一、基因工程定义基因工程(geneengineering)或遗传工程((精)
- 格式:ppt
- 大小:440.00 KB
- 文档页数:9
什么是基因工程
一、什么是基因工程
基因工程(Gene Engineering)是一种技术,它可以改变物质基础的构造,使其形成新的基因组合,从而获得有意义的生物。
基因工程可以
让完全不同的物种合成出新物种,或者将不同物种的基因强行混合,
成功地让一些被认为在自然过程中不可能出现的新物种出现。
二、基因工程的基本原理
基因工程的基本原理是人工合成、改造、替换或者删除染色体的基因,在生物体的内部,精心操控它们来改变特质。
比如,可以用基因工程
在生物体内引入新基因,从而改变它们的某些性状,从而形成新物种、新性状或新能力。
同样,也能改变基因中某种成分,形成新物种。
三、基因工程在实践中的应用
(1)改性个体:基因工程可以调整体内基因水平,以便让体内特定的
特质性状得到发挥。
(2)编辑特质:基因工程可以根据所需改变,精确定位到特定的基因
的特定位点,再改变基因位置,最终让细胞发生变化。
(3)基因治疗:基因治疗是改变患有基因性疾病的患者的基因的技术,以改善疾病情况。
(4)转基因:转基因技术指的是将一种物种中的基因流入到另一种物
种中,从而改变或添加某种性质,如抗病性等。
四、基因工程的好处与弊端
(1)好处:基因工程可以帮助改变鉴定动物和植物的性能,用来生产
食物、药物、精馏植物等产品,帮助解决营养、病症,使物种在极端
环境发展。
(2)弊端:大量的基因重组可能引发不可预料的问题,产生致命的疾病,甚至影响人类基因。
有时,新基因对导入到一个物种中的其他生
命细胞产生负面影响。
什么是基因工程基因工程:改变生命的未来引言:人类一直在不断探索、改造和利用自然的力量,以满足我们的需求和向前迈进。
基因工程作为生物技术的一个重要分支,具有巨大的潜力,可以为人类带来许多福祉和进步。
本文将深入探讨什么是基因工程,它的原理和应用,以及相关的伦理和道德问题。
一、基因工程的定义和原理:基因工程,又称遗传工程,是一种利用重组DNA技术改变生物基因组的过程。
它主要包括三个步骤:选取目标基因、将目标基因导入目标生物体的基因组中、使导入基因能够在生物体中正常表达。
基因工程的原理主要包括DNA分子的切割、连接和重组。
科学家通过具有特定功能的限制酶将DNA切割成片段,然后将这些片段重新组合,以获得具有所需特性的DNA序列。
最后,将重组的DNA导入目标生物体中,通过细胞的自然复制过程使其在细胞和整个生物体中被表达。
二、基因工程的应用:1. 农业领域:基因工程在农业领域的应用非常广泛。
通过转基因技术,科学家们可以改良农作物,使其具有抗虫、抗病、耐旱等特性,提高产量和抗逆性,有力地支持全球粮食安全。
例如,转基因玉米可以抵抗玉米螟的侵袭,转基因水稻可以抗盐碱、耐旱。
2. 医学领域:基因工程在医学领域的应用正逐渐发展。
通过基因工程技术,科学家可以将外源基因导入体内,用于治疗一些遗传病、免疫系统疾病和癌症等疾病。
例如,基因工程药物可以治疗某些带有缺陷基因的遗传性疾病,如血友病和囊性纤维化等。
3. 环境保护:基因工程还可以用于环境保护。
通过改良某些细菌或植物的基因,可以使其具有降解有害化学物质的能力,从而清理油污和其他污染物。
基因工程在生物修复、环境治理中的潜力巨大,为解决环境问题提供了新的思路和方法。
三、伦理道德问题:虽然基因工程有着广阔的应用前景,但也涉及一些伦理和道德问题需要慎重考虑。
1. 遗传多样性:转基因作物的广泛种植可能导致农作物遗传多样性的丧失,降低农作物的抵抗能力。
我们应该保留自然界的遗传资源,同时加强监管和管理,确保基因工程的可持续发展。
基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。
两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。
BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。
平末端(blunt ends): DNA片段的末端是平齐的。
星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。
易产生星活性的内切酶用*标记。
