该类型焚烧炉型式很多,主要有固定炉排(主要是小型焚烧炉)、链条炉排、滚动炉排、倾斜顺推往复炉排、倾斜逆推往复炉排等。
为使垃圾燃烧过程稳定,炉排型焚烧关键是炉排。
炉排的布置、尺寸、形状随着垃圾水分、热值的差异以及生产厂商的不同而不同,炉排有水平布置,也有呈倾斜15°-26°布置,炉排设计分为预热段、燃烧段、燃烬段,段与段之间可以有垂直落差,也可没有落差。
垃圾在炉排上着火,热量不仅来自上方的辐射和烟气的对流,还来自垃圾层内部。
在炉排上已着火的垃圾在炉排的特殊作用下,使垃圾层强烈地翻动和搅动,引起垃圾底部开始着火,连续的翻动和搅动使垃圾层松动,透气性加强,有助于垃圾的着火和燃烧。
炉拱设计要考虑烟气流有利于热烟气对新入垃圾的热辐射预热干燥和燃烬区垃圾的燃烬。
配风设计要确保空气在炉排上垃圾层分布均匀,并合理使用一、二次风。
对于成分复杂的垃圾,炉温太高时,物料熔融结块,炉排、炉壁易烧坏,同时产生过多的氧化氮;炉温太低时,烟气滞留时间过短,产生不完全燃烧,对人体有严重危害的二恶英难以完全分解。
因此,炉膛出口温度应保证不低于850℃,烟气滞留时间不低于2s。
垃圾焚烧炉配风比对燃烧过程影响的数值模拟研究
陈鹏;李军;陈竹
【期刊名称】《环境卫生工程》
【年(卷),期】2015(000)005
【摘要】通过商业软件 Fluent 对600 t/d 垃圾焚烧炉进行了数值模拟计算,分析了不同的一二次风配比工况对炉膛内部焚烧过程中温度分布以及 CO 浓度分布的
影响。
结果表明:在总风量不变的情况下,适当的提高二次风的比例可以促使炉膛内部燃烧更加充分且温度分布较为均匀。
一二次风比值为0.73∶0.27时,炉膛内
部喉口处的温度分布与 CO 浓度分布较于其他工况更加均匀,表现最优。
数值计
算的结果与分析表明,一定程度的提高二次风比例可以促使炉膛内部关键部位的温度和 CO 浓度变化梯度更小,燃烧也相对更为充分。
【总页数】4页(P29-32)
【作者】陈鹏;李军;陈竹
【作者单位】中国天楹股份有限公司,江苏南通226600;中国天楹股份有限公司,江苏南通 226600;中国天楹股份有限公司,江苏南通 226600
【正文语种】中文
【中图分类】X705
【相关文献】
1.配风比对燃油燃烧器燃烧过程影响的数值模拟 [J], 邱冰冰;杨步云;李文科
2.配风方式对垃圾焚烧炉燃烧效率的影响分析 [J], 周春艳;马晓茜;毛恺
3.生活垃圾焚烧炉炉型及炉内配风对燃烧的影响研究 [J], 岳优敏
4.生活垃圾焚烧炉炉型及炉内配风对燃烧的影响研究 [J], 岳优敏;
5.协同焚烧污泥对垃圾焚烧炉燃烧过程的影响实验和模拟研究 [J], 喻武;朱浩因版权原因,仅展示原文概要,查看原文内容请购买。
垃圾焚烧锅炉受热面高温腐蚀与对策研究摘要:在垃圾焚烧处理操作中,垃圾所含有大量的氯、硫等元素,在高温的作用下这些元素会形成酸性气体,之后与锅炉受热面上的金属反应,转变成金属氯化物、金属硫化物等腐蚀产物,最终造成锅炉受热面被腐蚀和损坏。
受热面高温腐蚀问题是影响锅炉安全稳定运行的关键因素,所以,垃圾焚烧厂必须明确影响受热面高温腐蚀的相关因素,提出有效的解决对策。
关键词:垃圾焚烧;锅炉;受热面;高温腐蚀;对策垃圾焚烧主要是借助于高温燃烧垃圾,将无机物质转变成废气、灰渣,将有机物质转变成水、二氧化碳,该处理方式具有减量化程度高、无公害、废弃物资源化利用等优点。
因此,当前我国各地纷纷建设垃圾焚烧厂,以进一步缓解垃圾围城的问题。
然而随着垃圾焚烧厂使用时间的增长,锅炉受热面往往会出现高温腐蚀甚至穿管等问题,这些问题会大大降低锅炉运行的安全性与稳定性。
基于此,垃圾焚烧厂必须积极探索可以有效解决锅炉受热面高温腐蚀问题的对策,从而保证自身运行的可靠性与运行效率,减少维护量。
一、垃圾焚烧锅炉受热面高温腐蚀的相关概述在垃圾焚烧处理过程,锅炉内会产生大量具有较强腐蚀性的复杂气体、氯化物与硫酸盐等,这些物质在高温的作用下会导致受热面被腐蚀。
垃圾焚烧锅炉受热面腐蚀大多发生在过热器、预热器、水冷壁等位置。
