光栅特性与激光波长
- 格式:doc
- 大小:291.00 KB
- 文档页数:6
光栅衍射实验—光波波长的测量光栅衍射实验是一种利用光栅条纹进行衍射的实验方法,通过测量衍射条纹的位置及其对比度等参数,可以求出光波的波长,并且还可以用来研究光栅的特性。
一、实验原理1.光栅的概念光栅是一种特殊的光学元件,它是由若干个平行排列的细缝或反射率不同的条纹组成的,当光线垂直入射到光栅上时,经过衍射后,会形成一系列等间距、亮暗交替的光条纹。
这些光条纹的位置和强度是与光波的波长和光栅的特性相关的。
2.光栅衍射的原理当一束平行光垂直入射到光栅上时,在光栅的每个细缝处都会产生不同程度的衍射,形成多个次级光源,这些次级光源再次经过衍射后形成的干涉条纹就是我们所要研究的光谱。
在光栅衍射中,由于光栅条纹之间的间隔很小,因此形成的光谱具有非常高的分辨率。
3.衍射条纹的位置根据衍射理论,在一般情况下,衍射条纹的位置由以下公式给出:d*sinθ = mλ其中,d是光栅的格距,θ是衍射角度,m是整数,表示衍射的级次,λ是光波的波长。
4.扩展光源的作用为了使衍射条纹更加明显、清晰,实验中一般采用扩展光源的方法,不仅可以提高对比度,减小空间干涉等因素对结果的影响,还可以使得整个光栅区域都能够有光照射,避免产生阴影和动态散斑等现象。
二、实验步骤1.实验器材:光栅、氢灯、狭缝、屏幕等。
2.调整光源:将氢灯放置在与狭缝相距15~20cm的位置,用狭缝筛选出单色光源。
3.调整光路:将单色光经过准直透镜后垂直入射到光栅上,同时加入扩展光源,使得整个光栅区域都得到光照射。
4.观察条纹:将屏幕置于衍射的适当位置,观察衍射条纹,测量其位置及对比度等参数,调整前面的步骤,使得衍射条纹达到最佳状态。
5.绘制波长和强度图:用测得的衍射条纹位置和对比度计算光波的波长,组织数据,绘制波长和强度图。
三、实验注意事项1.实验过程中要注意安全,避免光源伤害眼睛。
2.光栅表面要保持干净,防止灰尘和污垢的影响。
3.光路的调整要耐心,确保光线的准确垂直入射到光栅上。
光栅特性与光波波长测量
光栅是用于衍射和反射光线的设备,可以用于测量光波的波长。
在光栅的作用下,光束被分解成一系列光点,这些光点的位置和强度取决于入射光线的波长和光栅的特性。
对于光栅中的类似光谱的分布,波长和光点之间有着非常明显的关系。
通过观察光栅图案的特征可以确定光波的波长。
因为光点的位置是由波长和光栅间隔决定的,所以可以根据测量得到光点距离和光栅间隔来确定波长。
这种技术在物理学、化学和生物学等领域中都有广泛的应用。
此外,光栅还可以用于研究材料的光学性质,测量材料的折射率和反射率,以及检测和分析微小生物和细胞。
由于光栅具有高精度、高分辨率和灵敏度等优点,因此已成为现代科学和技术中不可或缺的工具之一。
光栅的结构及工作原理光栅是一种常用的光学元件,广泛应用于光谱仪、激光器、光纤通信等领域。
它通过光的衍射效应实现光的分光、波长选择和光学信息处理等功能。
本文将详细介绍光栅的结构和工作原理。
一、光栅的结构光栅的结构通常由平行的凹槽或凸起的条纹组成,这些凹槽或条纹被称为光栅线。
光栅可以分为反射光栅和透射光栅两种类型。
1. 反射光栅:反射光栅的结构由一系列平行的凹槽组成,这些凹槽被刻在光栅的表面上。
光线照射到反射光栅上时,一部分光线会被反射,而另一部分光线会经过光栅的表面继续传播。