如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。
连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。
高一生物基因工程知识点基因工程是应用生物技术手段对生物体基因进行分子水平的操作和改造,以达到某种特定目的的过程。
它是现代生物技术的重要组成部分,具有广泛的应用前景和巨大的社会经济效益。
下面将介绍一些高一生物基因工程的知识点。
一、基因工程的定义与概念基因工程(Genetic Engineering),又称基因重组技术或遗传工程,是指人为地对生物体的遗传物质DNA进行重组、修饰和改变,通过在DNA水平上的操作,实现对生物体基因的控制和调节,从而获得特定的基因组合和性状的改良。
二、基因工程的主要技术手段1. DNA重组技术:包括DNA分子剪切、粘接、连接、转化等操作,以实现对目标基因的操作和改造。
2. 基因克隆技术:通过将目标基因从一个生物体中剪切并插入到另一个生物体中,实现对目标基因的复制和扩增。
3. 基因敲除技术:通过人为干预基因的表达,使目标基因在特定生物体中失去功能,以研究其功能和调控机制。
4. 基因编辑技术:利用CRISPR/Cas9等工具,直接对基因序列进行定点改造,实现精确的基因编辑和修饰。
三、基因工程在农业领域的应用1. 转基因作物的培育:通过将外源基因导入作物中,使其获得抗虫、抗病、耐旱、抗逆等性状,提高作物的产量和品质。
2. 基因编辑育种:利用基因编辑技术,对农作物的基因组进行精确的改造,实现性状的快速改良和遗传纯化。
3. 基因工程种子的利用:在种子中加入抗生素和草除剂等基因的表达载体,使作物在生长过程中具有抗草药性和抗病药性,提高作物的生长环境适应性。
四、基因工程在医学领域的应用1. 基因治疗:通过将正常基因导入患者体内,修复患者体内异常或缺失的基因,治疗某些遗传性疾病。
2. 重组蛋白的生产:通过将目标基因导入细胞中,使细胞表达目标蛋白,用于生产重要的药物和治疗蛋白。
3. 基因诊断:通过对患者基因组的检测,发现和分析基因突变和异常,为疾病的早期诊断和治疗提供依据。
五、基因工程的伦理与风险基因工程技术的发展和应用给人类带来了众多的利益,但也存在一定的伦理和风险问题。
基因工程是要按人们的意愿去有目的地改造,创建生物遗传性,因此最基本的工程就是得到目的基因或核酸序列的克隆。
分离或改建的基因和核酸序列不能自身繁殖,需要载体携带它们到合适的细胞中复制和表现功能。
基因工程( genetic engineering ):狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。
又称DNA重组技术(DNA recombination)广义上讲,基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。
供体、受体、载体构成了基因工程的三要素基因工程的工具酶(instrumental enzyme of gene engineering)是应用于基因工程各种酶的总称,包括核酸序列分析、标记探针制备、载体构建、目的基因制取、重组体DNA制备等所需要的酶类。
R-M系统是细菌安内御外的积极措施。
细菌R-M系统的限制酶可以降解DNA,为避免自身DNA的降解,细菌可以修饰(甲基化酶)自身DNA,未被修饰的外来DNA则会被降解。
限制性核酸内切酶(限制酶):在细胞内能够识别双链DNA分子中的特定核苷酸序列,并对DNA分子进行切割的一种酶。
同裂酶:来源不同的限制酶识别相同的核苷酸靶序列。
产生同样的切割,形成同样的末端。
同尾酶:来源不同,识别的核苷酸靶序列也不相同,但切割后DNA分子产生的粘性末端EcoRⅠ在正常情况下识别GAATTC序列发生切割,但如果缓冲液中甘油浓度超过5%,其识别位点发生松动,可在AATT处发生切割,EcoRⅠ这种特殊的识别能力叫做星活性,用EcoR Ⅰ*表示。
星活性可造成位点切割机率不等,降解不完全。
甲基化酶也称修饰酶(modification enzyme),用来修饰限制酶的识别序列,在该序列位点的胞嘧啶(C)5-氨基上加一个甲基,使得该序列可以被限制性内切酶识别而免于切割。
高中生物中的基因工程和遗传工程基因工程和遗传工程是现代生物学领域中备受关注的热门话题。
