细胞生物学_11细胞信号转导
- 格式:ppt
- 大小:7.76 MB
- 文档页数:87
细胞生物学中的细胞信号转导途径细胞信号转导途径是指细胞内外信息传递的过程,其目的是使信号传递到细胞内部,从而引起细胞内某种生理反应。
细胞信号转导途径是一种复杂的过程,主要包括信号的识别、传递、放大等多个环节,其中参与的蛋白质、代谢物和信号分子非常多。
当细胞外界环境改变时,例如发生感染、受到刺激、遭到损伤等,细胞就会接收到相应的信号。
这些信号会通过受体蛋白在细胞外表面传递到细胞内部,从而影响到细胞内部代谢物的表达和转化,导致细胞内部发生变化。
在这个过程中,细胞吸收和放出的各种分子会共同构成细胞信号转导途径,这些分子形成细胞传递的信息流。
细胞信号转导途径是细胞内部信号传递最基本、最重要的机制之一。
在细胞生理学中,信号转导途径主要分为三大类:离子通道和荷载体、CDK和激酶酶级联反应、细胞膜受体信号转导途径。
其中,细胞膜受体信号转导途径是最重要的一类信号转导途径。
细胞膜受体信号转导途径细胞膜受体信号转导途径是细胞内部信号转导的主要道路。
膜内受体通常是细胞表面的磷脂酰基肌醇酰化酶(PI3K)、激酶、培养激素受体、酰化酶、酪氨酸激酶和肽激素受体等;膜外受体则包括细胞外信号括号、膜外的受体和胞外基质分子等。
膜内受体和膜外受体的反应控制了信息分子的转导。
细胞膜受体信号转导途径是细胞间相互联系的重要机制。
细胞所受到的信息来源是多种多样的,它们通过膜上的受体传递到细胞内部。
这些信息会进入细胞内部,然后将这些信息传递到细胞内部组织的某些分子。
这种传递方式,能够影响细胞各种代谢物的表达和转化,从而引起细胞内部发生变化。
细胞膜受体信号转导途径的层次非常复杂,大致分为三个层次:一是细胞外部膜受体中间介质和酶的级联反应;二是已死或无反应的凋亡模式;三是积极生长和再生的分化模式。
从细胞的发育到细胞的老化,所有过程都用到了细胞膜受体信号转导途径。
细胞膜受体信号转导途径中有很多的信号传递方式,它们通过另一些关键的因素进行调控、互作,并中断某些传递过程。
细胞信号转导细胞信号转导是细胞内外环境信息传递和响应的过程。
在细胞内外环境发生变化时,细胞通过感知这些信号并传导到细胞内部,最终引发一系列的生物学效应。
本文将介绍细胞信号转导的基本概念、机制与重要研究领域。
一、信号转导的基本概念细胞信号转导是细胞内外信号信息通过具体的分子机制传递到细胞内部,并且在细胞内引发相应的生物学反应。
信号可以是化学物质、光线、温度和压力等,这些信号通过细胞膜表面受体或胞浆内受体与信号分子特异性结合,从而激活一系列的信号转导分子。
细胞信号转导的过程通常包括受体激活、信号传导、增强或抑制等多个环节。
二、信号转导的机制在细胞信号转导的过程中,不同信号可以通过不同的机制进行转导,包括直接通过受体激活、信号级联放大、二级信号传导以及负反馈调控等机制。
1. 直接激活:有些信号可以直接通过受体激活下游分子,例如膜受体激活酪氨酸激酶,进而磷酸化下游调节因子。
2. 信号级联放大:部分信号转导可以通过级联放大的方式增强信号的强度和传递效果。
一个典型例子是G蛋白偶联受体信号转导通路,一个G蛋白偶联受体可以激活多个G蛋白,每个G蛋白可进一步激活下游信号转导分子。
3. 二级信号传导:某些信号分子可以通过激活下游信号分子形成二级信号传导,例如细胞内钙离子浓度的增加可以激活蛋白激酶C,进而磷酸化下游的蛋白质。
4. 负反馈调控:为了避免过度的信号激活,细胞常常会通过负反馈调控机制来抑制信号转导分子的活性,以保持信号的动态平衡。
三、细胞信号转导的重要研究领域细胞信号转导是生物学的重要研究领域,许多科学家致力于探索细胞内信号传导的机制和调控网络。
以下是其中的几个重要研究领域:1. 肿瘤信号转导:细胞信号转导的异常调控与肿瘤的发生和发展密切相关。
