火筒式加热炉受压元件强度计算方法
- 格式:docx
- 大小:609.21 KB
- 文档页数:21
六进口集管强度计算1集管外径Do mm2192纵向焊缝减弱系数ψ13集管取用壁厚δmm 84集管内径Dimm 2035孔桥减弱系数计算孔1与孔2的孔桥减弱系数直径1d1c mm 52直径2d2c mm 52相邻两孔平均直径dae mm52相邻两孔临界节距Sc mm 134.2相邻两孔的节距S mm 104孔桥减弱系数ψ0.56计算壁温td ℃3007许用应力[σ]MPa 998最小减弱系数ψmin 0.59计算壁厚δt mm 2.1910考虑腐蚀减薄的附加壁厚C1mm 0.511考虑工艺减薄的附加厚度C2mm 012负偏差与取用壁厚的百分比值m 12.513考虑负偏差的附加厚度C3mm 0.38414弯管附加厚度C mm 0.88415集管设计壁厚δdc mm 3.07416集管取用厚度δmm 817集管有效厚度δe mm 7.11618圆筒体开孔结构特性系数K 0.14619系数ββe 1.0720材料在20℃的屈服点Re MPa 24521水压试验最高允许压力[P]h MPa 6.932编号序号名称符号单数值七进口集管椭圆封头计算1封头外径Do mm 2192封头壁厚δmm8无纵焊缝先假设,后校核按中径展开的集管开孔示意图Sc=dae+2((Di+δ)x δ)^0.5根据设计S<Sc ,需计算孔桥减弱系数ψ=(s-dae )/S 表4,Td=tm 查 GB/T16507.2表5δt=PxDo/(2ψmin [σ]+P)按13.3条附录C.2.3,按13.5.2条C3=(δt+C1+C2)m/(100-C=C1+C2+C3δdc=δt+C δe=δ-C P(Do-2δe )/((2[σ]-P)δe)K≤0.4,开孔不必补强β=Do/(Do-2δe )查 GB/T16507.2表50.45ψminRe(βe 2-1)/βe 2常州能源设备总厂有限公司受压元件强度计算书计算公式及数字来源设计水压试验压力取1.05MPa采用φ219x8(20 GB3087)的钢管作为进口集管3封头内径Di mm 2034计算壁温td ℃3005封头内高度hi mm 576最小减弱系数ψmin 17许用应力[σ]MPa 1088封头结构形状系数ks 0.8629计算壁厚δt mm 0.81410考虑腐蚀减薄的附加壁厚C1mm 0.511考虑工艺减薄的附加厚度C2mm 0.13113考虑负偏差的附加厚度C3mm 0.314弯管附加厚度C mm 0.93115集管设计壁厚δdc mm 1.74516炉管取用厚度δmm817集管有效厚度δe mm 7.0618系数ββe 1.06919材料在20℃的屈服点Re MPa 24520水压试验最高允许压力[P]h MPa 10.49八出口集管强度计算1集管外径Do mm 2732纵向焊缝减弱系数ψ13集管取用壁厚δmm 104集管内径Di mm 2535孔桥减弱系数计算编号序号名称符号单数值孔1与孔2的孔桥减弱系数直径1d1c mm 110直径2d2c mm 110相邻两孔平均直径dae1mm110相邻两孔临界节距Sc mm 212.6相邻两孔的节距S1mm 300直径2d3c mm 34相邻两孔平均直径dae2mm72Di=Do-2δTd=tmJB/T 4746-2002,P41无拼缝、开孔查 GB/T16507.2表2Ks=[2+(Di/2hi)2]/6δt=ksPxDi/(2ψmin[σ]-P)按13.3条附录C.2.7,0.1(δt+C1)按13.5.1条C=C1+C2+C3δdc=δt+C δe=δ-Cβ=Do/(Do-2δe )查 GB/T16507.2表50.9ψminRe(βe 2-1)/[(2+βe 3设计水压试验压力取1.05MPa进口集管封头采用EHB219x8(6) JB/T4746 (材质为Q245R GB713)无纵焊缝先假设,后校核按中径展开的集管开孔示意图常州能源设备总厂有限公司受压元件强度计算书计算公式及数字来源Sc=dae1+2((Di+δ)x δ)^0.5根据设计Sc<S1不需计算孔桥减弱系数。