它们的出现和发展,不仅为人们解开了生命奥秘的一道道谜题,也为人类社会带来了巨大的科学和技术进步。
在高中生物课程中,基因工程和遗传工程也是重要的学习内容之一。
本文将从基因工程和遗传工程的定义、应用领域、伦理道德等方面进行探讨。
首先,我们来了解一下基因工程和遗传工程的定义。
基因工程是指通过改变或操纵生物体的基因组,创造出具有特定性状或功能的生物体。
而遗传工程则是指通过人工手段改变生物体的遗传物质,以达到特定目的的一系列技术和方法。
这两者在生物学研究和应用中有着密切的联系和交叉。
基因工程和遗传工程的应用领域非常广泛,涉及医学、农业、环境保护等多个领域。
在医学领域,基因工程和遗传工程为人类研制新药、治疗遗传性疾病等提供了新的途径。
例如,通过基因工程技术,科学家们已经成功研制出了多种重要的生物药物,如重组人胰岛素、重组人生长激素等。
这些药物的问世,不仅提高了医疗水平,也极大地改善了患者的生活质量。
在农业领域,基因工程和遗传工程的应用也给农作物的育种和种植带来了革命性的变化。
通过转基因技术,科学家们可以将具有抗病、抗虫、耐旱等特性的基因导入到农作物中,使其具备更强的生长能力和抗逆能力。
这不仅有助于提高农作物的产量和品质,还能够减少农药的使用,保护环境。
然而,转基因食品也引发了一系列的争议和讨论,其中涉及到的伦理道德问题尤为重要。
伦理道德问题是基因工程和遗传工程领域中不可忽视的一个方面。
在进行基因工程和遗传工程研究时,科学家们需要考虑到伦理道德的约束和原则。
例如,在进行人类基因工程研究时,必须严格遵守人类伦理原则,尊重个体的自主权和尊严。
此外,基因工程和遗传工程的应用也需要考虑到风险评估和风险管理,以确保其对环境和人类健康的安全。
除了应用领域和伦理道德问题,基因工程和遗传工程还涉及到许多前沿的研究领域和技术。
例如,基因编辑技术的发展为基因工程和遗传工程研究带来了新的突破。
名词解释:1.Gene Engineering基因工程:在体外把核酸分子(DNA的分离、合成)插入载体分子,构成遗传物质的新组合(重组DNA),引入原先没有这类分子的受体细胞内,稳定地复制表达繁殖,培育符合人们需要的新品种(品系),生产人类急需的药品、食品、工业品等。
2.HGP人类基因组计划:是一项规模宏大,跨国跨学科的科学探索工程。
其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。
3.Gene Therapy 基因治疗:是指将外源正常基因导入靶细胞,取代突变基因,补充缺失基因或关闭异常基因,达到从根本上治疗疾病的目的。
.基因诊断:是利用重组DNA 技术作为工具,直接从DNA水平监测人类遗传性疾病的基因缺陷。
Vector载体:是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增或表达的工具。
plasmid质粒:是生物细胞内固有的、能独立于宿主染色体而自主复制、并被稳定遗传的一类核酸分子。
shuttle vector穿梭载体:是指含有两个亲缘关系不同的复制子,能在两种不同的生物中复制的。
质粒不相容性;同种的或亲缘关系相近的两种质粒不能同时稳定地保持在一个细胞内的现象,称为质粒不相容性.multiple cloning sites,MCS多克隆位点:DNA载体序列上人工合成的一段序列,含有多个限制内切酶识别位点。
能为外源DNA提供多种可插入的位置或插入方案。
α-互补:LacZ’基因的互补:lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶基因的突变体之间实现互补。
粘性末端:指DNA分子的两端具有彼此互补的一段突出的单链部分, 这一小段单链部分和同一分子的另一端或其它分子末端的单链部分如果互补的话,则能通过互补碱基之间的配对, 形成双链。
并在DNA连接酶的作用下, 使同一DNA分子的两端连接成环状,或使两个分子连成一大的线状分子。
关于基因工程的名词解释引言:基因工程,作为现代生命科学的一个重要分支,旨在通过改变生物体的遗传信息,实现对生物特性的调控和改良。
下面将解释一些与基因工程相关的常见名词,以便更好地理解这个领域的重要概念。
一、基因工程基因工程,又称遗传工程,是一种通过人工方法对生物体的基因进行操作和改造的技术。