研究人员通过研究与肿瘤发生相关的信号转导通路,探索肿瘤的分子机制,并寻找新的治疗靶点。
2. 免疫信号转导:细胞信号转导在免疫系统中起着重要的作用。
研究人员致力于解析免疫应答的信号转导网络,以揭示免疫反应的机制,为免疫相关疾病的治疗提供新的思路。
细胞信号转导摘要:细胞信号转导是指细胞外因子通过与受体(膜受体或核受体)结合,引发细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程. 细胞或者识别与之相接触的细胞,或者识别周围环境中存在的各种信号(来自于周围或远距离的细胞),并将其转变为细胞内各种分子功能上的变化,从而改变细胞内的某些代谢过程,影响细胞的生长速度,甚至诱导细胞的死亡。
关键词:细胞信号、受体、传导正文:一、细胞信号转导的概念细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。
水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。
二、信号转导受体(一)膜受体1.环状受体 (离子通道型受体)多为神经递质受体,受体分子构成离子通道。
受体与信号分子结合后变构,导致通道开放或关闭。
引起迅速短暂的效应。
2.蛇型受体7个跨膜α-螺旋受体, 有100多种,都是单条多肽链糖蛋白,如G蛋白偶联型受体。
3.单跨膜α-螺旋受体包括酪氨酸蛋白激酶型受体和非酪氨酸蛋白激酶型受体。
(1)酪氨酸蛋白激酶型受体这类受体包括生长因子受体、胰岛素受体等。
与相应配体结合后,受体二聚化或多聚化,表现酪氨酸蛋白激酶活性,催化受体自身和底物Tyr磷酸化,有催化型受体之称。
(2)非酪氨酸蛋白激酶型受体,如生长激素受体、干扰素受体等,。
当受体与配体结合后,可偶联并激活下游不同的非受体型TPK,传递调节信号。
(二)胞内受体位于胞液或胞核,结合信号分子后,受体表现为反式作用因子,可结合DNA顺式作用元件,活化基因转录及表达。
包括类固醇激素受体、甲状腺激素受体等。
? 胞内受体都是单链蛋白,有4个结构区:①高度可变区②DNA结合区③激素结合区④绞链区(三)受体与配体作用的特点是:①高度亲和力,②高度特异性,③可饱和性1.受体:位于细胞膜上或细胞内,能特异性识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质,膜受体多为镶嵌糖蛋白:胞内受体全部为DNA结合蛋白。
细胞的信号转导信号转导(signal transduction):指在信号传递中,细胞将细胞外的信号分子携带的信息转变为细胞内信号的过程完整的信号传递程序:完整的信号传递程序为合成信号分子;细胞释放信号分子;信号分子向靶细胞转运;信号分子与特异受体结合;转化为细胞内的信号,以完成其生理作用;终止信号分子的作用。
该过程经配体,受体,胞内信使,其中配体是指细胞外的信号分子,或凡能与受体结合并产生效应的物质,分为水溶性配体(N递质、生长因子、肽类激素)和水溶性配体(N递质、生长因子、肽类激素),是细胞外来的信号分子,又称第一信使。
而受体是细胞膜上或细胞内一类特殊的蛋白质,能选择性地和细胞外环境中特定的活性物质结合,从而引起细胞内的一系列效应;分为细胞表面受体胞内受体(胞浆和核内),细胞表面受体又分为离子通道偶联受体,酶偶联受体,G蛋白偶联受体。
其中离子通道偶联受体是由几个亚单位组成的多聚体,亚单位上配体的结合部位,中间围成离子通道,通道的“开”关受细胞外配体的调节。
具有结合位点又是离子通道本身既有信号的特点。
酶偶联受体,或称催化受体、生长因子类受体,既是受体,又是“酶”。
是由一条肽链一次跨膜的糖蛋白组成,具有N端细胞外区有配体结合部,C端细胞质区含特异酪氨酸蛋白激酶(TPK)的活性的特点。