同时,垃圾组分具有不定性,垃圾焚烧时锅炉内的垃圾燃烧温度与工质参数往往会产生较大范围的波动,致使受热面金属更快疲劳,形成疲劳裂纹,加上外部腐蚀性气体侵蚀裂纹间隙,导致管壁腐蚀速度加快。
据国内外相关实验研究发现:在垃圾焚烧锅炉不同受热面区域(水冷壁、尾部烟道、省煤器、过热器等)的腐蚀情况的模拟分析中,锅炉受热面上的腐蚀与气、液、固多相耦合过程以及烟气中的硫化物、氯化物、碱金属化合物等存在非常密切的联系,且锅炉内气氛、重金属含量等均与腐蚀发生相关[1]。
垃圾焚烧所产生的烟气中含有的固态颗粒和频繁吹灰,也会导致受热面金属管壁腐蚀磨损。
城市生活垃圾焚烧发电锅炉的燃烧控制与调整城市生活垃圾焚烧发电锅炉的燃烧控制与调整是电厂运行中的重点和难点。
如何实现稳定燃烧提高垃圾燃烧热效率是垃圾发电产业的研究课题之一。
本文以炉排层燃垃圾焚烧发电锅炉为例,从垃圾燃料特性、垃圾料层厚度、一次风和二次风等方面阐述垃圾发电锅炉的稳定燃烧控制与调整,为垃圾焚烧发电锅炉的优化运行提供参考。
城市生活垃圾焚烧发电具有无害化、资源化和减量化三大优势,对改善城市卫生环境作用重大,是当今处理城市生活垃圾的一种最优途径,已成为我国城市生活垃圾处理的最主要方法之一。
而目前国内多数垃圾焚烧发电锅炉热效率偏低,直接影响到垃圾焚烧发电厂的经济效益。
究其原因,是因为目前我国大部分地区,城市生活垃圾普遍具有水分高、热值低的特点,热值通常在4000~6000kJ/kg左右,且垃圾成份复杂多变,焚烧炉运行各阶段垃圾热值相差较大,导致垃圾焚烧炉燃烧不稳定和热效率的下降。
如一规模为500t/d垃圾焚烧发电工厂,锅炉运行过程中垃圾热值变化波动较大,不但增加了风机负荷,且垃圾随着水分的增加降低了入炉热量和入炉热量有效利用率。
国内科研单位针对垃圾特点开展了一些相关理论研究,探讨了影响垃圾稳定燃烧的一些规律。
本文结合实例从垃圾燃料特性、垃圾料层厚度、一次风和二次风等方面探讨垃圾发电锅炉稳定燃烧技术,为锅炉的安全经济运行提供了有益的参考。
垃圾发电锅炉的燃烧控制与调整实例某一城市生活垃圾焚烧发电厂,设计垃圾处理量500t/d,锅炉主蒸汽流量47t/h,主蒸汽压力6.50MPa,主蒸汽温度450°C。
锅炉为单锅筒横置式自然循环水管锅炉,采用往复式炉排,炉排面积68m2。
燃料包括纸、木屑、纺织物、塑料、橡胶、厨余、玻璃和金属等在内的城市生活垃圾。
图1 城市生活垃圾往复炉排焚烧发电流程示意图往复炉排焚烧流程示意图如图1所示。
一次风由炉排下方的空气室吹入,穿过垃圾层的同时与垃圾发生燃烧反应。
垃圾在炉排上的燃烧过程可分为干燥、挥发分析出、挥发分燃烧、焦炭燃烧和燃尽五个阶段。
垃圾焚烧炉排炉二次风配风的CFD优化模拟垃圾焚烧炉是一种能够有效处理城市生活垃圾的设备。
在垃圾焚烧过程中,二次风和配风的合理调节对于炉内温度分布、燃烧效率和废气排放有着重要影响。
因此,利用计算流体力学(CFD)模拟技术对垃圾焚烧炉进行优化模拟是十分必要的。
首先,对垃圾焚烧炉进行CFD模拟需要建立合适的物理模型和数学模型。
物理模型应包括垃圾填充层、炉膛、烟道等主要结构,数学模型应包括质量守恒方程、能量守恒方程和动量守恒方程。
同时,还应考虑燃料的燃烧反应和烟气的混合与传导等细节。
其次,CFD模拟应着重优化排炉二次风和配风的调节。
排炉二次风的主要作用是加强燃烧过程,保证垃圾焚烧炉内足够的氧气供给,提高燃烧效率,降低废气排放。
配风的主要作用是调节炉内温度分布,防止炉内局部过热或过冷。
通过CFD模拟,可以合理设计二次风和配风的喷射位置、角度和流量,使其均匀分布在炉内,充分与燃烧垃圾接触,最大程度上发挥其功能。
在进行CFD模拟时,需要对炉内的物料特性和燃烧特性进行实验测试,并建立合适的物料模型和燃烧模型。
通过对实验数据的分析,可以确定物料和燃烧模型中的参数,从而提高模拟的准确性。
同时,还需要考虑炉内垃圾的湿度、粒径分布和混合物质等因素对燃烧过程的影响。
通过CFD模拟可以得到炉内温度分布、燃烧效率和废气排放等关键指标的数值计算结果。