它包括对DNA序列的修改、插入和删除,以达到改变生物的表型特征或增强其产物能力的目的。
二、DNADNA(脱氧核糖核酸)是生物体内存储遗传信息的主要分子,它由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳟嘧啶)组成,通过特定的序列排列形成基因。
基因工程的核心工作就是对DNA进行修饰和操作。
三、基因基因是DNA中编码一个特定蛋白质或遗传特征的单位。
每个生物体都由大量基因组成,这些基因决定了生物体的特性和遗传信息的传递方式。
基因工程中的目标之一就是对特定基因进行改造,以期望在生物体中产生特定的效果。
四、基因组基因组是一个生物体中包含的所有基因的集合。
它可以分为染色体基因组和质粒基因组。
染色体基因组是生物体核内DNA组成的基因集合,而质粒基因组则存在于质粒中,通常被用于外源基因的插入和传递。
五、重组DNA技术重组DNA技术是基因工程中一项重要的技术手段,它通过将源自不同生物体的DNA片段在体外进行精确拼接,创造出新的重组DNA。
这种技术可以用于插入外源基因、制备重组蛋白质等。
六、基因表达调控基因表达调控是指细胞对特定基因的调控机制,包括转录因子的结合、启动子区域的调控和DNA甲基化等。
通过基因表达调控,科学家可以改变基因的表达水平,进而改变生物的性状和功能。
七、转基因转基因是指将外源基因导入目标生物体中的过程。
通过转基因技术,科学家可以将具有特定功能的基因导入到其他生物体中,从而改变目标生物体的遗传特性。
八、克隆技术克隆技术是基因工程中的一项重要技术,它可以复制生物体的DNA或细胞。
克隆技术主要包括体细胞核移植和DNA克隆。
生物基因工程高中知识点
一、基因工程
1、什么是基因工程
基因工程是指通过精确的技术,改变有机体内基因的组成或排列,从而使有机体的特定基因表达产生变化,从而改变有机体的遗传性质以及表型的一种生物学作用。
2、基因工程的步骤
(1)取得基因:通常需先取得需要改造的基因;
(2)定向改造基因:利用基因重组技术及其他技术精确地改造基因;
(3)细胞载体克隆:将改造后的基因插入到某种有机体内,以便
复制变异后的基因;
(4)筛选结果:最后依靠环境因素及遗传因素,从已变异生物中
筛选出有用的突变体。
二、遗传工程
1、什么是遗传工程
遗传工程是指利用分子遗传学和生物技术,向目标有机体插入一个或几个外源基因,从而改变原有的遗传因素、遗传型和表型的活动。
2、遗传工程的核心技术
(1)克隆技术:是指从一个有机体的体细胞中取出某特定的基因,用复制机制,使其重复增殖,称之为克隆;
(2)基因重组技术:是指在双脱氧核糖核酸(DNA)或者核糖体
RNA(rRNA)的基础上,通过酶促反应、有序组装各部分成一个新的配列,制备出含有新的遗传信息的新的基因或者基因组的技术;
(3)生物工程技术:是指对有机体的基因组进行检测、编辑、载体克隆和细胞集落分离等技术。
生物基因工程知识点1. 基因工程定义基因工程,又称遗传工程,是指通过人工手段对生物体的基因进行改造,以实现对生物体性状的改变和新品种的培育。
它包括基因克隆、基因转移、基因编辑等多个技术环节。
2. 基因克隆基因克隆是指将特定的基因片段从供体生物体中提取出来,并在体外进行复制和扩增的过程。
这一过程通常涉及限制性内切酶、DNA连接酶和载体等分子生物学工具。
3. 基因转移基因转移是将克隆的基因片段导入到受体细胞中,使其成为受体细胞基因组的一部分,并能够表达出新的性状。
常用的基因转移方法包括质粒介导、病毒载体和基因枪等。
4. 基因编辑基因编辑是指对生物体基因组中的特定位点进行精确的添加、删除或替换。
CRISPR-Cas9是目前最流行的基因编辑技术,它允许科学家在细胞中进行特定DNA序列的编辑。
5. 转基因生物转基因生物是指通过基因工程技术改变了基因组的生物。
这些生物可能会展现出抗虫、抗病、抗旱等特性,或者提高营养价值。
6. 伦理和法律问题基因工程的发展引发了一系列伦理和法律问题,包括生物安全、生物多样性保护、知识产权和公众接受度等。
各国政府和国际组织都在制定相关法规以确保基因工程的安全和合理应用。
7. 基因工程的应用基因工程在农业、医学、工业生产和环境保护等多个领域都有广泛应用。
例如,在医学领域,基因工程被用于生产重组蛋白药物;在农业领域,用于培育抗病虫害的转基因作物。