G蛋白偶联受体是N递质、激素、肽类配体的受体,由一条350-400个氨基酸残基组成的多肽链组成,具有高度的同源性和保守性,其作用特点为分布广,转导慢,敏感,灵活,类型多。
胞内信使是指受体被激活后在细胞内产生的、能介导信号转导的活性物质,又称为第二信使。
第二信指第一信使与受体结合后最早产生的可将信号向下游传递的信号分子。
如:cAMP、cGMP、IP3、DAG(二酯酰甘油)、Ca2+等。
第三节、细胞内信使其中环磷酸腺苷( cAMP )是最重要的胞内信使。
cAMP是细胞膜的腺苷酸环化酶(AC)在G蛋白激活下,催化ATP脱去一个焦磷酸后的产物,AC的主要功能是催化ATP或cAMP,这一过程不仅需要经G蛋白激活,还需Mg2+、Mn2+的存在,cAMP的主要作用是激活依赖cAMP的蛋白激活酶A(PKA),进而使下游信号蛋白被激活产生生物学效应。
细胞信号转导综述09级临床2班隋德岭0941105217一、细胞信号转导的概念细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。
水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。
传导通路示意图二、信号转导受体[1](一)膜受体1.环状受体(离子通道型受体)多为神经递质受体,受体分子构成离子通道。
受体与信号分子结合后变构,导致通道开放或关闭。
引起迅速短暂的效应。
2.蛇型受体7个跨膜α-螺旋受体, 有100多种,都是单条多肽链糖蛋白,如G蛋白偶联型受体[2] [3]。
G蛋白示意图3.单跨膜α-螺旋受体包括酪氨酸蛋白激酶型受体和非酪氨酸蛋白激酶型受体。
(1)酪氨酸蛋白激酶型受体这类受体包括生长因子受体、胰岛素受体等。
与相应配体结合后,受体二聚化或多聚化,表现酪氨酸蛋白激酶活性,催化受体自身和底物Tyr磷酸化,有催化型受体之称。
(2)非酪氨酸蛋白激酶型受体,如生长激素受体、干扰素受体等,。
当受体与配体结合后,可偶联并激活下游不同的非受体型TPK,传递调节信号。
(二)胞内受体位于胞液或胞核,结合信号分子后,受体表现为反式作用因子,可结合DNA顺式作用元件,活化基因转录及表达。
包括类固醇激素受体、甲状腺激素受体等。
胞内受体都是单链蛋白,有4个结构区:①高度可变区②DNA结合区③激素结合区④绞链区(三)受体与配体作用的特点是:①高度亲和力,②高度特异性,③可饱和性1.受体:位于细胞膜上或细胞内,能特异性识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质,膜受体多为镶嵌糖蛋白:胞内受体全部为DNA 结合蛋白。
受体在细胞信息传递过程中起极为重要的作用。
2.G蛋白:即鸟苷酸结合蛋白,是一类位于细胞膜胞浆面、能与GDP或GTP 结合的外周蛋白,由α、β、γ三个亚基组成。
细胞生物学中的细胞信号传导机制细胞信号传导是细胞内外信息沟通的重要过程,它调控了细胞的生长、分化和响应。
细胞信号传导机制有多种类型,包括细胞表面受体的激活、细胞内信号分子的传递和细胞内反应的调控。
本文将介绍细胞信号传导的基本原理以及在细胞生物学中的重要作用。
一、细胞膜受体的激活在细胞信号传导过程中,细胞膜受体的激活是关键的起始步骤。
细胞膜受体是细胞膜上的蛋白质,它可以感知到外部的信号分子并传递到细胞内。
根据信号分子的特性,细胞膜受体可以分为三类:离子通道受体、酪氨酸激酶受体和七膜通道受体。
离子通道受体是一类跨膜蛋白,它在受体激活时会形成一个离子通道,允许特定离子进入或离开细胞,从而改变细胞内离子的浓度和电位。
这一过程称为离子通道的开放和关闭。
例如,神经传递物质乙酰胆碱将会激活膜上的乙酰胆碱受体离子通道,导致细胞内部的离子浓度发生变化,从而触发神经传递。
酪氨酸激酶受体是一类在膜上具有激酶活性的受体,当激活时,它会将ATP磷酸化为ADP,从而释放出能量。