通过对模拟结果的分析,可以优化炉内二次风和配风的调节,使其达到最佳状态。
例如,在炉膛顶部增设适当的二次风口可以增加上层的燃烧温度,改善燃烧效率;调节配风的流量和角度可以更好地控制炉内温度分布,避免过热或过冷带来的问题。
综上所述,利用CFD模拟技术对垃圾焚烧炉的排炉二次风和配风进行优化模拟是十分必要和重要的。
通过对垃圾焚烧炉内流场和温度场的分析,可以优化二次风和配风的调节,提高燃烧效率和废气排放质量。
这对于垃圾焚烧炉的改进和设计具有重要指导意义。
【摘要】:本文对设计中焚烧炉炉型的选择进行了探讨与分析。
分析认为,炉排炉及循环流化床焚烧炉与机械炉排焚烧炉相比,在燃料的适应性、二次污染物排放、灰渣综合利用,以及低热值垃圾焚烧处理方面具有明显优势。
建议垃圾焚烧应尽可能选用循环流化床锅炉。
论文关键词:垃圾发电,垃圾焚烧,循环流化床,焚烧炉,炉排炉1、炉排炉型焚烧炉机械炉排炉技术作为世界主流的垃圾焚烧炉技术,技术成熟、可靠,其应用前景广阔,发展空间较大。
这种焚烧炉因为具有对垃圾的预处理要求不高,对垃圾热值适应范围广,运行及维护简便等优点,是目前在处理城市垃圾中使用最为广泛的焚烧炉。
该类型焚烧炉型式很多,主要有固定炉排(主要是小型焚烧炉)、链条炉排、滚动炉排、倾斜顺推往复炉排、倾斜逆推往复炉排等。
为使垃圾燃烧过程稳定,炉排型焚烧关键是炉排。
炉排的布置、尺寸、形状随着垃圾水分、热值的差异以及生产厂商的不同而不同,炉排有水平布置,也有呈倾斜15°~26°布置,炉排设计分为预热段、燃烧段、燃烬段,段与段之间可以有垂直落差,也可没有落差。
垃圾在炉排上着火,热量不仅来自上方的辐射和烟气的对流,还来自垃圾层内部。
在炉排上已着火的垃圾在炉排的特殊作用下,使垃圾层强烈地翻动和搅动,引起垃圾底部开始着火,连续的翻动和搅动使垃圾层松动,透气性加强,有助于垃圾的着火和燃烧。
炉拱设计要考虑烟气流有利于热烟气对新入垃圾的热辐射预热干燥和燃烬区垃圾的燃烬。
配风设计要确保空气在炉排上垃圾层分布均匀,并合理使用一、二次风。
对于成分复杂的垃圾,炉温太高时,物料熔融结块,炉排、炉壁易烧坏,同时产生过多的氧化氮;炉温太低时,烟气滞留时间过短,产生不完全燃烧,对人体有严重危害的二恶英难以完全分解。
因此,炉膛出口温度应保证不低于850℃,烟气滞留时间不低于2s。
机械炉排炉的技术特点如下:(1)由于鼓风压力小,风机装机容量小,动力消耗小。
(2)由于烟气粉尘量相对其他型式焚烧炉而言较小,除尘器的负荷和运行成本相对降低。
中越两国垃圾焚烧锅炉炉膛内烟气停留时间之比较时扶苴(无锡华光锅炉股份有限公司,江苏无锡214028)摘要:垃圾焚烧锅炉的炉膛烟气高温段停留时间是锅炉运行中一项重要的性能指标,各国标准对其都有严格的规定,本文以一台出口越南的500t/d垃圾焚烧余热锅炉为例,比较了中越两国标准下炉膛内的烟气停留时间,为锅炉设计人员研发海外项目提供实例及借鉴。
关键词:中越两国标准;炉膛温度;炉膛烟气停留时间1.前言近年来,我国城市化进程飞速推进,城市生活垃圾总量成倍增长,简单的垃圾填埋已不能满足城市建设需求,对一些人口密集、用地紧张的大中型城市来说,城市生活垃圾焚烧处理是目前相对高效、环保的处理方法,且已经在世界范围内得到不断地推广和普及。
我公司在国家实施“一带一路”政策的良好契机下与国内的环保公司积极合作,将我国的垃圾焚烧技术推向海外市场,本文以一台出口越南的5OOt/d垃圾焚烧余热锅炉为例,阐述了针对相同的垃圾成分及锅炉参数,在执行中越两国不同标准时,垃圾焚烧余热锅炉炉膛设计方案的差异性,建议锅炉设计人员在进行海外项目的设计研发时应了解不同国家对垃圾焚烧的标准和法规要求。
2.中越两国标准简介(1)我国执行的标准:GB18485-2014《生活垃圾焚烧污染控制标准》⑵越南执行的标准QCVN 61-MT:2016/BTNMT《生活垃圾焚烧炉技术规范》中越两国标准中均包括了垃圾焚烧炉技术参数和技术性能指标、污染物排放限值、污染物浓度监测等内容,同时对垃圾焚烧厂的选址和运行、入炉垃圾也都作出了相关规定。