2. 透射光栅:透射光栅的结构由一系列平行的凸起条纹组成,这些凸起条纹被刻在光栅的表面上。
光线照射到透射光栅上时,一部分光线会被透射,而另一部分光线会被散射或反射。
光栅的结构参数主要包括光栅常数、光栅线数和光栅深度。
光栅常数是指单位长度内光栅线的数量,通常用线数/毫米或线数/英寸来表示。
光栅线数是指光栅表面上单位长度内的光栅线数量。
光栅深度是指光栅线的高度或深度,它决定了光栅的衍射效果。
二、光栅的工作原理光栅的工作原理基于光的衍射现象。
当平行入射光线照射到光栅上时,光栅会将光线分散成一系列不同波长的光束。
这是由于光栅上的光栅线会对光线进行衍射,使得不同波长的光线在不同的角度上发生偏折。
光栅的衍射效应可以用衍射方程来描述:mλ = d(sinθi ± sinθd)其中,m是衍射级别,λ是入射光的波长,d是光栅常数,θi是入射角,θd是衍射角。
衍射方程表明,不同波长的光线在不同的衍射级别上产生衍射,从而实现光的分光效果。
光栅的衍射效应还可以通过光栅的光程差来解释。
光程差是指光线从光栅上的不同位置到达观察点所经过的光程差。
当光程差满足某一特定条件时,光线会发生相长干涉,从而形成明纹。
而当光程差不满足这一条件时,光线会发生相消干涉,从而形成暗纹。
光栅的工作原理还可以通过光栅的光谱特性来解释。
光栅可以将入射光分散成不同波长的光束,形成光谱。
实验六 光栅的特性分析和应用光栅是根据多缝衍射原理制成的一种重要的分光元件,入射光在光栅上发生衍射,不同波长的光被分开,同时它还具有较大的色散率和较高的分辨本领。
利用光栅分光制成的单色仪和光谱仪在研究谱线结构、谱线的波长和强度进而研究物质的结构、做定量分析等方面有着广泛的应用。
同样,它还广泛应用于计量、光通信、信息处理等问题之中。
【实验目的】1.熟悉分光计的使用方法。
2.观察光线通过光栅后的衍射现象及特点。
3.用透射光栅测定光栅常量、光谱线的波长。
4.学会测定光栅的另外两个特征参数;色散率、分辨本领。
【实验仪器】分光计、汞灯及光栅等。
【实验原理】光栅在结构上有平面光栅、阶梯光栅和凹面光栅等几种,同时又分为透射式和反射式两类。
本实验选用透射式平面刻痕光栅。
透射光栅是在光学玻璃片上刻划大量相互平行、宽度和间距相等的刻痕而制成的。
当光照射在光栅面上时,刻痕处由于散射不易透光,光线只能在刻痕间的狭缝中通过。
因此光栅实际上是一排密集、均匀而又平行的狭缝。
若以单色平行光垂直照射在光栅面上,则透过各狭缝的光线因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列被相当宽的暗区隔开的、间距不同的明条纹,因此光栅的衍射条纹是光的衍射和干涉的综合效果。
按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定:λϕK b a k ±=+sin )(或⋯⋯=±=2,1,0,sin K K d k λϕ (1)此式称为光栅方程,式中,d=a+b 称为光栅常数,λ为入射光波长,K 为明条纹(光谱线)级数,k ϕ是K 级明条纹的衍射角(参看图 1 )。
如果入射光不是单色光,则由式(1)可以看出,光的波长不同,其衍射角k ϕ也各不相同,于是复色光将被分解,而在中央K=0、k ϕ=0处,各色光仍重叠在一起,组成中央明条纹。