磷酸化的酪氨酸会作为信号分子激活下游的蛋白质进行进一步信号传导。
例如,胰岛素受体是一种酪氨酸激酶受体,当胰岛素结合受体时,激活的受体会磷酸化下游的信号蛋白IRS,启动细胞内胰岛素信号通路。
七膜通道受体是一类跨膜蛋白,它在细胞膜上存在七个跨膜结构,可以感知到多种信号分子的结合。
当信号分子与受体结合时,七膜通道受体会激活膜内的G蛋白,进而启动下游的信号传导。
七膜通道受体在细胞生物学中起着非常重要的作用,例如促进视觉的视杆细胞中的视紫红质受体。
二、细胞内信号分子的传递细胞内信号分子的传递是细胞信号传导的核心环节。
当细胞膜受体被激活后,它会招募和激活一系列的信号分子,从而将信号传递到细胞内。
这些信号分子可以是离子、细胞内蛋白质、激活的酶等等。
离子信号是细胞内信号传导中最基本的形式之一,它们通过离子通道的开放和关闭来改变细胞内离子浓度和电位,从而调控细胞内的代谢和功能。
细胞信号转导的意义及其应用细胞信号转导(cellular signaling pathway)是细胞内外发生的能够调控细胞行为的过程。
它涉及到复杂的分子互作、反应途径和调节机制,其中包括了分子信号的接收、传递和响应。
这个过程在细胞内外的正常空间环境下,或者根据特定的利益集合,在异常环境中发挥着先导作用。
因此,细胞信号转导的研究成为了许多学科的重要研究方向。
本文主要介绍细胞信号转导的意义、应用及其相关研究进展。
一、细胞信号转导的意义细胞信号传导通常指细胞之间的通讯和信息交流过程。
它是维持细胞的功能和生存所必需的基础。
细胞信号传导被广泛认为是细胞生物学中最重要的研究领域之一,其研究对生命科学的发展和应用有很大的贡献。
1. 主要控制生物过程生物体是由不同种类的细胞组成的,每种细胞都具有自己的特定功能和生存条件。
细胞信号转导是生物复杂多样的细胞之间进行通讯和交流的核心机制。
它通过调节响应细胞内、外环境变化的反应,使细胞在不同的状态下保持自身特定的行为。
细胞间的信息传递和互相作用,控制了许多重要的生命过程,如细胞增殖、分化,以及癌症、心血管等疾病的发生等。
2. 可以启发新的治疗策略由于细胞信号转导是控制生物过程的关键因素之一,因此研究它已成为许多领域的重要课题。
正常情况下,它是为了维持生物体的正常生理功能而存在。
但当信号转导通路异常时,它可能会导致各种疾病的发展。
研究细胞信号转导可以识别与疾病相关的信号,为疾病的治疗提供新的思路和方法。
对于癌症来说,深入研究信号转导通路的分子机制,找到抑制癌细胞的关键信号分子,可以为靶向癌症治疗提供新途径。
二、细胞信号转导的应用随着细胞信号转导的研究深入,人们已经可以将相关知识用于医学诊断、预防、治疗和药物开发等方面。
以下是细胞信号转导的主要应用。
1. 新药研发药物研发是细胞信号转导的一个重要应用领域。
利用细胞信号通路的相关机制和调节途径,可以构建更加精准的药物靶点,提高药物疗效。
细胞信号转导名词解释细胞信号转导是一种复杂的细胞内过程,通过此过程,细胞可以接收外界信息,并对其做出适当的反应。
细胞信号转导涉及许多分子间的相互作用,从而使信号从细胞膜中的受体传递到细胞内,最终引发一系列生物学响应。
在细胞信号转导的过程中,许多名词和概念是非常重要的,下面将对其中一些较为重要的名词进行解释。
1. 受体:受体是位于细胞膜上的蛋白质,能够感知外界刺激并将其转化为细胞内信号。
受体通常具有配体结合位点,能够与特定的分子结合,并改变其构象从而激活相应的信号转导途径。
2. 激活:激活是指受体与配体结合后引发的改变。
例如,当受体与配体结合时,可能会发生构象变化,使激活状态的受体能够与其他蛋白质相互作用,从而启动信号转导途径。
3. 信号转导途径:信号转导途径是一系列分子间相互作用和反应的级联过程。
在这个过程中,信号从受体传递给下游效应分子,最终导致细胞内某种生物学效应的发生。