3.我国标准中炉膛内烟气停留时间的定义和计算方法[1]3.1炉膛内烟气停留时间的定义:垃圾燃烧所产生的烟气处于高温段(850-C)的持续时间。
3.2我国标准中垃圾炉炉膛内烟气停留时间的近似计算3.2.1余热锅炉进口烟气量lkg燃料完全燃烧时所需要的理论干空气量(过量空气系数a=l),可由燃料中各可燃成分(C、H、S)在燃烧时所需空气量相加而成現lkg收到基燃料,在供以理论空气量的条件下完全燃烧时,生成的烟气容积称为理论烟气容积叫由此,在确定垃圾成分的情况下,可以计算出焚烧炉出口即余热炉进口理论烟气量Vy (Nm3/kg)o3.2.2“平均温度”下的锅炉烟气量计算(1)100%设计工况下的锅炉烟气量Qy (Nm3/kg):Qy=Vy xBp,其中:Bp—100%设计工况下的计算燃料消耗量,kg/h。
垃圾焚烧炉排炉二次风配风的CFD优化模拟摘要:为探究二次风配风对炉排炉中城市固体垃圾焚烧过程的影响,针对某750t/d垃圾焚烧炉排炉,采用数值模拟的方法对炉膛焚烧过程进行热态模拟,就下二次风投、停运,上二次风布置形式和上二次风风速3个因素进行优化分析.模拟结果显示,通过在炉拱下方增加下二次风能对炉膛前、后炉拱形成包覆作用,阻挡高温烟气冲刷,有利于改善炉拱区域的结渣问题;炉膛上二次风对冲布置或适当增大二次风风速(从45m/s增大至65m/s)均能有效促进烟气混合,提高炉膛烟气的充满度,改善温度分布的均匀性;上二次风对冲布置较错列布置能进一步提高烟气停留时间,降低炉膛出口的CO体积分数,从而提高燃烧效率.关键词:炉排炉;垃圾(MSW)焚烧;计算流体动力学(CFD);数值模拟;二次风;配风优化国家统计局2014年统计年鉴[1]显示,2013年我国生活垃圾清运量已达17238.6万吨.如何处理日益围城的生活垃圾成为亟待解决的问题.2012年,国务院发布的《“十二五”全国城镇生活垃圾无害化处理设施建设规划》[2]提出:到2015年,全国城镇垃圾焚烧处理设施处理能力达到无害化处理总能力的35%.在国家政策的大力扶持下,生活垃圾焚烧处理已进入市场化全面发展阶段.炉排炉是当前垃圾焚烧的主要型式之一[3].目前国内已有企业[4-5]通过引进如德国马丁、比利时西格斯、日本田熊、日立等的先进技术,加以吸收创新,实现了焚烧设备的自主化,但其运行的经济性及稳定性仍有待进一步提高.基于计算流体动力学(computationalfluiddynamics,CFD)的数值模拟方法作为一种低成本、高效率的研究手段,近年来不断被应用于垃圾焚烧炉的设计及优化研究工作中.Kear等[6]对稻草焚烧炉的炉排顶部温度以及组分分布进行了数值计算.Yin等[7-8]采用数值模拟结合试验的方式对燃烧小麦秸秆的88MW炉排炉进行了研究,得到了不同建模方式对计算结果的影响.马晓茜等[9-12]对炉排的燃烧进行分段处理,讨论富氧条件对炉排燃烧的影响,并且采用CFD手段对炉膛燃烧以及炉膛顶部通过选择性非催化还原(ivenon-catalyticreduction,SNCR)方法脱除NOx进行了研究.胡玉梅等[13-14]采用数值手段对炉排炉二次风的作用以及二次风的布置位置进行了研究,通过调整二次风位置来调节燃烧条件,抑制二恶英生成.上述研究主要以国外引进炉排为研究对象,且单机处理量处于中小水平,国内鲜见关于750t/d大型炉排炉炉内燃烧模拟以及配风优化的公开研究成果.本文以国内某自主研发的750t/d炉排炉为研究对象,采用数值方法对炉排炉内燃烧进行模拟.下文将从下二次风投、停运,上二次风布置形式以及上二次风风速这3个角度对其二次风配风进行优化分析.1、研究对象及计算模型研究对象为国内某公司自主研发的750t/d垃圾焚烧炉排炉,炉排长为11.66m,宽为12.56m,运行速度为7.673m/h,即运行周期为90min.炉膛容积为648.47m3,配风分为三级,一次风由炉排下方由高到低分5级灰斗两列配送,总风量为88700Nm3/h,温度为493K.二次风温度为313K,总流量为38000Nm3/h,其中上、下二次风所占质量分数分别为80%、20%.