4.加热炉的计算管式加热炉是一种火力加热设备,它利用燃料在炉膛内燃烧时产生的高温火焰和烟气作为热源,加热在管道中高速流动的介质,使其达到工艺规定的温度,保证生产的进行。
在预加氢中需要对原料进行加热,以达到反应温度。
预加氢的量较小,因此采用圆筒炉。
主要的参数如下:原料:高辛烷值石脑油;20相对密度: d40.7351进料量: 62500 kg / h入炉温度:I =350o C;出炉温度: o =490o C;出炉压强: 15kg / cm2气化率:e=100%;过剩空气系::辐射: 1.35对流段: 1.40燃料油组成:C 87%, H 11.5%, O 0.5%,W 1%加热炉基本参数的确定4.1 加热炉的总热负荷查《石油炼制工程(上)》图Ⅰ -2-34 可知,在入炉温度t1=350℃,进炉压力约 15.0 ㎏/㎝ 2 条件下,油料已完全汽化,混合油气完全汽化温度是167℃。
原料在入炉温度 350o C ,查热焓图得Ii232kJ / kcal原料的出炉温度为490oC,查热焓图得Iv 377 kcal / kg 。
将上述的数值代入得到加热炉的总热负荷Q = m[eIV+(1-e)IL-Ii]=[1 377 232] 62500 4.18437917500kJ / h4.2 燃料燃烧的计算燃料完全燃烧所生成的水为气态时计算出的热值称为低热值,以Ql 表示。
在加热炉正常操作中,水都是以气相存在,所以多用低热值计算。
(1)燃料的低发热值Q1=[81C+246H+26(S-O)-6W] 4.184=[81 87 + 246 11.5+ 26 (0-0.5) -6 1] 4.18441241.7 kJ / (kg 燃料)(2)燃烧所需的理论空气量2.67C 8H S OL023.22.67 87 8 11.5 0 0.523.213.96kg空气 /kg 燃料(3)热效率设离开对流室的烟气温度Ts比原料的入炉温度高100oC,则T s350 100450o C由下面的式子可以得到100 q,L q,I, q Lq L 0.05和Ts 查相关表,得烟气出对流室时取炉墙散热损失Q1 并根据q L 23%带走的热量Q1 ,所以 1 (5 23)% 72%(4)燃料的用量Q 379175001277kg / h B0.72 41241.7Q1 ;(5)火嘴数量假定火嘴的额定喷油能力比实际燃料大30%,选择标准火嘴的流量200kg/h,则需要火嘴的数量为1.3B 1.3 1277n8.3200200进行取整取n9(6)烟道气流量W g B(1.5L0 ) 1277 (1.5 1.413.96)26873kg / h4.3 加热炉相关参数计算(1)圆筒炉辐射室的热负荷根据工艺要求和经验,参照表4-1,选取四反加热炉为圆筒炉。
火筒式加热炉规范Specification for fire tube heater目次前言²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²Ⅳ1范围²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²1 2引用标准²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²1 3定义²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²2 4基础数据和炉型选择²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²3 5工艺设计²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²3 6材料²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²4 7强度设计²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²7 8结构设计²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²11 