常见的信号转导途径包括MAPK途径、PI3K-Akt途径等。
4. 第二信使:第二信使是在信号转导途径中传递信号的小分子化合物。
当受体激活后,它可能会激活下游效应器,如酶或离子通道,这些效应器会产生第二信使。
常见的第二信使包括环磷酸腺苷(cAMP)、鸟苷酸磷酸酯(cGMP)、溶钙内质网钙等。
5. 效应分子:效应分子是信号转导途径中对信号响应的分子。
它们可能是蛋白质、酶或转录因子等。
一次信号转导途径可能涉及多个效应分子,每个效应分子在传递信号时扮演不同的角色。
6. 跨膜受体:跨膜受体是一类能够穿过细胞膜的受体,在信号转导过程中起到关键作用。
跨膜受体分为离子通道受体、酶联受体和G蛋白偶联受体(GPCR)等。
细胞信号转导的研究是细胞生物学领域的重要课题之一。
对细胞信号转导的深入理解有助于揭示细胞功能和生物过程的调控机制,对于疾病的治疗和研发新药也具有重要的指导意义。
细胞信号转导的规律与特性细胞信号转导是指外部信号通过细胞膜上的受体,通过一系列的生化反应将信号传递到细胞内部,最终影响细胞的生理功能。
了解细胞信号转导的规律与特性,对于深入理解细胞生物学、发育生物学、疾病发生发展等方面都有着重要作用。
细胞信号转导的途径细胞信号转导途径包括了许多层次,从外界刺激到细胞内部的分子反应,每一个阶段都有非常复杂的组织结构和机理。
其中最重要的两类途径是紧密联系的细胞外分泌途径和细胞内途径。
细胞外分泌途径包括内分泌途径、神经途径、自发途径等等,其中最典型的是内分泌途径,以激素分泌为主导,通过血液传递到全身各处,影响机体的生理功能。
而细胞内途径通常是通过膜上受体与信号分子结合,既有高度的特异性,也具有反应速度非常快的特点。
细胞膜受体与信号分子的结合细胞膜上的受体通常有两种,一种是离子通道受体,一种是酪氨酸激酶受体。
这两种受体的信号传导速度都非常快,但是它们的机制有着一定的差异。
离子通道受体与信号分子结合后直接开启或关闭通道,调节细胞内的离子转运,从而产生效应。
而酪氨酸激酶受体则需要经过一系列的酶反应,在细胞内形成复杂的酶级联反应,最终产生效应。
这种形式通常被称为受体激酶轨迹。
细胞膜受体不仅可以反应基础的信号,也能对信号进行整合和放大,以适应不同情况下细胞的需求。
信号的放大和调节信号分子结合到受体上后,仍然需要进一步传递到细胞内部。
在这个过程中,信号分子会被放大和调节,以确保它们可以在快速的时间尺度内影响到细胞内部的许多反应。
信号转导的放大是通过酶级联反应实现的,每一个酶都比上一个酶更加高效地催化反应,从而放大信号。
而调节则是通过一种叫做空间结构变化的机制实现的。
当信号分子进入细胞内部时,会进入一个充满着许多分子的复杂流体环境中。
在这个环境中,信号分子与不同分子的结合反应速度各不相同,通过这种梯度分布,信号分子就能定向地进入到酶级联反应中,实现快速的调节。
信号反应的分叉和交汇细胞信号转导途径很少是线性的,往往会呈现出分叉或者交汇的形式。
第十一章细胞的信号转导(一)选择题A型题1.以下不属于信号分子的物质是()A.一氧化氮B.激素C.核酶D.生长因子E.神经递质2.有关信号分子与受体的作用,下列说法错误的是()A.生物体释放信号分子,并通过这些信号分子作用于细胞膜表面的受体进一步激发细胞内信号转导通路B.不同的信号分子可与细胞受体结合,产生的生理效应一定是不同的C.同一种化学信号分子可与不同的细胞受体结合,但产生的效应可能是不同的D.受体与信号分子空间结构的互补性是两者特异性结合的主要因素E.每一种细胞都有特定的受体和相应的信号转导系统3.不属于细胞膜受体的是()A.细胞因子受体B.核受体C.离子通道偶联型受体D.G蛋白偶联受体E.酶偶联受体4.下列说法错误的是()A.腺苷酸环化酶能催化A TP生成cAMPB.cAMP通路的首要效应酶是腺苷酸环化酶,cAMP可被磷酸二酯酶限制性清除C.