根据炉膛实际结构尺寸,通过GAMBIT 建立三维模型如图1所示,炉膛网格均采用六面体网格,二次风入口采用局部加密处理,网格总量为109.91万,网格质量较好.图1垃圾焚烧炉膛的几何模型垃圾燃烧过程按水分蒸发、挥发分析出、挥发分燃烧和焦炭燃烧分为多个阶段进行,垃圾燃烧过程的模拟分为两大部分,即炉排上方垃圾固相的燃烧和固相燃烧析出的气相在炉膛内的燃烧.固相燃烧反应采用FLIC软件进行模拟,床层上固相反应由文献[15-17]的运动模型描述.固相控制方程如式(1)~(4)所示,与气相控制方程类似,同时考虑了垃圾床层的移动.床层模拟计算得到挥发出的气相温度、速度及各组分质量分数作为入口边界条件导入到炉膛气相燃烧模拟计算中.气相燃烧模拟得到的床层辐射温度将作为床层模拟的边界条件再次迭代计算,直至收敛.炉膛的气相燃烧反应将通过商业软件AN-SYS中的FLUENT组件进行模拟,粘性模型采用标准k-ε湍流模型,壁面函数为标准壁面函数,气相燃烧采用有限速率/涡耗散(EDC)模型,化学反应为以下3步:辐射模型为DO(discreteordinates)模型,采用Simple算法求解压力速度耦合方程,控制方程的离散形式为二阶迎风.炉膛壁面采用绝热边界条件,设置炉排沿程为速度入口,上、下二次风也均为速度入口,出口设为压力出口.2、计算工况由于我国垃圾未经分类处理,成分复杂,其飞灰软化温度较煤粉更低,现运行的垃圾炉普遍存在排炉、炉膛、烟道结焦的现象[18],尤其在炉膛喉部区域,未燃烬颗粒受重力作用在前、后墙的炉拱上沉积,在燃烧高温的辐射下,熔融结焦.大量焦块脱落严重影响机组运行的稳定性.为改善这一现象,考虑在前、后墙炉拱下方投运下二次风,用以加强炉拱区域气流的扰动、减少积灰,同时减少高温区的传热.为考察下二次风的作用,对停运和投运下二次风时炉膛热态燃烧工况分别进行数值模拟,各工况下二次风总风量保持不变.炉膛上二次风的作用主要提供后期燃烧所需氧量,加强气流扰动,以确保燃料的燃烬,从而提高锅炉的燃烧效率;同时引导高温烟气流向,减少因高温区贴墙而产生的壁面结焦、结渣现象.垃圾炉上二次风的布置形式一般采用对冲或错列布置,如图2所示,对冲布置即前、后墙风口水平位置相对,风口数相同.错列布置即前、后墙风口水平位置交错,后墙风口数减少一个,同时增大风口面积以保证风量不变.图2前、后墙二次风布置形式:错列、对冲为比较错列布置和对冲布置的效果,这里分别计算了上二次风风速vH为55m/s 时错列布置和对冲布置下的2个工况,分别标记为CL55和DC55.同时为探究上二次风风速的影响,在保证上二次风角度及对冲布置方式不变的情况下,分别计算上二次风风速为45、55、65m/s的3个工况,记为DC45、DC55、DC65.本文计算的工况如表2所示.表2计算工况的配风设置Tab.23、炉膛热态模拟结果及分析3.1下二次风投运的影响图3下二次风变工况(停运、投运)的炉膛温度分布如图3所示为工况1和工况4的中心截面温度分布及炉拱截面(A-A)的温度分布,可以发现二次风投运后,下二次风由炉拱下方贴壁而上,将喉部炉拱包覆起来,从图3(b)炉拱截面温度分布可以看出下二次风气流在炉拱宽度方向上的间隔吹扫作用,二次风的投运使得火焰趋势在喉部稍稍靠近后墙,这是由于后拱距离上二次风口较远,同时紧邻主燃区,氧量补入较前拱更困难,因此后墙侧下二次风的注入迅速满足其燃烧所需氧量,从而使得喉部燃烧略靠后墙.为进一步考察下二次风对炉拱的保护作用,量化两工况的差异,表3对前、后墙沿炉拱截面各40mm深度的范围(如图3(b)两侧黑线所示区域)进行了参数统计,表中,T为温度统计值,φ为体积分数统计值.投运下二次风后,前、后炉拱的平均温度均有所降低,前拱降温尤其显著.除高温外,还原性气氛是导致炉膛结焦结渣的另一大因素[19],灰分中的Fe2O3被还原成FeO,FeO与SiO2,CaO等形成共晶体后,灰分的熔点大大下降,从而易于熔融结焦.表3下二次风变工况(停运、投运)炉拱参数统计从表3可以看出,投运后前拱附近的O2体积分数有所提高,CO体积分数下降一半.