9附件和仪表²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²12 10加工成形与组装²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²13 11焊接²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²20 12压力试验²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²24 13出厂文件、标志、油漆、包装和运输²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²25 1范围本规范规定了火筒式加热炉设计、制造、检验与验收的基本要求。
§15-3 各种受压元件的强度计算一. 强度计算的基本公式在锅炉受压元件强度计算中,将壳体内的应力简化为两向应力状态,并且假定应力沿壁厚均匀分布,这种应力称为薄膜应力。
对于锅炉范围内的受压元件,只要其壁厚相对于直径很小,或外径与内径之比β不是很大(β=1~2),薄膜应力模型是足够精确的。
当量应力采用第三强度理论进行计算,元件强度计算的基本公式或强度条件为][31d σ≤σ-σ=σ(15-13) 式中 σd 为当量应力,σ1和σ3分别为最大和最小主应力,[σ]为许用应力。
σ1和σ3取决于受压元件的几何形状。
如图15.7所示,对于圆筒形元件,在忽略径向应力σr 后,周向应力σh 和轴向应力σz分别为S2pDh =σ (15-14)S4pD z =σ(15-15)式中,P 为计算压力,D 为筒体的平均直径(内径与外径的平均值),S 为壁厚。
比较式(15-14)和(15-15)可以看出,周向应力σh 是轴向应力σz 的2倍。
因此,σ1=σh ,σ3=σr =0。
将式(15-14)代入式(15-13)即可得到圆筒形元件的强度计算基本公式][S2pDh 31d σ≤=σ=σ-σ=σ (15-16)二. 管子和管道强度计算1. 理论计算壁厚锅炉范围内的无缝钢管属于圆筒形受压元件,由式(15-16)可以导出其理论壁厚计算式[]p2pD S wL +=σ(15-17)式中,P 为计算压力,MPa ;D w 为管子的外径,mm ;S L 称为理论计算壁厚;[σ]为许用应力,MPa2. 附加壁厚由式(15-17)确定的壁厚称为理论壁厚,该壁厚还不能作为管子的实际取用壁厚,因为锅炉在使用过程中管壁会不断腐蚀而减薄,另外实际钢管的壁厚都存在一定的负偏差。
因此钢管的最小需要壁厚应在理论壁厚的基础上再加上一定的附加壁厚C S S L m in +=(15-18)其中,S min 为最小需要壁厚,mm ;C 为附加壁厚,mm ;按下式确定21C C C +=(15-19)式中,C 1为腐蚀余量,mm ,一般取0.5mm ,腐蚀严重时按实际情况取值;C 2为壁厚负偏差图15.7 圆筒形元件的应力状态(或下偏差),mm ,根据钢管的负偏差率m 按下式确定L L 2S A S m100mC ⋅=-=(15-20)3. 最高允许计算压力[P]由式(15-16)也可以导出校核计算时管子的最高允许计算压力计算式[]y w y2[]S P D S σ=- (15-21)式中,[P]为最高允许计算压力,MPa ;S y 为管子的有效壁厚,mm ,等于名义壁厚S 减去附加壁厚y S S C =-(15-22)校核计算时附加壁厚按下式计算A S 0.5C 1A⋅+=+ (15-23)其中系数A 同式(15-20),S 为钢管的名义壁厚。
火筒式加热炉规Specification for fire tube heater目次前言 (Ⅳ)1围 (1)2引用标准 (1)3定义 (2)4基础数据和炉型选择 (3)5工艺设计 (3)6材料 (4)7强度设计 (7)8结构设计 (11)9附件和仪表 (12)10加工成形与组装 (13)11焊接 (20)12压力试验 (24)13出厂文件、标志、油漆、包装和运输 (25)1围本规规定了火筒式加热炉设计、制造、检验与验收的基本要求。
本规适用于陆上油、气田生产中使用的火筒式加热炉的设计、制造、检验与验收。