8. 安全性评估由于基因工程可能对环境和人类健康产生影响,因此对转基因生物的安全性评估至关重要。
这包括对转基因生物的环境影响、长期食用安全性等进行系统的研究和评估。
9. 未来发展趋势基因工程的未来发展趋势包括提高基因编辑的精确性和效率、发展新的基因工程技术、加强跨学科研究以及推动基因工程在全球范围内的合理应用和监管。
10. 公众教育和沟通鉴于基因工程的复杂性和伦理问题,公众教育和沟通显得尤为重要。
科学家和政策制定者需要与公众进行有效沟通,提高公众对基因工程的理解,促进科学决策的制定。
基因工程:对不同生物的遗传物质-基因,在体外进行剪切、组合和拼接,使遗传物质重新组合,然后通过载体转入微生物、植物或动物细胞内,进行无性繁殖,并便所需要的基因在细胞中表达,产生出人类所需要的产物或组建成新的生物类型。
细胞工程:包括细胞融合、细胞大规模培养以及植物组织培养快速繁殖技术。
酶工程:包括酶的生产应用、酶和细胞的固定化以及酶的分子修饰技术。
就是在一定的生物反应器中,利用酶的催化作用将相应的原料转化成有用物质的技术。
发酵(微生物)工程:包括菌种选育、菌体生产利用、代谢产物的生产利用以及微生物机能的利用技术。
发酵工程是利用微生物的特定性状,通过现代化工程技术,生产有用物质或直接应用于工业生产的一种技术体系。
蛋白质工程:它是通过对蛋白质分子结构的合理设计,再通过基因工程的手段,改变基因的核苷酸序列以达到改变基因产物―蛋白质的目的,生产出具有更高生物活性或全新的、具有独特活性的蛋白质。
生化工程:包括生物反应器设计制造、传感器的研制以及产物的分离提取和精制技术。
基因工程(Genetic engineering)原称遗传工程。
从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。
因此,供体、受体和载体称为基因工程的三大要素。
广义的基因工程定义为 DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
限制性核酸内切酶( Restriction endonucleases)是一类能在特异位点上催化双链DNA分子的断裂,产生相应的限制性片段的核酸水解酶。
几乎存在于任何一种原核细菌中。
同位酶:一部分酶识别相同的序列,但切点不同,这些酶称为同位酶同裂酶:识别位点与切割位点均相同的不同来源的酶称为同裂酶同尾酶(Isocandamers):识别位点不同,但切出的 DNA 片段具有相同的末端序列,这些酶称为同尾酶。
什么是基因工程基因工程(Genetic Engineering),也称为基因改造、基因操作或遗传改良,是指人工干预生物体的遗传物质,以改变其基因组和基因表达方式的技术。
通过基因工程,科学家可以对生物体的基因进行删减、组合和重新排列,以实现特定的目标,包括改良农作物、生产药物、治疗疾病等。
基因工程的基本原理是利用DNA分子的特性进行操作。
DNA是生物体内携带遗传信息的分子,由一系列碱基序列组成。
基因工程的过程主要涉及到以下几个步骤:1. 基因分离:科学家首先需要从生物体中选择目标基因,对其进行分离和纯化。
一般通过PCR技术、限制酶切剪和电泳等方法,将目标基因从整个基因组中提取出来。
2. 基因复制:接下来,将分离得到的目标基因进行复制,使其得到足够数量的拷贝。
这一步骤可以通过PCR技术或者克隆等方法进行。
3. 基因修饰:为了使目标基因在新的宿主生物体中能够正常表达,科学家可能需要对其进行一些修饰。
这包括在基因中插入特定的启动子和终止子,以及进行DNA序列的修饰和优化。
4. 基因导入:经过修饰后的目标基因需要被导入到宿主生物体中。
这可以通过多种方法实现,例如基因枪、化学转化、电穿孔和冷冻法等。
5. 基因表达:一旦目标基因成功导入宿主生物体,科学家会利用生物体的代谢和复制系统,使其在宿主中得以表达。
不同的宿主生物体有不同的表达方式,例如细菌可通过表达蛋白来生产药物,植物可以通过表达特定基因来改良农作物。
基因工程技术的应用非常广泛。
在农业领域,基因工程可以用于改良作物的抗病性、耐旱性和营养价值,提高农作物产量和品质。
在医学领域,基因工程技术已经应用于制造重组蛋白药物,例如重组人胰岛素和重组人生长激素。