后拱附近的O2体积分数虽稍有降低,但CO体积分数减少了一个数量级,因此可以推断出投运后炉膛前、后拱附近区域的还原性气氛均得到大幅改善,综合考虑到下二次风对炉拱附近的吹扫作用以及对高温的隔离作用,下二次风的投运将有利于改善炉膛喉部结焦严重的问题.3.2、上二次风布置形式的影响工况2和工况4错列、对冲布置的迹线分布对比如图4所示,对比可以发现,对冲布置方式相比于错列布置方式迹线更为弥散饱满.图4变上二次风布置形式(错列、对冲)迹线分布气流在中心碰撞,动量抵消,有利于炉膛气流的均匀扩散,不至于出现气流过分贴壁的情况.因此气流速度分布相对均匀.结合图4中DC55迹线分布可见,该工况在下部迹线呈现竖直向上,下部靠前墙侧的回流区较小,在上部由于烟气向出口转向而偏向前墙,这样的流场一方面能更大限度地利用炉膛容积,在同样锅炉热负荷的时候有效降低容积热负荷,减轻结焦结渣的情况;另一方面,相对于错列布置,烟气在顶部更加偏向前墙也有利于SNCR喷枪布置,为后期脱硝提供便利条件.通过观察对冲布置和错列布置方式下的炉膛宽度中心截面温度温度分布(见图6(a)),可以发现,两工况下炉排前端为水分蒸发区,因此温度偏低,而中间段为挥发分的燃烧区,温度上升,在中间区域达到最高温度,而且上炉膛部分也正位于该位置上方,高温烟气直接竖直向上,不需要沿着炉拱绕行,这样在一定程度上避免了炉拱壁温太高导致的结渣问题.对比两工况下炉内温度场可以看出,温度分布并没有发生根本上的改变,仅表现出在上部炉膛的温度场分布稍有不同,说明上二次风的布置方式对于炉膛主燃区的燃烧状况影响甚微.上部炉膛的温度场分布稍有不同,对冲布置下,上炉膛温度降低较不明显,这说明炉膛烟气与上二次风混合更均匀,因此燃烧也就更完全.进一步反映了对冲布置提高燃尽率的作用.图6变上二次风布置形式(错列、对冲)截面温度分布观察高度y=10m下的高度截面温度分布图(见图6(b)),可以看出,对冲布置的温度场均匀性更优,在炉壁四周没有局部高温区的存在.这是因为对冲布置方式能使得前、后墙气流在中心汇聚,并且抵消部分动量后再向四周扩散,而不会因为气流残余动量导致高温烟气贴壁而形成局部高温区.进一步统计出口O2体积分数φ(O2)、CO体积分数φ(O2)、烟气停留时间τ及炉膛喉部平均温度T0如表4所示.根据环保部《生活垃圾焚烧污染控制标准(GB18485-2014)》对炉排炉规定的炉膛设计相关参数[20],在实际运行中,炉膛温度应≥850℃,炉膛出口φ(O2)≥6%,炉膛出口φ(CO)≤8.0×10-5,烟气在炉膛停留时间应≥2s.表4变上二次风布置形式(错列、对冲)炉膛参数统计从表4的统计结果来看,2个计算工况的计算结果均满足国标对垃圾焚烧炉的运行要求,从数值计算的角度验证了该炉型设计方案的可行性.分析组分布以及停留时间变化规律可知,对冲布置下炉膛喉部平均温度更低,出口O2体积分数和CO体积分数更低,烟气停留时间更长,这是由于对冲布置下,前、后墙上二次风动量抵消后,在主燃烧区形成了较大的扰动,整体烟速降低,也较大程度降低了喉部的烟温,烟气更好的混合使得新注入的氧气得到更均匀的分配,提高了燃烧效率,因此出口的CO体积分数较低.3.3、上二次风风速的影响计算得到工况3、4、5的炉膛迹线分布如图7所示,对比可以发现,上二次风风速越大,靠前墙侧漩涡尺度越小,涡团越饱满,从而可以看出上二次风速度对炉膛上部混合效果影响较大,风速越高,混合效果越好,炉膛充满度越高.这是因为上二次风风速的提高使得上二次风刚性增强,进入炉膛以后能有效地加剧喉部低速气流的扰动,使得炉膛内的气流分布更加均匀饱满.图7变上二次风风速(45、55、65m/s)迹线分布结合图8中y=12m高度截面竖直速度分布曲线可以看出,45m/s速度工况时回流区宽度以及烟气下行速度均最大,65m/s时平面整体呈现无回流区,随着速度的增大,平面竖直速度的峰值由后墙往前墙偏移.但当速度增至65m/s时,烟气上行速度出现明显的整体增大趋势.