在中央明条纹两侧对称地分布着K=1、2……级光谱,各级光谱线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分解为单色光(见图1)。
实验七用分光计测光栅常数和光波的波长【实验目的】1. 熟悉分光计的操作2. 用已知波长光光栅常数3. 用测出的光栅常数测某一谱线的波长【实验仪器】分光计及附件一套,汞灯关源;光栅一片【实验原理】本实验是利用全息光栅进行测量,光源采用GD20低压汞灯,它点燃之后能发生较强的特性光谱线,在可见区辐射的光谱波长分别为5790A0,5770 A0,5461 A0,4358 A0,4047 A0。
根据夫琅和费衍射原理,每一单色平行光垂直投射到光栅平面上,被衍射,亮纹条件为:dsinθ=Kλ(K=0, ±1, ±2,±3,······)d-----光栅常数θ-----衍射角λ-------单色光波长由于汞灯产生不同的单色光,每一单色光有一定的波长,因此在同级亮纹时,各色光的衍射角θ是不同的。
除中央亮纹外各级可有四条不同的亮纹,按波长不同进行排列,通过分光计观察时如(图8-3)所示。
这样,若对某一谱线进行观察(例如黄光λy=5790 A0)对准该谱线的某级亮纹(例如K=±1)时,求出其平均的衍射角θ〈y,代入公式就可求光栅常数d,然后可与标准比较。
本实验采用d=1/1000厘米的光栅。
相反,若将所求得的光栅常数d,并对绿光进行观察,求出某级亮纹(如K=±1)的平均衍射角θ〈y,代入公式,又可求出λg 。
同理,可以同级亮纹或不同亮纹的其他谱线进行观察和计算。
【实验步骤】(实验之前请先看实验七附录)1、先进行目镜和望远镜的调焦;2、调整望远镜的光轴垂直于旋转主轴;3、平行光管的调焦;4、调整平行光管的光轴垂直于旋转主轴;5、将平行光管狭缝调成垂直;(1-5安装时已基本调好)6、调节光栅平面,使光栅与转轴平行,且光栅平面垂直于平行光管。
调节方法:先开汞灯光源,把平行光管的狭缝照亮,把望远镜叉丝对准狭缝象,固定望远镜的锁紧螺钉。
光栅衍射与光波波长的测定实验报告目录一、实验目的 (2)1. 理解光栅的基本原理和作用 (2)2. 学会使用光栅光谱仪进行光栅衍射实验 (3)3. 测定入射光和衍射光的波长 (4)二、实验原理 (5)1. 光栅方程 (6)2. 惠更斯-菲涅耳原理 (7)3. 菲涅耳衍射 (7)4. 夫琅禾费衍射 (8)5. 光波波长测定 (10)三、实验仪器与材料 (11)1. 光栅光谱仪 (11)2. 可调谐激光器 (12)3. 高精度光杠杆 (14)4. 微倾螺旋 (15)5. 滤光片 (16)四、实验步骤 (17)五、实验数据与结果分析 (19)1. 记录实验过程中的所有数据,包括衍射图谱、波长计算值等 (20)2. 对比实验数据与理论预期,分析光栅性能和波长测定结果的准确性213. 编写实验报告,总结实验过程、结果与讨论 (22)六、实验误差分析与改进措施 (22)1. 分析实验误差来源,如仪器误差、操作误差等 (24)2. 提出改进措施,如优化仪器设置、提高操作技能等 (25)3. 对实验结果进行修正,以提高测量精度 (26)七、实验结论 (27)一、实验目的本实验旨在通过光栅衍射与光波波长的测定,深入理解光栅的基本原理及其在光学信息处理、通信和显示技术等领域的应用。
实验过程中,我们将观察并分析光栅产生的衍射图样,测量光波波长,并探究光栅常数与衍射效率之间的关系。
