第五章拟合优度和独立性检验
- 格式:ppt
- 大小:773.00 KB
- 文档页数:55
卡方检验与拟合优度检验卡方检验是一种统计学方法,用于确定两个或多个分类变量之间是否存在显著的关联或差异。
它的原理是通过比较实际观察到的频数与期望的频数之间的差异来判断两个变量是否相关。
拟合优度检验则是卡方检验的一种特殊形式,用于评估一个已知理论分布与实际观察到的分布之间的拟合程度。
1. 卡方检验卡方检验可分为独立性检验和拟合度检验两种类型。
独立性检验用于确定两个分类变量之间是否相互独立,拟合度检验用于评估一个已知理论分布与实际观察到的分布之间的差异。
在进行卡方检验时,首先需要建立一个原假设(H0)和一个备择假设(Ha)。
原假设通常是假设两个变量之间没有关联或差异,备择假设则是假设两个变量之间存在关联或差异。
然后,计算实际观察到的频数和期望的频数。
实际观察到的频数是指在样本中观察到的不同类别的频数,而期望的频数是指根据原假设计算得出的在理论上预期的频数。
接下来,使用计算公式计算卡方值:χ² = Σ((O-E)²/E)其中,Σ表示求和,O表示实际观察到的频数,E表示期望的频数。
最后,根据计算出的卡方值,查找对应的卡方分布表,找到相应自由度下的临界值。
比较计算出的卡方值和临界值,如果计算出的卡方值大于临界值,则拒绝原假设,认为两个变量之间存在关联或差异;如果计算出的卡方值小于临界值,则无法拒绝原假设,认为两个变量之间不存在关联或差异。
2. 拟合优度检验拟合优度检验用于评估一个已知理论分布与实际观察到的分布之间的拟合程度。
在进行拟合优度检验时,需要根据已知的理论分布计算期望的频数,然后计算卡方值并进行比较,以确定理论分布与实际观察到的分布之间是否存在显著的差异。
拟合优度检验的步骤与卡方检验类似,需要建立原假设和备择假设,并计算实际观察到的频数和期望的频数。
然后根据计算出的卡方值比较原假设和备择假设,判断理论分布与实际观察到的分布之间的拟合程度。
总结:卡方检验和拟合优度检验是两种常用的统计方法,用于确定分类变量之间的关联或差异以及评估已知理论分布与实际观察到的分布之间的拟合程度。
国开(中央电大)本科《社会统计学》网上形考任务试题及答案章节测试试题及答案一、试题部分1.某班级有60名男生,40名女生,为了了解学生购书支出,从男生中抽取12名学生,从女生中抽取8名学生进行调查。
这种调查方法属于( )。
2.以下关于因变量与自变量的表述不正确的是( )。
3.为了解某地区的消费,从该地区随机抽取5000户进行调查,其中30%回答他们的月消费在5000元以上,40%回答他们每月用于通讯、网络的费用在300元以上。
此处5000户是( )。
4.某班级有100名学生,为了了解学生消费水平,将所有学生按照学习成绩排序后,在前十名学生中随机抽出成绩为第3名的学生,后面依次选出第13、23、33、43、53、63、73、83、93九名同学进行调查。
这种调查方法属于( )。
1.某班级学生平均每天上网时间可以分为以下六组:1)1小时及以下;2)1-2小时;3)2-3小时;4)3-4小时;5)4-5小时;6)5小时及以上,则5小时及以上这一组的组中值近似为( )。
2.下表为某专业一年级学生平均每周上网时间的频率分布表,按照向上累积的方法计算第5组的累积频率是( )。
3.以下关于条形图的表述,不正确的是( )。
等距分组和不等距分组有什么区别?请举例说明。
某行业管理局所属40个企业2011年产品销售额数据如下所示。
要求:(1)对2011年销售额按由低到高进行排序,求出众数、中位数和平均数。
(2)如果按照规定,销售额在125万元以上的为先进企业,115万-125万之间的为良好企业,105万-115万之间的为一般企业,105万以下的为落后企业,请按先进企业、良好企业、一般企业、落后企业进行分组,编制频数分布表,并计算累积频数和累积频率。
某大学有六门选修课,全校学生可以随意选择,不受任何限制。
根据教务处最终选课结果发现,全校一年级2000名学生中,有200人选修大学生心理分析,有400人选修影视欣赏,有180人选修古代中国文学鉴赏,有350人选修人格魅力的欣赏与培养,有570人选修社会统计方法及SPSS软件的应用,有300人选修当代中国外交分析。
教育统计学课后练习参考答案教育统计学课后练习参考答案第⼀章1、教育统计学,就是应⽤数理统计学的⼀般原理和⽅法,对教育调查和教育实验等途径所获得的数据资料进⾏整理、分析,并以此为依据,进⾏科学推断,从⽽揭⽰蕴含在教育现象中的客观规律的⼀门科学。
教育统计学既是统计科学中的⼀个分⽀学科,⼜是教育科学中的⼀个分⽀学科,是两种科学相互结合、相互渗透⽽形成的⼀门交叉学科。
从学科体系来看,教育统计学属于教育科学体系的⼀个⽅法论分⽀;从学科性质来看,教育统计学⼜属于统计学的⼀个应⽤分⽀。
2、描述统计主要是通过对数据资料进⾏整理,计算出简单明⽩的统计量数来描述庞⼤的资料,以显⽰其分布特征的统计⽅法。
推断统计⼜叫分析统计,它根据统计学的原理和⽅法,从我们所研究的全体对象(即总体)中,按照等可能性原则采取随机抽样的⽅法,抽出总体中具有代表性的部分个体组成样本,在样本所提供的数据的基础上,运⽤概率理论进⾏分析、论证,在⼀定可靠程度上对总体的情况进⾏科学推断的⼀种统计⽅法。