图8y=12截面处沿x方向的平均竖直速度分布(45、55、65m/s)如图9所示为3个工况的截面温度分布,从图9(a)宽度中心截面分布对比可以发现,下炉膛的温度分布没有较大区别,火焰形态也基本相同,而上炉膛随着风速的增大,中心因为二次风注入而形成的低温区域越小,温度分布越均匀.图9(b)高度截面的温度分布也呈现出风速越大越均匀的趋势.图9变上二次风风速(45、55、65m/s)截面温度分布因此可以得出和3.2节相似的结论,在保证炉膛总风量即过量空气系数不变的情况下,上二次风风速变化对下炉膛主燃区的燃烧没有较大影响,风速变化的影响仍主要体现在对上炉膛烟气的扰动及导流上.表5变上二次风风速(45、55、65m/s)炉膛参数统计如表5所示为出口O2体积分数φ(O2)、CO体积分数φ(CO)、烟气停留时间τ以及炉膛喉部平均温度T0的统计结果.从表中可以看出随着上二次风风速提高,烟气流速会明显增大,因此停留时间相应降低,将对后期SNCR脱销效率造成一定程度的不利影响.从出口CO的体积分数可以看出,上二次风风速提高一定程度上有利于烟气的充分混合,促进了燃料后期的燃尽,而风速增大与风速动量抵消两股因素相互制约,形成对喉部温度影响不确定的现象.4、结论(1)下二次的投运能对炉膛前、后墙炉拱区域起到较好的包覆作用,降低了炉壁温度,改善炉拱附近的还原性气氛,同时贴壁的扰流有利于吹扫炉拱的积灰,因此有利于改善炉拱结渣严重的问题.(2)炉膛上二次风对冲布置方式相对于错列布置方式有利于促进炉膛内气流的混合,提高炉膛的烟气充满度,提高烟气停留时间,同时降低炉膛出口CO体积分数,从而改善燃烧效率.(3)炉膛上二次风风速从45m/s提高到65m/s以后,适当高速的上二次风能能够加剧气流混合,使得炉膛气流分布更加饱满,温度分布更加均匀.但过高的二次风速不利于降低炉膛烟气停留时间,从而影响后期SNCR脱销效果.上述研究可为此类大型炉排炉的设计及优化提供理论参考,从而促进该焚烧设备技术的自主化和大型化发展,满足其日益增长的市场需求.由于现有研究对象还处于研发阶段,未能得到相应的试验数据,无法与模型计算结果进行对比.通过与现有焚烧炉运行标准进行对照,验证了设计方案的可行性.限于篇幅,本文未能深入讨论上、下二次风入射角度及位置等因素对炉膛燃烧的影响,进一步的优化研究可以考虑从以上角度展开.。
750t/h大型垃圾焚烧炉二次风分别采用冷、热风
的分析计算
一、分析计算的目的
伟伦对750t/h大型垃圾焚烧炉二次风设计温度为23℃,如将其改成220℃热风,分别计算冷、热风条件下,锅炉的燃烧效率、同参数蒸汽量及烟气在炉膛内停留时间,以其分析采用冷风或者热风的合理性。
二、计算参数
750t/h大型垃圾焚烧炉相关参数如表1所示:
表1.计算相关参数
焚烧炉MCR工况下垃圾的元素分析如表2:
表2. MCR工况下垃圾元素分析(wt. %)
垃圾低位发热量为6800kJ/kg
三、计算结果及其分析
表3.垃圾燃烧产生的烟气成分(脱NOx前)
表4. .垃圾燃烧产生的烟气成分(脱NOx后)
由于垃圾中的水分含量较高,达50%,同时脱NOx水的加入,使得生成烟气中水分含量较高,占23%左右。
表5.当二次风为冷风时的计算结果
当二次风为冷风时,计算得到锅炉的效率为79.76%。
在损失的热量中,烟气损失占进入炉膛总热量的15.53%,而为完全燃烧热损失占2.53%,这两部分热量占了总热损失的90.3%。
由于锅炉出口烟温不能太低,一防止低温腐蚀,烟气带走的热量不可避免,在设计及实际运行时,要严格控制锅炉的排烟温度,防止烟气热损失过大。
同时要尽量提高燃料的燃尽率,以减少不完全燃烧热损失。
锅炉的理论燃烧温度达1084.3℃,炉膛出口温度为850℃。
满足炉内出口温度850℃
的要求,能够有效的减少二噁英的排放,同时锅内温度不会太高,也有利于减少NOx 的生成。
表6.当二次风为热风时的计算结果
在相同的垃圾处理量的情况下,当二次风为热风时,计算得到锅炉的效率为80.74%,比冷二次风有所提高。
在损失的热量中,烟气热损失为14.73%,为完全燃烧热损失为2.4%,均较二次风为冷风时有所下降。