此外,基因工程还被用于研究基因功能、揭示疾病的发生机制,以及开发新的治疗方法。
尽管基因工程技术在农业、医学和科学研究中具有广阔的前景,但其也存在一些伦理和安全问题。
例如,基因工程可能导致基因污染和生物多样性的减少;基因改良农作物可能引发环境问题;基因编辑技术可能涉及到人类胚胎的修改,引发伦理问题。
1.定义基因工程(gene engineering),又称DNA重组技术(recombinant DNA technique)、分子克隆(molecular cloning)和遗传工程(genetic engineering),是上世纪70年代兴起的技术科学.通过特殊的酶处理,使遗传物质在体外发生重组,从而产生自然界从未有过的重组DNA分子(至少包含两种不同生物的DNA片段)。
在他们进入一定的生物寄主后,不仅可以得到维持,而且可以得到扩增,其上的外源基因甚至可以得到表达。
2.孟德尔遗传定律的重新发现者:荷兰的德弗里斯(H. De Vries )德国的科伦斯(C. Correns).奥地利的契马克(E. Seysenegg-Tschermak)3.外源DNA进入细菌后,面临两种命运:一是被限制,即被降解;二是被修饰,即发生甲基化,不被降解。
4 . 原核细胞中限制和修饰系统I类酶酶分子:三亚基双功能;识别位点:二分非对称序列;切割位点:距识别位点1000bp ;限制性反应与甲基化反应:互斥;限制作用需要A TP: 需要II类酶酶分子:内切酶与甲基化酶分离; 识别位点:4-6bp序列,回文结构; 切割位点:在识别位点中或靠识别位点; 限制性反应与甲基化反应:分开反应; 限制作用需要A TP: 需要III类酶酶分子:二亚基双能; 识别位点:5-7bp非对称序列; 切割位点:在识别位点下游24-26bp; 限制性反应与甲基化反应:同时竟争; 限制作用需要A TP: 不需要5. 命名规则:生物体属名的第一大写字母和种名前两个小写构成基本名称基本名称+ 菌株名的字母+ 罗马字母(发现顺序)Hind IIIHaemophilus infuenzae d株中的第三个酶EcoR I基因位于Escherichia coli 抗药性R质粒上E co R I细菌属名细菌种名菌株类型有几种限制酶6.识别的序列一般为4-8bp,常见的为6bpEg:5bp识别位点Eco R II CCWGG W表示A或T;S表示C或G7回文结构:DNA局部双螺旋以某一对称轴旋转180度后,与另一侧的互补片段的顺序完全的DNA结构8. M表示A或C;K表示G或T; Y表示C或T;R表示A或G9切割的位置,有的在内部,有的在外部,外部的又有两端、两侧和单侧之分。
基因工程名词解释和问答基因工程复习试题(名词解释和问答仅供参考)名词解释:1、基因工程(genetic engineering): 就是在分子水平上,提取(或合成)不同生物的遗传物质(基因),在体外切割,再和一定的载体拼接重组,然后把重组的DNA 分子引入细胞或生物体内,使这种外源DNA(基因)在受体细胞中进行复制与表达,按人们的需要繁殖扩增基因或生产不同的产物或定向地创造生物的新性状,并能稳定地遗传给下代。
2、载体(vector):基因工程中,携带目的基因进入宿主细胞进行扩增和表达的工具。
3、限制性核酸内切酶(restriction endonuclease):定义:是一类能识别双链DNA分子中的特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。
主要从原核生物中分离纯化出来。
4、1)同裂酶(isoschizomers): 来源不同,识别位点和切割位点均相同的限制性内切酶。
即同裂酶产生同样的切割,形成同样的末端。
同裂酶对识别序列的甲基化状态有不同的限制性反应。
2)同尾酶(isocaudamer):来源不同,识别序列也不相同,但切出的DNA片段具有相同的末端序列。
3)同位酶:识别序列相同,但切割位点不同。
5、酶活性单位:1个酶活性单位就是指1min能转化1mmol底物的酶量。
6、DNA连接酶:能催化双链DNA片段靠在一起的3′羟基末端和5′端磷酸基团末端之间形成的磷酸二酯键,使两末端连接的一种核酸酶。
7、DNA聚合酶:作用是指在引物和模板的存在下,把脱氧核糖核苷酸(dNTP)连续地加到引物链的3’ –OH 末端,催化核苷酸的聚合作用。
