7第七章 地下水的水文地球化学分带
- 格式:pdf
- 大小:1.71 MB
- 文档页数:44
第一章绪论第二章水溶液的物理化学基础一、水的结构2.水分子的内部结构原子结构理论表明,H2O分子呈V形结构,H-O键的夹角为104°45′,键长为0.96Å(1Å=10-10m)2.水分子的内部结构由于氧的电负性为3.5,氢的电负性为2.1,(中性原子接受电子的能力,称为电负性)这种差异导致了H、O形成共价键。
由于氧的电负性大,所以共价电子偏向氧原子,这样使氧带有部分负电性,氢还有部分正电性,这就造成了极性共价键。
由这种极性共价键所形成的分子称为极性分子。
3.电负性(E)电负性就是原子在化合成分子时把价电子吸引向自己的能力。
规定氟的电负性为4.0,并以此为标准求出其它元素的电负性。
电负性小于2.0时,多数元素显金属性,大于2时,多数元素显非金属性。
铀的电负性为1.7,显金属性。
U4+的电负性为1.4,U6+为1.9,U4+的金属性较U6+强。
电负性差值大于2的两个元素化合时,多数形成离子键化合物,电负性差值小于2时,多数形成共价键的化合物。
由于电负性影响化合物的键性,而化学键的性质又影响到化合物的许多物理化学性质,如硬度、光泽,溶解度等,所以电负性对元素的迁移和沉淀也有影响。
3.水分子间的联结水分子间是靠氢键联结起来的。
所谓氢键是一种因静电吸引作用而产生的附加键,所以一个水分子中的氢原子,在保持同本分子中氧原子的共价键的同时,又能同相邻水分子中的氧原子产生一种静电吸引力。
这样水分子就有具有了两种类型的键:(1)存在于水分子内部的极性共价键;(2)存在于水分子之间的氢键。
3.水分子间的联结水分子间的氢键联结,使水分子相互缔合形成巨型分子(H2O)n,水分子的这种缔合强度取决于温度,一般温度越低,缔合程度越稳定,4℃时,水的缔合程度最大,此时达到最大密度。
在250~300℃时,n接近1,即水具有H2O形式。
水分子在缔合过程中不会引起化学性质的变化。
这种由单分子水结合成多分子水而不引起水的化学性质改变的现象,称为水分子的缔合作用。
水文地质学中的地下水化学成分地下水是地下流入的水体,通常在深层岩石或土壤中储存、流动和释放。
水文地质学是研究地下水现象的学科,涉及地球物理、地质学、化学等多个学科领域。
地下水的化学成分是水文地质学中的重要研究内容之一,主要涉及地下水中的溶解物质、离子浓度、pH值等。
地下水化学成分的特征地下水中溶解物质的类型和浓度取决于地下水流经的地质环境和土壤性质等因素。
一般来说,地下水中主要溶解物质包括离子、有机化合物、微生物等。
离子是地下水中主要的化学组成部分,包括阳离子和阴离子两种。
阳离子主要有钠、镁、钙、钾等,阴离子主要有氯离子、碳酸根、硫酸根等。
有机化合物包括有机酸、腐殖物、油等。
微生物包括细菌、病毒等。
此外,地下水中还存在一些较稀有的溶解物质,如硒、铊、铅等,这些元素含量较低,但会对人体健康造成负面影响。
地下水的pH值是另一个重要的化学特性。
pH值是一种表示水平酸碱程度的指标,一般在7左右为中性,小于7为酸性,大于7为碱性。
地下水的pH值通常介于6-8之间,但有时也会出现pH值过低或过高的情况。
例如,在饮用水井中,pH值过低可能会导致腐蚀性物质的浸出,而pH值过高则可能会引起水垢和钙沉积。
地下水的化学成分对环境和人类健康的影响地下水中的溶解物质、离子浓度和pH值都可以对环境和人类健康造成影响。
一些特定的化学物质会影响地下水的颜色、味道和气味,从而影响水的使用。
例如,硫化物可以导致地下水呈现不良气味和深紫色,而铁和锰的存在会使水变得黄色或棕色。
高浓度的硝酸盐和硫酸根则可能导致地下水变得饮用不安全。
此外,高浓度的氟化物会导致骨质疏松和牙齿疾病的发生。
地下水的pH值过低或过高也会对人体健康造成不良影响,如引起胃肠炎、腰痛、关节炎等。
总的来说,地下水化学成分的研究对于确保地下水质量的安全和可持续利用是非常重要的。
水文地质学家们利用现代化学技术进行地下水化学成分分析,以确定地下水资源的使用和保护策略。