通过实验操作,培养学生的动手能力和科学实验素养,提高其解决实际问题的能力。
1. 理解光栅的基本原理和作用本实验旨在探究光栅衍射现象与光波波长的关系,为了更好地理解实验内容,我们首先需深入理解光栅的基本原理和作用。
光栅是一种具有周期性结构的光学元件,其表面由一系列等宽等间距的狭窄透光条和遮挡条组成。
当光束入射到光栅上时,由于光栅的周期性结构,会发生衍射现象。
衍射是波(如光波)在遇到障碍物或穿过小孔时产生的一种物理现象,光波会被分散成不同的方向,形成明暗相间的条纹。
用光栅测量光波波长实验报告学院班级学号姓名实验目的与实验仪器【实验目的】(1)学习调节和使用分光仪观察光栅衍射现象。
(2)学习利用光栅衍射测量光波波长的原理和方法。
(3)了解角色散与分辨本领的意义及测量方法。
【实验仪器】JJY分光仪(1’)、光栅、平行平面反射镜、汞灯等。
实验原理(限400字以内)1、光栅方程主极大的级数限制:2、光栅色散本领与分辨本领光栅的分光原理:波长越长,衍射角越大。
色散现象:入射光是复合光,不同的波长被分开,按从小到大依次排列,成为一组彩色条纹,就是光谱。
K级次的角色散率:光栅的分辨本领定义为刚好能分辨开的两条单色谱线的波长差与这两种波长的平均值之比:实验步骤光栅方程是在平行光垂直入射到光栅平面的条件下得出的,因此要按此要求调节仪器:1)按实验4.14【实验装置】部分的“1.分光仪的构造”和“2.分光仪的调节”内容调节好分光仪。
2)调节光栅平面使之与平行光管光轴垂直:调B2或B3十字水平线。
3)调节光栅使其透光狭条与仪器主轴平行:调B1使谱线高度一致。
4)用汞灯照亮平行光管的狭缝,设平行光垂直照射在光栅上,转动望远镜定性观察谱线的分布规律与特征;然后改变平行光在光栅上的入射角度,转动望远镜定性观察谱线的分布的变化。
5)测量肉眼可以很清楚看到的汞灯蓝色、绿色、黄色I、黄色II四条谱线。
使望远镜对准中央亮线,向左转动,对观察到的每一条汞光谱线,使谱线中央与分划板的垂直线重合,将望远镜此时的角位置记录到表5.8-1到5.8-4中。
同样的,向右转动,将望远镜此时的角位置记录到表5.8-1到5.8-4中。
读数:【分析讨论】讨论光栅的作用、汞光谱线的分布规律与特征、平行光入射角度对谱线分布的影响等,对实验结果进行评价。
答:1、光栅主要有四个基本性质:色散、分束、偏振和相位匹配,光栅的绝大多数应用都是基于这四种特性。
光栅的色散是指光栅能够将相同入射条件下的不同波长的光衍射到不同的方向,它使得光栅取代棱镜成为光谱仪器中的核心元件;光栅的分束特性是指光栅能够将一束入射单色光分成多束出射光的本领;光栅的相位匹配性质是指光栅具有的将两个传播常数不同的波祸合起来的本领。
光栅衍射法测光波波长实验报告目录一、实验目的与要求 (2)1. 实验目的 (2)2. 实验要求 (3)二、实验原理 (3)1. 光栅基本原理 (4)2. 衍射原理简介 (5)3. 光波波长测量方法 (6)三、实验仪器与材料 (7)1. 主要仪器 (8)双缝干涉仪 (8)读取装置 (9)2. 实验材料 (11)光波源 (11)透明介质 (13)测量尺 (14)四、实验步骤 (15)1. 光路搭建 (16)2. 数据采集 (18)3. 数据处理 (19)4. 结果分析 (20)五、实验结果与讨论 (20)1. 实验数据记录 (21)2. 数据处理与分析 (22)3. 结果讨论 (23)实验误差分析 (24)结果合理性探讨 (25)六、实验结论与展望 (26)1. 实验结论 (27)2. 实验不足与改进 (28)3. 未来研究方向 (30)一、实验目的与要求本次实验的目的是通过光栅衍射法测量光波的波长,光栅衍射作为一种重要的光学现象,在研究光的波动性和干涉性方面具有重要的应用价值。