结合GTP的α亚基具有活性,而βγ亚基复合物没有活性D.βγ亚基复合物与游离的Gs的α亚基结合,而使Gs的α亚基失活E.被激活的蛋白激酶A的催化亚基转位进人细胞核,使基因调控蛋白磷酸化5.关于cAMP依赖性蛋白激酶说法不正确的是()A.由催化亚基和调节亚基组成B.对底物特异性要求低C.催化的底物广泛D.是一种能被AMP活化的蛋白激酶E.可催化蛋白质上某些特定丝氨酸/苏氨酸残基的磷酸化6.关于蛋白激酶不正确的说法是()A.为一类磷酸转移酶B.主要有路氨酸蛋白激酶与丝氨酸/苏氨酸蛋白激酶等C.催化蛋白磷酸化的过程是不可逆的D.在细胞的生长、增殖、分化等过程中有重要的作用E.许多胞内信号分子自身就是蛋白激酶7.细胞内信号转导途径中的第二信使不包括()A.DAG B.cAMP C.Ca2+ D.G蛋白E.IP38.下列哪项不是IP3信号途径的生物学作用()A.参与神经细胞兴奋性的调节B.参与肌肉收缩C.参与IP3/Ca2+和DAG/PKC的协调作用D.参与细胞增殖E.参与炎症和免疫反应9.cAMP是腺苷酸环化酶在G蛋白激活下,催化下列何种物质生成的产物(A.ATP B.ADP C.GTP D.GDP E.AMP10.PIP2分解后生成的物质中能促使钙离子释放的是()A.IP3 B.DAG C.CaM D.PKC E.NO11.肌肉收缩受哪项调节()A.温度B.NO C.氧自由基D.激素E.Ca2+浓度12.关于膜受体,下列哪项说法不正确()A.不同的膜受体可以接受不同的信号B.是细胞膜上一种特殊的蛋白质C.能识别配体并与之结合D.与配体结合后可以引发一系列的反应E.能选择性地与细胞内活性物质结合13.配体是()A.细胞膜中的脂类分子B.细胞膜中的蛋白分子C.第一信使D.第二信使E.抗体14.PKC在没有被激活时,游离于细胞质中,一旦被激活就成为膜结合蛋白,这种变化依赖于()A.磷脂和Ca2+ B.IP3和Ca2+ C.DAG和Ca2+ D.DAG和磷脂E.DAG和IP3B型题15-17题备选答案A.β-肾上腺素受体B.血管紧张素受体C.代谢型谷氨酸受体D.胰岛素受体E.乙酰胆碱受体15.属于离子通道型受体的是()16.属于G蛋白偶联受体的是()17.属于略氨酸蛋白激酶型受体的是()18-19题备选答案A.α亚基B.β亚基C.γ亚基D.α亚基与β亚基E.β亚基与γ亚基18.G蛋白上存在GDP或GTP结合位点的亚基是()19.G蛋白偶联受体与配体结合后,受体分子上与G蛋白哪个亚基结合的位点将暴露()20-21题备选答案A.cGMP B.NO C.DAG D.cAMP E.IP320.动员细胞内储存Ca2+释放的第二信使分子是()21.不属于第二信使的是()X型题22.根据信号转导机制和受体蛋白类型的不同,细胞膜受体分别属于()A.核受体B.胞内受体C.离子通道偶联受体D.G蛋白偶联受体E.酶偶联的受体23.受体的功能包括()A.特异性识别并结合相应的配体B.结合其他的受体C.吞噬和消化相应的配体D.将信号向其他信号分子转导E.使细胞产生生物学效应24.细胞内与G蛋白作用密切相关的第二信使有()A.cAMP B.三磷酸肌醇C.二酯酰甘油D.cGMP E.NO25.与细胞信号转导有关的受体分为()A.生长因子类受体B.配体闸门离子通道C.G蛋白偶联受体D.细胞核受体E.线粒体膜受体26.下列属于配体的是()A.激素B.神经递质C.药物D.生长因子E.抗原27.G蛋白家族的共同特征是()A.由α、β、γ三个亚基构成B.具有结合GTP或GDP的能力C.具有GTP酶的活性D.能够通过改变构象来激活效应蛋白E.可分为Gs、Gi两种28.下述哪些受体属于细胞膜受体()A.生长因子受体B.神经递质受体C.甾类激素受体D.G蛋白偶联受体E.配体闸门通道(二)填空题1.细胞信号转导系统包括、及其。