分布拟合检验简介
- 格式:doc
- 大小:95.00 KB
- 文档页数:3
数据分布拟合检验的数学模型摘 要假设检验的基本思想,讨论当总体分布为正态时,关于其中未知参数的假设检验问题,可能遇到这样的情形,总体服从何种理论分布并不知道,要求我们直接对总体分布提出一个假设 。
一般的各种检验法, 是在总体分布类型已知的情况下, 对其中的未知参数进行检验, 这类统计检验法统称为参数检验. 在实际问题中, 有时我们并不能确切预知总体服从何种分布, 这时就需要根据来自总体的样本对总体的分布进行推断, 以判断总体服从何种分布。
这类统计检验称为非参数检验. 解决这类问题的工具之一是英国统计学家K. 皮尔逊在1900年发表的一篇文章中引进的——2χ检验法。
关键词:数据检验 分布拟合 2χ检验法一、问题重述①、问题背景:自1965年1月1日至1971年2月9日共2231天中,全世界记录到里氏震级4级和4级以上地震计162次,统计如下:相继两次地震记录表:86681017263150403935343029252420191514109540出现的频率间隔天数--------x 试检验相继两次地震间隔的天数X 服从指数分布(=α0.05)。
在概率论中,大家对泊松分布产生的一般条件已有所了解,容易想到,每年的次数,可以用一个泊松随机变量来近似描述。
也就是说,我们可以假设每年爆发战争次数分布X 近似泊松分布。
现在的问题是:上面的数据能否证实X 具有泊松分布的假设是正确的?②、检验法的基本思想检验法是在总体X 的分布未知时, 根据来自总体的样本, 检验总体分布的假设的一2χ种检验方法。
具体进行检验时,先提出原假设:0H : 总体X 的分布函数为)(x F然后根据样本经验分布和所假设的理论分布之间的吻合程度来决定是否接受原假设。
这种检验通常称作拟合优度检验. 它是一种非参数检验. 一般地, 我们总是根据样本观察值用直方图和经验分布函数, 推断出总体可能服从的分布, 然后作检验.1、 通过提出的方案和计算来决定给出数据分布拟合检验的数学模型的的情况。
知识点8.6总体分布的卡方拟合检验设总体X的分布函数F(x)未知, X,⋯,X n是X的一个样本, 要1求检验假设H0:F(x)=F0(x),H1:F(x)≠F0(x).这里F(x)是数学表达形式已知的分布函数. 备择假设表示F(x)是除了F(x)以外的某一函数, 通常可以不写出来.用k −1个分点t 1,⋯,t k−1将实数轴分成k 个区间, 记为A i =t i−1,t i ,其中t 0=−∞,t k =+∞.H 0为真时, 有p i =P(X ∈A i )=F 0(t i )−F 0(t i−1).解决方案A i +∞−∞t 1t i−1t i ⋯⋯如果F 0(x)中带有未知参数,则先利用样本求出未知参数的最大似然估计值,然后将估计值代入F 0x 计算概率p i .记样本观测值x 1⋯,x n 落入区间A i 的频数为n i , 称其为实际频数.从频率和概率之间关系的角度出发, Karl Pearson 提出了如下形式的检验统计量:χ2=i=1kn p i n i n−p i2=i=1k(n i −np i)2np inp i 称为理论频数.当H 0为真时, 在样本容量充分大的情况下, 该检验统计量近似服从χ2(k −r −1)分布, 其中r 为F 0(x)中待估计的未知参数个数.由Bernoulli 大数定律可知,当试验次数较大时,事件发生的频率和概率出现较大偏差的概率是比较小的.所以当H 0为真时,对于给定的显著水平α有P i=1k(n i −np i )2np i≥χα2(k −r −1)≈α.故H 0的拒绝域为:χα2k −r −1,+∞.H 0的接受域为:0,χα2k −r −1.注意事项(1) 原假设H0中的总体分布也可以用分布律或密度函数来表示, 只要在H0为真时, 能够计算概率pi即可.(2) 根据实践经验, 要求样本容量n≥50, 且要求理论频数np i≥5.若npi <5, 则应适当合并Ai以满足此要求.例1将一枚骰子抛掷120次, 结果如下问这枚骰子的六个面是否匀称?取显著性水平为0.05.解将骰子六个面的点数作为总体X,H0:P X=k=16,k=1,2,⋯,6.点数123456频数212819241612分组数k =6, 待估计参数个数r =0,χα2k −r −1=χ0.052(5)=11.07.由于8.1<11.07, 故接受H 0, 即认为这枚骰子的六个面是匀称的.分组n ip inp i(n i −np i)2/npi1211/6201/202281/62064/203191/6201/204241/62016/205161/62016/206121/62064/20Σχ2=8.1例2从某纱厂生产的一批棉纱中抽取300条进行拉力强度试验, 得到数据如下, 检验该批棉纱的拉力强度是否服从正态分布(取显著水平为0.05).拉力强度区间频数拉力强度区间频数拉力强度区间频数拉力强度区间频数0.50~0.6411.06~1.20371.48~1.62521.90~2.0416 0.64~0.7821.20~1.34531.62~1.76262.04~2.184 0.78~0.9291.34~1.48561.76~1.90192.18~2.321 0.92~1.0624解设棉纱的拉力强度为总体X , H 0:X~N μ,σ2.以拉力强度区间的中点为观测值x i , 得到μ和σ2的最大似然估计值分别为ෝμ=x =1300i=113x i n i =1.41,ෝσ2=s n 2=1300i=113x i −x 2n i =0.0892.当H 0为真时,p i =Φt i −1.410.0892−Φt i−1−1.410.0892,i =1,⋯,13.