3、在⾃然界或教育研究中,⼀种事物常存在⼏种可能出现的情况或获得⼏种可能的结果,这类现象称为随机现象。
随机现象具的特点:(1)⼀次条件完全相同的实验有多种可能的结果(这样的实验称为随机实验);(2)在实验之前不能确切知道哪种结果会发⽣;(3)在相同的条件下可以重复进⾏这样的实验。
4、总体,也叫做母体或全域,是指具有某种共同特征的个体的总和。
当所研究的总体数量⾮常⼤时,可以从总体中抽取其中⼀部分个体来观测,由此来推断总体的信息,从总体中抽出的这部分个体就称为样本,它是⽤以表征总体的个体的集合。
通常将样本中样本个数⼤于或等于30个的样本称为⼤样本,⼩于30个的称为⼩样本。
5、复置抽样指每次抽出的个体经观测后,仍放回原总体,然后再从总体中抽取下⼀个个体。
6、反映总体特征的量数叫做总体参数,简称参数。
反映样本特征的量数叫做样本统计量,简称统计量。
参数是总体的真正数值,是固定的常量,理论上应该通过计算总体中全部个体的数值⽽获得,但由于总体中个体的数量通常很⼤,总体参数往往很难获得,在统计分析中⼀般通过样本的数值来估计。
统计学三大检验方法一、前言在数据分析中,我们经常需要对样本数据进行检验以判断其是否符合某些假设或推断。
统计学三大检验方法包括t检验、方差分析和卡方检验,是数据分析中常用的方法之一。
二、t检验1.概述t检验是一种用于比较两个样本均值是否显著不同的方法。
它可以用于两个样本的独立样本t检验和配对样本t检验。
2.独立样本t检验独立样本t检验适用于两个不相关的样本。
它的基本思想是通过比较两个组别的平均值来判断它们是否有显著性差异。
具体步骤如下:(1)建立假设:假设两个组别的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出t值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的t值与临界值,如果计算得到的t值小于临界值,则接受原假设,否则拒绝原假设。
3.配对样本t检验配对样本t检验适用于两个相关的样本。
它的基本思想是比较两个组别的差异是否显著。
具体步骤如下:(1)建立假设:假设两个组别的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出t值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的t值与临界值,如果计算得到的t值小于临界值,则接受原假设,否则拒绝原假设。
三、方差分析1.概述方差分析是一种用于比较三个或以上样本均值是否显著不同的方法。
它可以用于单因素方差分析和双因素方差分析。
2.单因素方差分析单因素方差分析适用于只有一个自变量的情况。
它的基本思想是通过比较各组之间的离散程度来判断它们是否有显著性差异。
具体步骤如下:(1)建立假设:假设各组的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出F值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的F值与临界值,如果计算得到的F值大于临界值,则拒绝原假设,否则接受原假设。
数据分析知识:数据分析中的卡方检验流程卡方检验是统计学中一种常用的假设检验方法,它适用于分析两个变量之间的关系以及检验两个分布之间的差异。
本文将详细介绍卡方检验的流程以及应用场景。
一、卡方检验的基本概念卡方检验是基于卡方分布的检验方法,首先需要了解卡方分布。
卡方分布是统计学中常用的概率分布,是由自由度为n的n个独立标准正态分布随机变量平方和所组成的随机变量的分布。
卡方检验是通过计算观察值与期望值之间的差异来检验数据之间是否存在相关性或差异。
这里的观察值指的是实际观测到的数据,期望值则是通过假设检验得到的预测值。
当观察值与期望值之间的差异越大,就说明两个变量之间的相关性或差异越显著。
卡方检验分为拟合优度检验和独立性检验两种类型。
拟合优度检验用于检验样本分布是否符合某个已知的理论分布,而独立性检验则用于检验两个变量之间是否存在关联。
二、卡方检验的流程卡方检验的流程通常分为以下五个步骤:1.建立假设在进行卡方检验之前,需要明确所要检验的假设。
一般情况下,研究人员提出两个假设:原假设和备择假设。
原假设通常是指不存在差异或关联,备择假设则是指存在差异或关联。
例如,在研究男女生育率是否存在差异时,原假设可以设为男女生育率相同,备择假设可以设为男女生育率存在差异。
2.计算卡方值计算卡方值是卡方检验的核心内容。
卡方值通常通过以下公式计算:其中,O为观察值,E为期望值,n为数据总量,k为自由度。
自由度的计算公式为(r-1)*(c-1),其中r表示行数,c表示列数,代表每个分类变量在计算期望值时可以独立取值的数量。
具体而言,在研究男女生育率是否存在差异的例子中,可以将数据按照男女分类,列出如下的交叉表:假设男性生育率的期望比例为50%,女性生育率的期望比例也为50%,那么期望频数可以通过以下公式计算:期望频数=总频数*期望比例男性生育率的期望频数为1000 * 0.5 = 500,女性生育率的期望频数也为500。