只有采取科学的水资源管理和保护措施,才能确保地下水资源的长期稳定和可持续利用。
地下水水文地球化学地下水是地球上存在的一种重要的水资源,对于水文地球化学的研究有着重要的意义。
本文将从地下水的形成、组成和水文地球化学的相关研究内容进行阐述。
地下水是指位于地下的水体,主要来源于降雨和地表径流的渗透,并经过多种地质和地球化学过程的作用而形成。
地下水在地下岩石中通过孔隙和裂隙储存,并与岩石中的矿物质发生相互作用,形成了独特的水文地球化学特征。
地下水的组成主要包括水分子、溶解质和悬浮物。
水分子是地下水的基本组成部分,溶解质包括无机盐、有机物和气体等,而悬浮物则主要来自于地下岩石的颗粒物质。
地下水的组成对于水文地球化学的研究有着重要的影响。
水文地球化学是研究地下水的化学特征和地球化学过程的学科。
它主要包括地下水的水化学特征、地下水的起源和演化、地下水与岩石的相互作用等内容。
通过对地下水的水化学特征的研究,可以了解地下水的来源、地下水的运移、地下水的质量等信息,对于地下水资源的合理开发和利用具有重要的指导意义。
地下水的水化学特征主要包括pH值、电导率、溶解氧等指标。
这些指标可以反映地下水的酸碱性、盐度和含氧量等信息。
地下水的pH 值反映了地下水的酸碱性,通常在7左右为中性。
地下水的电导率反映了地下水中溶解物质的含量和种类,电导率越高,溶解物质的含量越多。
地下水的溶解氧反映了地下水中氧气的含量,溶解氧的含量越高,地下水的水质越好。
地下水的起源和演化是地下水研究的重要内容之一。
地下水的起源主要包括大气降水、地表水和地下水的补给。
地下水的演化包括地下水的成因、地下水的渗流和地下水的补给等过程。
地下水与岩石的相互作用是地下水研究的另一个重要内容,它包括地下水中溶解物质的来源和地下水与岩石的反应等过程。
地下水的水文地球化学研究在地下水资源的开发和利用中具有重要的意义。
通过对地下水的水化学特征的研究,可以了解地下水的水质状况,从而制定合理的水资源管理措施。
通过对地下水的起源和演化的研究,可以了解地下水的补给途径,从而指导地下水资源的合理开发和利用。
第一章地球上的水及其循环一、名词解释:1.水文地质学:水文地质学是研究地下水的科学。
它研究与岩石圈、水圈、大气圈、生物圈以及人类活动相互作业下地下水水量和水质的时空变化规律,并研究如何运用这些规律去兴利除害,为人类服务。
2.地下水:地下水是赋存于地面以下岩石空隙中的水。
3.矿水:含有某些特殊组分,具有某些特殊性质,因而具有一定医疗与保健作用的地下水。
4.自然界的水循环:自大气圈到地幔的地球各个层圈中的水相互联系、相互转化的过程。
5.水文循环:发生于大气水、地表水和地壳岩石空隙中的地下水之间的水循环。
6.地质循环:地球浅层圈和深层圈之间水的相互转化过程。
7.大循环:海洋与大陆之间的水分交换。
8.小循环:海洋或大陆内部的水分交换。
9.绝对湿度:某一地区某一时刻空气中水汽的含量。
10.相对湿度:绝对湿度和饱和水汽含量之比。
11.饱和差:某一温度下,饱和水汽含量与绝对湿度之差。
12.露点:空气中水汽达到饱和时的气温。
13.蒸发:在常温下水由液态变为气态进入大气的过程。
14.降水:当空气中水汽含量达饱和状态时,超过饱和限度的水汽便凝结,以液态或固态形式降落到地面。
14.径流:降落到地表的降水在重力作用下沿地表或地下流动的水流。
15.水系:汇注于某一干流的全部河流的总体构成的一个地表径流系统。
16.水系的流域:一个水系的全部集水区域。
17.分水岭:相邻两个流域之间地形最高点的连线。
18.流量:单位时间内通过河流某一断面的水量。
19.径流总量:某一时间段内,通过河流某一断面的水量。
20.径流模数:单位流域面积上平均产生的流量。
21.径流深度:计算时段内的总径流量均匀分布于测站以上整个流域面积上所得到的平均水层厚度。
22.径流系数:同一时段内流域面积上的径流深度与降水量的比值。
二、填空1.水文地质学是研究地下水的科学。
它研究岩石圈、水圈、大气圈、生物圈及人类活动相互作用下地下水水量和水质的时空变化规律。