2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 150-1998钢制压力容器GB/T 699-1999优质碳素结构钢GB/T 700-1988碳素结构钢GB 713-1997锅炉用钢板GB/T 912-1989碳素结构钢和低合金结构钢热轧薄钢板及钢带GB/T 983-1995不锈钢焊条GB/T 985-1988气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸GB/T 986-1988埋弧焊焊缝坡口的基本形式和尺寸GB/T 3077-1999合金结构钢GB 3087-1999低中压锅炉用无缝钢管GB/T 3274-1988碳素结构钢和低合金结构钢热轧厚钢板和钢带GB/T 5117-1995碳钢焊条GB/T 5118-1995低合金钢焊条GB/T 5293-1999埋弧焊用碳钢焊丝和焊剂GB 5310-1995高压锅炉用无缝钢管GB 6479-1986化肥设备用高压无缝钢管GB 6654-1996压力容器用钢板GB/T 8163-1999输送流体用无缝钢管GB/T 12459-1990钢制对焊无缝管件GB/T 13401-1992钢板制对焊管件GB/T 14957-1994熔化焊用钢丝GB/T 14958-1994气体保护焊用钢丝GB/T 14982-1994粘土质耐火泥浆GB 50205-95钢结构工程施工及验收规GB/T 50235-1997工业金属管道工程施工及验收规JB/T 1611-93锅炉管子技术条件JB/T 1613-93锅炉受压元件焊接技术条件JB/T 1615-91锅炉油漆和包装技术条件JB/T 1619-93锅壳锅炉本体总装技术条件JB/T 1623-92锅炉管孔中心距尺寸偏差JB/T 1625-93 中低压锅炉焊接管孔尺寸JB 2536-80压力容器油漆、包装和运输JB 3375-91锅炉原材料入厂检验JB 4708-92钢制压力容器焊接工艺评定JB/T 4709-92钢制压力容器焊接规程JB/T 4712-92鞍式支座JB 4726-94压力容器用碳素钢和低合金钢锻件JB 4730-94压力容器无损检测JB/T 4735-1997钢制焊接常压容器JB/T 4736-95补强圈JB/T 4737-95椭圆形封头SY 0031-95石油工业用加热炉安全规程SY/T 0510-1998钢制对焊管件SY/T 0535-94火筒式加热炉热力与阻力计算方法SY/T 0540-94石油工业加热炉型式与基本参数SY/T 0599-1997天然气地面设施抗硫化物应力开裂金属材料要求SY/T 5261-91火筒式加热炉受压元件强度计算方法SY/T 5106-93粘土质耐火砖DL/T 5048-95电力建设施工及验收技术规一管道焊接接头超声波检验篇3 定义本标准采用下列定义。
火筒式加热炉规范Specification for fire tube heater目次前言 (Ⅳ)1范围 (1)2引用标准 (1)3定义 (2)4基础数据和炉型选择 (3)5工艺设计 (3)6材料 (4)7强度设计 (7)8结构设计 (11)9附件和仪表 (12)10加工成形与组装 (13)11焊接 (20)12压力试验 (24)13出厂文件、标志、油漆、包装和运输 (25)1范围本规范规定了火筒式加热炉设计、制造、检验与验收的基本要求。
本规范适用于陆上油、气田生产中使用的火筒式加热炉的设计、制造、检验与验收。
2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 150-1998钢制压力容器GB/T 699-1999优质碳素结构钢GB/T 700-1988碳素结构钢GB 713-1997锅炉用钢板GB/T 912-1989碳素结构钢和低合金结构钢热轧薄钢板及钢带GB/T 983-1995不锈钢焊条GB/T 985-1988气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸 GB/T 986-1988埋弧焊焊缝坡口的基本形式和尺寸GB/T 