通过本实验,我们希望能够加深对光栅衍射现象的理解,并准确地测量出光波的波长,进一步探究光波的特性。
本实验旨在通过光栅衍射法测量光波波长,加深对光栅衍射现象的理解,掌握相关实验技能和技术,为今后的学习和研究打下坚实的基础。
1. 实验目的理论联系实际:将所学的光学理论应用于实际问题解决中,通过实验手段验证理论的正确性。
掌握光栅衍射的基本原理:通过实验观察并分析光栅衍射现象,理解光栅对光的散射作用以及衍射图样的形成机制。
学习使用光栅仪器:熟练掌握光栅测长仪的使用方法,能够准确测量光栅常数。
提高实验技能:通过实际操作,提高动手能力、分析问题和解决问题的能力,培养科学严谨的实验态度。
拓展知识面:了解现代光学技术在其他领域的应用,如光谱分析、光学计量等,激发对光学技术的兴趣和探索欲望。
2. 实验要求准备实验器材,包括光源、光栅、透镜、光学仪器等。
实验名称:光栅特性及测定光波波长目的要求1. 了解光栅的主要特性2. 用光栅测光波波长3. 调节和使用分光计仪器用具1. JJY型分光计2. 透射光栅3. 平面镜4. 汞灯5. 钠光灯6. 可调狭缝7. 读数显微镜实验原理实验所用的是平面透射光栅,它相当于一组数目极多、排列紧密均匀的平行狭缝。
根据夫琅禾费衍射理论,当一束平行光垂直的投射到光栅平面上时,光通过每条狭缝都发生衍射,有狭缝射光又彼此发生干涉。
凡衍射角符合光栅方程:φkλsin(k=0,±1,±2,…)d=在该衍射角方向上的光将会加强,其他方向几乎完全抵消。
式中φ是衍射角,λ是光波波长,k 使光谱的级数,d 是缝距,称为光栅常数,它的倒数1/d 叫做光栅的空间频率。
当入射平行光不与光栅表面垂直时,光栅方程应写为:λφk i d =−)sin (sin (k =0,±1,±2,…)若用会聚透镜把这些衍射后的平行光会聚起来,则在透镜的后焦面上将会出现一系列的亮点,焦面上的各级亮点在垂直光栅刻线的方向上展开,称为谱线。
在φ=0的方向上可以观察到中央极强,即零级谱线。
其他 ±1,±2,…级的谱线对称的分布在零级谱线两侧。
若光源中包含几种不同波长的光,对不同波长的光,同一级谱线将有不同衍射角φ,因此在透镜的焦面上出现按波长次序级谱线级次,自第0级开始左右两侧由短波向长波排列的各种颜色的谱线,称为光栅衍射光谱。
用分光计测出各条谱线的衍射角φ,若已知光波波长,即可得到光栅常数d ;若已知光栅常数d ,即可得到待测光波波长λ。
分辨本领R: 定义为两条刚好能被该光栅分辨开的谱线的波长差△λ≡λ2-λ1去除它们的平均波长:λλ∆≡R , R 越大,表明刚刚那个能被分辨开的波长差△λ越小,光栅分辨细微结构的能力就越高。
由瑞利判据可以知道:kN R =其中N 是光栅有效使用面积内的刻线总数目。
角色散率D: 定义为同一级两条谱线衍射角之差△φ与它们的波长差△λ之比。
光栅特性与激光波长
注意事项:
1.不要用手接触光栅表面。
2.实验时,当心激光!