2.地下水的功能主要包括:资源、生态环境因子、灾害因子、地质营力、或信息载体。
第七章 地下水的化学组分及其演变7.1 概 述地下水不是化学纯的H 2O ,而是一种复杂的溶液。
天然:人为:人类活动对地下水化学成分产生影响。
地下水的化学成分是地下水与环境、以及人类活动长期相互作用的产物。
一个地区地下水的化学面貌,反映了该地区地下水的历史演变。
水是最为常见的良好溶剂,可溶解、搬运岩土中的某些组分。
水是地球中元素迁移富集的载体。
利用地下水,各种行业对水质都有一定的要求→进行水质评价。
7.2 地下水的化学特征1.地下水中主要气体成分O 2 、N 2 、CO 2 、CH 4 、H 2S 等。
1)O 2 、N 2地下水中的O 2 、N 2主要来源于大气。
地下水中的O 2含量多→说明地下水处于氧化环境。
在较封闭的环境中O 2耗尽,只留下N 2,通常说明地下水起源于大气,并处于还原环境。
2)H 2S 、甲烷(CH 4)地下水中出现H 2S 、CH 4 ,其意义恰好与出现O 2相反,说明→处于还原的地球化学环境。
3)CO 2CO 2主要来源于土壤。
化石燃料(煤、石油、天然气)→CO 2(温室气体)→温室效应→全球变暖。
地下水中含CO 2愈多,其溶解碳酸盐岩的能力便愈强。
2.地下水中主要离子成分7大离子:Cl -、SO 42-、HCO 3-、Na +、K +、Ca 2+、Mg 2+。
低矿化水中(M<1 ~ 2g/L ):HCO 3-、Ca 2+、Mg 2+为主(难溶物质为主);发生化学反应岩石圈水圈交换化学成分中矿化水中(M=2 ~ 5g/L ):SO 42-、Na +、Ca 2+为主; 高矿化水中(M>5g/L ):Cl -、Na +为主(易溶物质为主)。
造成这种现象的主要原因是水中盐类溶解度的不同: 溶解性总固体(total dissolved solids):溶解性总固体是指溶解在水中的无机盐和有机物的总称(不包括悬浮物和溶解气体等非固体组分),用缩略词TDS 1)Cl -主要出现在高矿化水中,可达几g/L ~ 100g/L 以上。
《水文地球化学基础知识》——(绝对一个字一个字打出来的,正版资料!)名词解释目录第一章水化学基础第一节溶解平衡 (3)第二节碳酸平衡 (4)第三节地下水中络合物的计算 (4)第四节氧化还原反应 (5)第二章地下水的化学成分的组成第一节天然水的组成 (6)第二节天然水的化学特性 (6)第三节元素的水文地球化学特性 (7)第四节天然化学成分的综合指标(三种) (7)第五节地下水化学成分的数据处理 (7)第三章地下水化学成分的形成与特征第一节地下水基本成因类型的概念 (7)第二节渗入成因地下水化学成分的形成与特征 (8)第三节沉积成因地下水化学成分的形成与特征 (8)第四章水的地球化学循环第一节地下水圈的概念 (8)第二节地壳中水的地球化学循环 (9)第三节成矿过程中水的地球化学循环 (9)第五章水文地球化学的应用第六章补充部分 (10)第一章<水化学基础>第一节溶解平衡质量作用定律:一个化学反应的驱动力与反应物及生成物的浓度有关化学平衡与自由能体系:把所研究对象一个物体或一组相互作用的物体称为体系或系统,而体系(或系统)周围的其他物质称为环境。
状态及状态参数:热力学状态分为平衡状态和非平衡状态。
热力学平衡体系特性是由系列参数来表示当体系没有外界影响时,各状态参数若能保持长久不变,此体系称为热力学平衡状态。
焓:它是一种化学反应向环境提供的热量总值。
以符号“H”表示。
在标准状态下,最稳定的单质生成1摩尔纯物质时的焓变化,称为“标准生成焓”。
△H r=△H(生成物)-△H(反应物)△H r为正值,属吸热反应,△H r为负值,属放热反应自由能:在热力学中,自由能的含义是指一个反应在恒温恒压下所能做的最大有用功,以符号“G”表示。
在标准状态下,最稳定的单质生成1摩尔纯物质时的自由能变化,称为“标准生成自由能”,以“△Gf”表示△Gr=△G(生成物)- △G(反应物)△Gr为正值,反应在恒温恒压条件下不能自发进行,△Gr 为负值,反应在恒温恒压条件下可以自发反应;△G=0,反应处于平衡状态。