理论燃烧温度为1138.3℃,而炉膛出口温度为870℃。
由于热二次风本身具有的热量,使得进入炉膛的热量增加,同时也减少了炉膛热量加热二次风所消耗的热量,可以有效的改善炉内的燃烧状况,提高燃烧温度。
理论燃烧温度较冷二次风时增加了54℃,炉膛出口烟温提高20℃。
炉内温度均满足减少二噁英及NOx生成的要求。
其次,采用热二次风,在同样的垃圾处理量下,保证蒸汽温度和压力不变,每小时可以多产生4.17t额定蒸汽,增加发电量。
四、数值模拟
4.1 模拟方法与边界条件
对冷二次风及热二次风进行数值模拟。
根据垃圾焚烧炉的燃烧特点,用FLIC对炉排部分的垃圾干燥、热解、残余炭燃烧的情况进行模拟,将计算的结果导入Fluent,进行气相燃烧及辐射传热的模拟计算。
在气相燃烧及辐射传热上,采用Fluent进行模拟计算,其边界条件如下:
表8.冷二次风边界条件
参数数值单位备注二次风温度23 ℃二次风从前后墙的二次
风口喷入二次风速度80 m/s
炉膛出口压力0.10325 MPa
炉墙394 ℃
燃料入口将FLIC模拟结果导入
表9.热二次风边界条件
参数数值单位备注二次风温度220 ℃次风从前后墙的二次风
口喷入二次风速度142.78 m/s
炉膛出口压力0.10325 MPa
炉墙394 ℃
燃料入口将FLIC模拟结果导入4.2 模拟计算结果
冷热二次风的等速度分布图分别见图1和图2。
图1.冷二次风炉内等速度分布图(m/s)
图2.热二次风炉内等速度分布图(m/s)
从图1和图2可以看出,为了保持炉内的过量空气系数,采用热二次风后,二次风进入炉膛的速度大大提高,由此对炉膛内的气流组织产生较大的影响。
二次风的喷入,一方面有利于炉内可燃物质的燃尽,另一方面,高速的二次风喷射入炉内产生气体的扰动,延长了烟气在炉内的停留时间,有利于降低污染物的排放。
从图1和图2可以看出,热空气对流程的扰动和影响更明显。
但是当二次风采用热风时,密度减小,容积大幅度增加,二次风射入炉膛速度大大提高,烟气在炉膛内的停留时间减少。
在数值模拟中,采用示踪粒子的方式,在焚烧炉膛和第一通道的交界处喷入示踪粒子,据计算,采用冷二次风,烟气在炉膛内的停留时间为2.1s,采用热二次风之后,气体在炉膛内的停留时间比冷二次风时的停留时间减少32.2%,为1.424s。
冷热二次风炉内温度分布图见图3和图4。
从图3和图4可以看出,炉膛内的高温去集中在出于热分解区域的炉排上方,炉内的高温区处于炉拱与炉排之间的气相燃烧区域。
高速的热二次风在炉拱和炉排上部的空间形成的回流区,对热烟气进行有效的卷吸,但是由于热二次风本身带入的热量,改善了炉膛整体的燃烧状况,高温区的温度较冷二次风时的温度有所升高,因此采用热二次风,对加强燃烧的有一定的效果。
图3.冷二次风炉内温度分布(K)
图4.热二次风炉内温度分布(K)
五、结论
(1)二次风采用热风送风可以有效的提高锅炉的效率,相比冷风的79.76%上升到
80.74%。
同时理论燃烧温度也有较大的提高,从1084.3℃提高到1138.3℃,从而
导致炉膛出口烟温从850℃上升到870℃,均可以有效的减少二噁英的排放。
此外,采用热二次风可以有效的提高锅炉的蒸发量,计算结果显示热二次风可以增加
4.17t/h的额定蒸汽量,增大发电量。
(2)二次风若采用220℃的热二次风,进入炉膛的二次风速大大提高,从而使得烟气在
炉膛内的停留时间降低。
采用颗粒跟踪法,将颗粒进入炉膛的速度设置与二次风速相同。
冷二次风的入口风速为80m/s,热二次风的入口风度为142.78m/s,据数值模拟的结果显示,冷二次风烟气停留时间为2.1s,而采用220℃的热二次风之后,烟气在炉膛内的停留时间只比采用冷二次风时烟气在炉膛内的停留时间减少了
32.2%,为1.424s。
根据垃圾焚烧,有效控制二噁英排放的规定,烟气在炉膛中的
停留时间不少于2s,因此,采用热二次风容易造成烟气炉膛内的停留时间过短,造成烟气中二噁英含量过高,不符合排放标准,增加处理费用!。