8、DNA连接酶能够封闭双螺旋DNA骨架上的缺口,但不能封闭裂口。
缺口(nick):即在双链DNA的某一条链上两个相邻核苷酸之间失去一个磷酸二酯键所出现的单链断裂; 9、常用连接酶:E.coli DNA 连接酶、T4 DNA 连接酶(常用)。
既能进行粘性末端的连接,又能进行平末端的连接,但E.coli DNA 连接酶进行平末端连接的效率低。
基因工程期末考试重点知识整理基因工程第一章基因工程概述1、基因工程的概念(基因工程基本技术路线PPT)基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术.2、基因工程的历史基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化基因工程发展阶段的几个重要事件:一系列新的基因工程操作技术的出现;各种表达克隆载体的成功构建;一系列转基因菌株、转基因植物、转基因动物等的出现3、基因工程的内容(P9)4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选)第二章分子克隆工具酶5、限制性核酸内切酶的概念、特点、命名、分类(问答)概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内特点(参加PPT)命名: 依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。
如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind ?,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,?表示序号。
分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:?型酶、?型(?s型)酶和?型酶。
真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶原核生物中3中DNA聚合酶:?,?,?6、几个基本概念粘性末端:两条多聚核苷酸链上磷酸二酯键断开的位置是交错的,对称地分布在识别序列中心位置两侧,这样形成的DNA片段末端称为~。
基因工程的基本概念一、基因工程的定义基因工程,又称为遗传工程,是一门通过人工操作来改变生物遗传物质的科学。
它利用现代分子生物学技术,通过对DNA的精确剪切、拼接和重组,实现对生物遗传特性的改造和优化。
基因工程在生物医学、农业、工业和环保等领域有着广泛的应用。
二、基因工程的历史背景基因工程的起源可以追溯到20世纪70年代初期,当时科学家们开始探索DNA的分子结构和功能。
随着限制性内切核酸酶的发现和DNA体外重组技术的建立,基因工程开始得以实现。
1973年,美国斯坦福大学的伯格(Paul Berg)等人成功实现了第一次DNA体外重组实验,标志着基因工程的诞生。
三、基因工程的基本操作流程1.目的基因的获取:基因工程的第一步是获取所需的目的基因。
目的基因可以通过多种方法获得,如从生物体内直接分离、利用聚合酶链式反应(PCR)扩增或者通过化学合成等方法。
2.载体的构建:获取目的基因后,需要构建一个载体,以便将目的基因导入受体细胞。
载体通常是一种质粒或病毒,经过改造后能够携带外源基因并稳定表达。
3.基因的转移:将目的基因导入受体细胞是基因工程的另一个关键步骤。
常用的转移方法包括转化、转导、显微注射和基因枪等。
4.重组与筛选:在目的基因成功导入受体细胞后,需要通过重组技术将外源基因整合到受体细胞的染色体上。
随后,通过特定的筛选方法,如抗性筛选、Southern印迹杂交等,从众多的受体细胞中选育出含有目的基因的克隆。
5.表达与鉴定:最后,通过分子生物学技术和生物化学分析方法,检测目的基因的表达水平,并对重组蛋白进行鉴定和表征。
这一步对于验证基因工程的成功实施以及评估目的基因的功能至关重要。
四、基因工程的应用领域1.生物医学:在生物医学领域,基因工程被广泛应用于疾病诊断、治疗和预防。
例如,利用基因工程技术生产重组蛋白药物、抗体药物和细胞治疗等;同时,基因工程也为遗传病和传染病的研究和治疗提供了有力工具。
2.农业领域:基因工程在农业上的应用主要涉及作物改良、病虫害防治和产量提高等方面。