这样合并满足np i >5np i <5需要合并分组这部分要重新计算合并后仍有np i <5要继续合并从而得计算表如下这里也要相应合并分组拉力强度区间实际频数n i 概率p i 理论频数np i n i −np i2np i 10.50~0.6410.00381.140.017220.64~0.7820.01253.750.816730.78~0.9290.03309.900.081840.92~1.06240.070221.060.410451.06~1.20370.120436.120.021461.20~1.34530.166449.920.190071.34~1.48560.185355.590.003081.48~1.62520.166449.920.086791.62~1.76260.120436.122.8354101.76~1.90190.070221.060.2015111.90~2.04160.03309.903.7586122.04~2.1840.01253.750.0167132.18~2.3210.00381.140.0172合并后的计算表分组拉力强度区间实际频数ni 概率pi理论频数npi(n i−np i)2/np i10.50~0.92120.049314.790.526320.92~1.06240.070221.060.410431.06~1.20370.120436.120.021441.20~1.34530.166449.920.190051.34~1.48560.185355.590.003061.48~1.62520.166449.920.086771.62~1.76260.120436.122.835481.76~1.90190.070221.060.201591.90~2.32210.049314.792.6074Σχ2=6.8822分组数k=9, 待估计参数个数r=2,χα2(k−r−1)=χ0.052(6)=12.592.由于6.8822<12.592, 故接受H, 即认为该批棉纱的拉力强度服从正态分布.。
常见的几种非参数检验方法非参数检验是一种不需要对数据进行假设检验的统计方法,它不需要满足正态分布等前提条件,因此被广泛应用于实际数据分析中。
在本文中,我们将介绍常见的几种非参数检验方法。
一、Wilcoxon符号秩检验Wilcoxon符号秩检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号和秩来计算统计量,并通过查表或使用软件进行显著性判断。
二、Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
三、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种用于比较多个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
四、Friedman秩和检验Friedman秩和检验是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
五、符号检验符号检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号来计算统计量,并通过查表或使用软件进行显著性判断。
六、秩相关检验秩相关检验是一种用于比较两个相关样本之间关系的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
七、分布拟合检验分布拟合检验是一种用于检验数据是否符合某个特定分布的非参数检验方法。
它基于样本数据与理论分布之间的差异来计算统计量,并通过查表或使用软件进行显著性判断。
八、重复测量ANOVA重复测量ANOVA是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本方差和均值来计算统计量,并通过查表或使用软件进行显著性判断。
九、Bootstrap法Bootstrap法是一种用于估计总体参数和构建置信区间的非参数方法。
它基于自助重采样技术来生成大量虚拟样本,以此估计总体参数和构建置信区间。
复杂数据模型下瑞利及广义瑞利分布的拟合检验与统计推断关键词:瑞利分布;广义瑞利分布;数据模型;拟合检验;统计推断1.引言随着科学技术的进步,数据的规模和复杂性不息增长。
在大数据时代,探究数据分布模型是分外重要的,并且对模型的拟合检验和统计推断也变得尤其关键。
瑞利分布及广义瑞利分布是常见的概率分布模型,其在信号处理、天文学、物理学等领域都有广泛的应用。
因此,对这两种概率分布模型的拟合检验和统计推断具有重要的探究价值。
2.瑞利分布及广义瑞利分布2.1瑞利分布瑞利分布是一种常见的概率分布模型,常用来描述射线、波和信号在随机震动的介质中传输的衰减状况,其概率密度函数为:$$f(x;\sigma)=\frac{x}{\sigma^2}\exp(-\frac{x^2}{2\sigma^2}),x\geq0$$其中,$\sigma$是瑞利分布的标准参数,它是随机过程振幅的方均值的平方根,也称为瑞利参数。
2.2广义瑞利分布广义瑞利分布是瑞利分布的推广形式,其概率密度函数为:$$f(x;k,\sigma)=\frac{2x}{\sigma^2}\left(\frac{x^2}{\sig ma^2}\right)^{\frac{k}{2}-1}\exp(-\frac{x^k}{\sigma^k}),x\geq0,k>0,$$其中,$\sigma$是广义瑞利分布的标准参数,$k$是广义瑞利分布的外形参数。
3.数据模型和预估方法在现实生活中,瑞利分布及广义瑞利分布往往作为复杂数据模型的子模型出现。
针对这种状况,本文介绍了最大似然预估法、贝叶斯预估法和矩预估法等统计方法,并详尽谈论了在复杂数据模型下的参数预估方法。
4.拟合检验为了验证瑞利分布及广义瑞利分布在复杂数据模型下的适用性,本文提出了适用于大样本的渐进理论检验方法和适用于小样本的Bootstrap检验方法。