3.本告示牌供实验者阅读,所以不要在上面写字,更不能带出实验室。
实验内容
1.测量未知光波波长λ(调节方法见附件)。
在屏上读出K = 0、±1、±2、±3亮点位置,用米尺读出光栅到屏幕的距离L 。
将数据代入下式中,求出激光的波长λ。
L 估读到1mm ,X 估读到0.5 mm 。
计算公式如下:(注意:此处X 为某级次亮点位置与零次亮点位置的差值。
) 2
2
sin L
X X +=
θ
λθk d =sin
2.测量光栅常数d
给定波长,测量6组L (0.4mm 与0.8m 之间)与对应的X (K = 1级)值。
3.观察衍射现象
1)到光栅衍射现象观察台上另取观察用的光栅,并把光栅放在眼前,直接观察钠灯、护眼灯、日光灯。
记录观察到的现象并进行分析。
画出看到的现象的示意图。
(护眼灯记录K=0,K=±1;钠灯记录K=0,K=±1, K=±2, K=±3) 2)观察正交光栅衍射现象
如图1,若将两个光栅互相垂直(构成正交光栅)且依次放置在激光器之前,
此时激光束穿透光栅后,在屏幕上的衍射图样如何?说明其原因。
3)观察激光束斜入射到光栅的表面时衍射现象
如图2,若将激光束斜入射到光栅的表面,观察各相应级次亮点位置的变化情况,并进行分析。
附:光栅特性与激光波长调节方法介绍(供参考)
1.关掉激光器
2.调节激光器调节架(图3)
a)调节“激光器上下调节”螺丝,使激光器固定板与激光器底板平行(上下间距相等)。
b)调节“激光器左右调节”螺
丝,使激光器与激光器底板左
(右)间距相等。
3.在激光器前10厘米A处放上
光栅,打开激光器,便激光照在
光栅中心(可调节光栅高低)。
向
后移动光栅到B处(例如,60厘
图3 激光调节架
米)。
如果光点照在光栅上位置有
上下移动。
则调节“激光器上下调节”螺丝。
直到光点在A与B两处时,照在光栅上位置上下无移动。
这样激光基本上平行桌面。
4.调节光屏调节架(图4,图5)
调节光屏调节架的“前左调节螺丝”或“前右调节螺丝”或“后调节螺丝”,使光屏调节架底座平行桌面(目测)。
注
意每个调节螺丝调到中间位置(上下留
有一定的调节范围,如图5)
5.激光器与光屏相距1米以上,打开激
光器,使激光照在光屏上(零刻度线)。
反射回的光点应照射在激光器出射光孔
中。
如果不照射到激光器发(出射)光
孔中,可用以下方法调节。
图4 光屏调节架用一张纸,放在激光器后面,观察纸上光斑位置。
大致找出反射光斑位置,如图6。
6.a)转动光屏调节架,(注意:用手转动底座,不要用手转动光屏,否则光屏会损坏掉落)使反射光斑照射在激光器激光发光孔的正上方(下方)(注意:转动过程中,激光应始终照在光屏的零刻度线上),如图6。
b)调节“后调节螺丝”,使反射光的光斑上(下)移动后,照射在激光器发光孔内。
(注意:在此过程中,其他两个调节螺丝不可调节)
7.调节光栅调节架的螺丝,使光栅调节板与光栅间距相等,如图7。
在与光屏相距75厘米的地方放上光栅,调节光栅调节架的螺丝1或光栅调节架的螺丝2,使反射光的衍射光照射在激光器发光孔内(注意:是选取最亮一个衍射光斑,即零级衍射光斑)。
8.观察光屏上的几个衍射光斑(连线)是否与光屏刻度横线平行(或重合),如果不平行,则可通过“前左调节螺丝”或“前右调节螺丝”调节。
调节完毕后,
如发现零级衍射光斑移动(不在零刻度线上),可以拿走光栅,通过移动光屏,使零级衍射光斑重新在光屏零刻度线上,重复以上步骤5,6,7。
调节完毕后,可以开始测量。
附:光栅特性与激光波长记录(供参考)
1. 测量未知光波波长λ
光栅狭缝密度=lines/mm,光栅常数d= mm
光栅到屏幕的距离L= mm 注:'
'X
X
X
k
k
-
=
(注意:本实验中,K>2时,θ不能用近似公式计算,亮点位置为屏上刻度线的读数值)
衍射
级次
K
亮点位置
'
k
X/ mm
sinθ
衍射角度
θ/ rad
角色散率
D / nm-1
光波波长
λ / nm
波长平均
值λ / nm -3 ******* ***** ******* ******* ***** *****
图7光栅与光栅调节架图5调节示意图
图6调节示意图
2. 测定光栅常数d
波长λ = nm , 光栅编号 注:'0'11X X X -= 不确定度u (d ) = mm d ± u (d )= mm 3.护眼灯、钠灯的衍射图样。
4.激光束斜入射到光栅的表面,在屏上衍射图样。
5.两个光栅互相垂直(构成正交光栅)放置,在屏上衍射图样。