3077-1999合金结构钢GB 3087-1999低中压锅炉用无缝钢管GB/T 3274-1988碳素结构钢和低合金结构钢热轧厚钢板和钢带GB/T 5117-1995碳钢焊条GB/T 5118-1995低合金钢焊条GB/T 5293-1999埋弧焊用碳钢焊丝和焊剂GB 5310-1995高压锅炉用无缝钢管GB 6479-1986化肥设备用高压无缝钢管GB 6654-1996压力容器用钢板GB/T 8163-1999输送流体用无缝钢管GB/T 12459-1990钢制对焊无缝管件GB/T 13401-1992钢板制对焊管件GB/T 14957-1994熔化焊用钢丝GB/T 14958-1994气体保护焊用钢丝GB/T 14982-1994粘土质耐火泥浆GB 50205-95钢结构工程施工及验收规范GB/T 50235-1997工业金属管道工程施工及验收规范JB/T 1611-93锅炉管子技术条件JB/T 1613-93锅炉受压元件焊接技术条件JB/T 1615-91锅炉油漆和包装技术条件JB/T 1619-93锅壳锅炉本体总装技术条件JB/T 1623-92锅炉管孔中心距尺寸偏差JB/T 1625-93 中低压锅炉焊接管孔尺寸JB 2536-80压力容器油漆、包装和运输JB 3375-91锅炉原材料入厂检验JB 4708-92钢制压力容器焊接工艺评定JB/T 4709-92钢制压力容器焊接规程JB/T 4712-92鞍式支座JB 4726-94压力容器用碳素钢和低合金钢锻件JB 4730-94压力容器无损检测JB/T 4735-1997钢制焊接常压容器JB/T 4736-95补强圈JB/T 4737-95椭圆形封头SY 0031-95石油工业用加热炉安全规程SY/T 0510-1998钢制对焊管件SY/T 0535-94火筒式加热炉热力与阻力计算方法SY/T 0540-94石油工业加热炉型式与基本参数SY/T 0599-1997天然气地面设施抗硫化物应力开裂金属材料要求SY/T 5261-91火筒式加热炉受压元件强度计算方法SY/T 5106-93粘土质耐火砖DL/T 5048-95电力建设施工及验收技术规范一管道焊接接头超声波检验篇3 定义本标准采用下列定义。
2194水管锅炉受压元件强度计算在燃煤锅炉受压元件中,2194水管是一个非常关键的部件。
它承受着锅炉内高温高压水蒸气的作用,因此其强度计算显得尤为重要。
本文将从深度和广度两个方面,探讨2194水管锅炉受压元件强度计算的相关内容,并共享一些个人观点和理解。
1. 强度计算的基本原理水管锅炉受压元件的强度计算基于材料力学原理和受力分析。
在进行强度计算时,需考虑到水管在高温高压下的受力情况,以及其所承受的压力、温度等外部因素。
还需要考虑到水管在运行中可能出现的疲劳、腐蚀等因素,从而确保其安全可靠地运行。
2. 强度计算的相关公式在进行水管锅炉受压元件强度计算时,需要采用一系列与受力、材料力学相关的公式进行计算。
其中包括受力分析中的张力、剪切力、压力等的计算公式,以及考虑到高温高压环境下材料的变形、蠕变等影响的计算公式。
3. 2194水管的特殊性2194水管在水管锅炉中具有其特殊的位置和作用。
由于承受着高温高压水蒸气的作用,因此在进行强度计算时需要考虑到其特殊的受力情况和材料变形情况。
另外,由于长期运行可能出现的磨损、腐蚀等问题,也需要在强度计算中加以考虑。
4. 个人观点和理解在进行水管锅炉受压元件强度计算时,我认为应该十分重视对2194水管的特殊性的理解和考虑。
只有深入了解其受力情况、材料特性等相关因素,才能够做出准确、可靠的强度计算。
另外,随着科技的不断发展,也需要不断更新强度计算的方法和标准,以确保水管锅炉的安全运行。
结语通过对2194水管锅炉受压元件强度计算的全面探讨,相信大家对这一有价值的主题有了更深入的了解。
在实际应用中,我们应该注重理论和实践相结合,不断提升自身的专业知识和技能,以确保水管锅炉的安全稳定运行。
以上就是对2194水管锅炉受压元件强度计算的相关内容的探讨和个人观点的共享。
希望能对您有所帮助和启发。
感谢阅读!水管锅炉是一种常见的燃煤锅炉,其受压元件中的2194水管扮演着非常关键的角色。