通过这两种方法的试验结果,本文验证了瑞利分布及广义瑞利分布在复杂数据模型下的优越性。
分布拟合检验分布拟合检验是一种统计方法,用于验证一个随机变量是否符合某个特定的概率分布。
在许多实际问题中,我们常常需要根据观测数据来推断数据的分布情况,而分布拟合检验可以帮助我们判断观测数据是否与我们假设的分布相符合。
我们需要明确什么是分布拟合检验。
分布拟合检验通过计算观测数据与理论分布之间的差异程度,来判断观测数据是否服从某个特定的概率分布。
常用的分布拟合检验方法有卡方检验和Kolmogorov-Smirnov检验。
卡方检验是一种基于频数的检验方法,它将观测数据根据某个分布的概率密度函数进行分组,并计算观测频数与理论频数之间的差异。
通过比较观测频数和理论频数之间的差异程度,我们可以判断观测数据是否符合某个特定的概率分布。
Kolmogorov-Smirnov检验是一种基于累积分布函数的检验方法,它通过计算观测数据的经验分布函数与理论分布的累积分布函数之间的最大差异,来判断观测数据是否符合某个特定的概率分布。
下面以一个例子来说明分布拟合检验的具体步骤。
假设我们有一组观测数据,表示某种产品的寿命。
我们想要验证这些数据是否符合指数分布。
我们需要根据观测数据计算出经验分布函数。
经验分布函数是指在某个点上,小于或等于该点的观测值的比例。
通过计算观测数据的经验分布函数,我们可以得到一个累积分布函数的曲线。
然后,我们需要计算出指数分布的理论累积分布函数。
指数分布是一种常见的连续概率分布,它描述了独立随机事件发生的时间间隔的概率分布。
根据指数分布的参数估计,我们可以计算出理论累积分布函数的曲线。
接下来,我们使用Kolmogorov-Smirnov检验来比较观测数据的经验分布函数与指数分布的理论累积分布函数之间的差异。
具体来说,我们计算出两个分布函数之间的最大差异,并根据该差异值和显著性水平,来判断观测数据是否符合指数分布。
我们还可以使用卡方检验来验证观测数据是否符合指数分布。
卡方检验通过计算观测频数与理论频数之间的差异,来判断观测数据是否符合指数分布。
分布拟合检验1.检验数据是否服从正态分布一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。
如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。
如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
以上两种方法以Q-Q图为佳,效率较高。
3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图判断方法:观测离群值和中位数。
5、茎叶图类似与直方图,但实质不同。
二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。
两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。
由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。
2、非参数检验方法非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。
SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。
SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。
对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。
由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。
(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。
分布拟合检验简介
重点:分布拟合检验方法
在很多场合下,我们连总体服从什么分布也无法知道,这时我们需要对总体的分布进行检验,这正是分布拟合检验要解决的问题。
一、 分布拟合检验的方法
二、 例题
例1 在某一实验中,每隔一定时间观测一次某种铀所放射的到达计数器上的α粒子数X ,共观测了100次,得结果如下表所示
其中n i 为观测到i 个粒子的次数。
从理论上考虑,X 应服从泊松分布,问这种理论上的推断是否符合实际(取显著性水平α=0.05)
解:原假设H 0:X 服从泊松分布Λ,1,0,!
}{===-i i e i X P i
λλ
λ的极大似然估计值为2.4ˆ==x λ。
当H 0为真时,P{X=i}的估计值为Λ,1,0,!
2.4ˆ2.4==-i i e p i 。
2χ的计算如下表
所示。
查表可得592.122
05.0=χ
由于592.128215.62<=χ,故在显著性水平α=0.05下接受H 0,即认为理论上的推断符合实际
例2 自1965年1月1日至1971年2月9日共2231天中,全世界记录到的里氏震级4级和4级以上地震计162次,统计如下:
试检验相继两次地震间隔天数是否服从指数分布?取显著性水平α=0.05
解:原假设H 0:X 的概率密度为⎪⎩
⎪⎨⎧<>=-0 x 00 x )(x e x f λλ
λ的极大似然估计值为0726.0ˆ=λ
X 是连续性随机变量,将X 可能取值的空间(0,+∞)分为k=9个互不重叠的子区间921,,,A A A Λ
当H 0为真时,X 的分布函数为⎪⎩
⎪⎨⎧≤>-=-0 x 00 x 1)(ˆ0726.0x e x F 由上式可得概率p i =P{X ∈A i }的估计值i p
ˆ,将计算结果列表如下
查表可得067.14)7(2
05.0=χ
067.145631.12<=χ
故在显著性水平α=0.05下接受H 0,即认为X 服从指数分布。